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Abstract—We propose a fusion model of deep neural networks
and traditional algorithms for anomaly detection. The proposed
model inherits the advantages of both these methods to create a
robust anomaly detection algorithm. We employ the Dempster-
Shafer theory (D-S) of Evidence, a very reliable and flexible data
fusion technique, to form a fusion-based network anomaly detec-
tion (FuseNAD) by applying a basic probability assignment (BPA)
function and modifying the D-S theory’s rule. FuseNAD fuses
four anomaly detection methods consisting of a deep learning
technique, namely Shrink Auto-Encoder, and three traditional
ones such as One-class Support Vector Machine (OCSVM),
Kernel Density Estimation (KDE) and Local Outlier Factor
(LOF). The experimental results show increases in detection rate
and overall accuracy in comparison to the individuals on several
public network anomaly detection datasets.

Index Terms—Deep learning; Auto-Encoder; Anomaly Detec-
tion; D-S Theory; Data Fusion.

I. INTRODUCTION

The rapid development of the computer network in all
aspects of its infrastructure has put it under the pressure of
the modern cyber attacks. Seeking solutions to identify and
prevent cyberattacks is a crucial task in network security,
which has attracted the research community for the last few
decades. Recently, machine learning has been seen as the
primary approach for anomaly detection in network secu-
rity [1], [2]. Amongst machine learning approaches, semi-
supervised learning-based anomaly detection methods are suit-
able for detecting network anomalies [3], [4]. The reason is
that these methods can construct anomaly detection models
from only one class of data, typical normal class, and any
querying data points that do not fit the models are indicated
as anomalies [5]. There are many well-known semi-supervised
algorithms for anomaly detection including One-class Support
Vector Machine (OCSVM) [6], Local Outlier Factor (LOF) [7]
and Kernel Density Estimation (KDE). These algorithms have
shown the excellent results on many anomaly detection do-
mains. However, they suffer from the challenge in dealing with
high-dimensional network data [3]. Fortunately, deep learning-
based anomaly detection methods have been demonstrated as
powerful algorithms for complex anomaly detection problems,
and can complement to the weaknesses of the density/distance-
based techniques. Auto-Encoders (AEs), deep neural networks

that learn to reconstruct the input data at the output layer, are
known as the state-of-the-art anomaly detection method [8],
[9]. Several variances of AEs, such as Denoising AEs and
Shrink AE, make deep learning-based approaches very popular
in anomaly detection domain.

However, these single methods might not be fully adapted
to complicated and changing network systems [10]: network
intrusions can be launched by “real person”, and may be
more complex than other destructive actions [11]. Thus, all
the single anomaly detection methods tend to be only useful
for some intrusions, but might not be ideal for others. This
may result in the inefficient performance of network anomaly
detection algorithms, such as low accuracy, higher false alarm
rate (FAR), and lower detection rate (DR). To mitigate this
problem, we propose a model by fusing the strength from
different methods.

When constructing a fusion model, three important issues
should be considered [12]. The first issue is the level of fusion
model, i.e. how to choose the base detectors, and the fusion
mechanism [11], [13]. The second one relates to the choice
of the level fusion and the working field. The last issue is the
fusion algorithms. The studies [10], [13]–[16] showed that the
D-S Theory is a potential method for establishing a fusion-
based model for network anomaly detection as it owns a
flexible feature. However, in the D-S theory, the definition
of Frame of discernment (FoD) and setting up the Basic
probability assignment (BPA) function are too complicated.
Another limitation is that it is difficult to solve the problem
of unequal performance amongst individual models [10], [16],
[17]. In this paper, we attempt to overcome the above issues
by adjusting the D-S theory for network anomaly detection.
In other words, we introduce a new D-S theory’s rule, called
DSR AD, and employ FoD and the BPA function to efficiently
fuse individual anomaly detection methods together. We then
use the mechanism to combine four individual classifiers,
SAE [3], OCSVM [18], KDE [19], and LOF [20] to form
a fusion-based network anomaly detection method, called
FuseNAD. The main contributions of the paper are:
• We develop a new D-S theory’ rules, called DSR AD, for

building a robust model from single anomaly detectors.
This can overcome the limitations of the classical D-S
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theory. We also adjust other elements of the D-S theory
when applying the rule for anomaly detection problem.

• We propose new fusion anomaly detection model (Fuse-
NAD) by using DSR AD to combine a deep learning-
based algorithm and three classical algorithms.

• We conduct extensive experiments on the well-known
publicly datasets to evaluate and testify FuseNAD.

The remain of the paper proceeds as follows. In Section II,
we briefly review some relevant work. In Section III, we
present a complementary background. We detail our proposed
model, FuseNAD, in Section IV and discuss our experimental
results in Section V. Finally, the conclusion is presented in
Section VI, which also draws some future directions.

II. RELATED WORK

This part briefly presents recent machine learning ap-
proaches for network anomaly detection and some fusion-
based models in this domain. These research can be divided
into two main categories: classical methods and deep learning
techniques.

In the first group, some well-know anomaly detection
methods (ADs), such as OCSVM, KDE and LOF have been
demonstrated as powerful methods. Support vector machines
have been succeeded for anomaly detection since the 1990s.
OCSVM is sometimes known as a novelty detection technique.
Based on the structure of the positive training data, OCCSVM
creates a boundary in a feature space to best present the
region containing the positive class. The margin is concreted
by a set of data points in the feature space, called support
vectors. OCSVM was proposed by Schölkopf et al. [21].
The aim is to find a hyper-plane that maximizes the margin
between the region containing normal data and the origin in
the feature space. The remaining space, including the origin,
is indicated as the anomalous region. The trade-off between
maximizing the margin and minimizing the number of target
vectors dropping into the anomalous region is controlled by
an outlier fraction ν ∈ (0, 1).

MP Wand et al. [19] introduce Kernel density estimation
(KDE) that is a probability density-based approach. KDE fits
a large number of kernels over the data, one per data point.
These kernels share a single co-variance called bandwidth. As
applying KDE for anomaly detection domain, only normal data
is used to build a probability density function. Every output
is classified as an anomaly if its density produced from the
function is lower than a predestined threshold. A Lazarevic
et al. [20] proposed Local Outlier Factor (LOF) as a novelty
detection method. The algorithm works based on the amount
of density of each data point w.r.t its neighbors. A local outlier
factor score indicates the anomaly degree of each data point.
The larger score a data point has, the higher the probability
the data point is classified as an anomaly.

Recently, Cao et al. [3] proposed Shrink AutoEncoder
(SAE) for anomaly detection. Their model forces the hid-
den representation of normal data into a very compact area
centered at the origin by attaching a new regularizer to the
formal loss function of AE. The norm of hidden vectors at

the bottleneck layer of these trained SAE can be considered
as anomaly score [3]. For the fusion-based NAD approach,
Thomas and Balakrishnan [22] improve the performance of
IDS using the D-S theory to fuse multiple IDS together.
Zhao et al. [11] use the D-S theory to combine multiple
anomaly detection methods to create a more efficient fusion-
based model. The fusion task works at the information layer
of the 3-level structure, including the basic detection layer,
information layer, and knowledge layer. However, these fusion
models [11], [22] are evaluated on the out-date datasets [23].
Liu et al. [10] proposed a new way of optimizing the D-S
theory to fuse 6 sensors. They introduced weights to control
the balance between each AD algorithms. They conduct the
BPA function based on assuming that the distance among the
normal records is less than it’s in the abnormal data. Recently,
Mattar et al. [17] introduce a network anomaly detection model
using the D-S theory. They provide some ways to determine
a BPA function to fuse four different methods. In the recent
survey, Li et al. [13] present some results in using data fusion
techniques for network intrusion detection. They suggest we
need to have more investigation on applying the D-S theory
for anomaly detection.

III. BACKGROUND

This section presents fundamental backgrounds for under-
standing our proposed model. This consists of some anomaly
detection algorithms and the Dempster-Shafer theory.

A. Dempster-Shafer Theory of Evidence

The Dempster-Shafer Theory of Evidence (the D-S Theory),
also called the mathematical evidence of theory, is proposed
by Arthur Dempster and improved by Glenn Shafer [24].
The theory is used to calculated the probability of an event
by combining the evidence from multi-sources information.
The proposition can be a subset of the given set of finite
hypotheses, named FoD and flag by Θ, which is the set of
all hypotheses that might happen in the entire system. Let
E1, E2, ..., En (n > 2) be a number of evidence sources, so
each Ei output in the set of k states can be written as follows:

Θ = {H1, H1, ...Hk} (1)

The relative concept to the D-S theory describes as follow-
ing: The FoD for the fusion problem under the consideration
having n exclusive and exhaustive hypotheses. The sets of all
subsets of Θ is called as power set of Θ and are denoted by
2Θ. Basic probability assignment (BPA) over a Θ is a function
m : 2Θ → [0, 1] such that∑

{m(H))|H ⊆ Θ} = 1,m(θ)) = 0 (2)

where m(H) is represents the belief exactly committed to
hypothesis H . In the concept of the D-S theory’s rule, how to
reach a conclusive decision based on each anomaly detectors
in the fusion model is difficult. This problem can be solved
by applying the Dempster’s rule, a tool to combine mass
assignments from multiple sources of information. When two
mass assignments are combined, they might produce a null
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set, or they might have an intersection point. In the first case,
the mass assignment is considered to have a zero value and
the mass assignment of the non-empty set is boosted by the
factor K, commonly known as the conflict factor.

The D-S theory’s rule in case of combine from many sources
of information E1, E2, ..., Em can be presented as:

(m1 ⊕ ...mn) (H) =

∑
∩iEi=H m1 (E1)m2 (E2) ...mn (En)∑
∩iEi 6=H m1 (E1)m2 (E2) ...mn (En)

(3)

B. Support Vector Machine - SVM

Typically of SVM for AD is OCSVM [18], the algorithm is
aimed to find a decision function that returns a positive value
in the specific region containing most of normal training data
(called the normal region), and a negative value in the region
encompassing the origin in a feature space. The idea behind
this is to allocate the region containing the origin for anomalies
to appear.

C. Kernel Density Estimation

KDE is used for estimating the probability density function
of a sample in data [19]. KDE can be used for forming an
AD model, as presented in [25], [3]. The main drawback of
the model is to work with large datasets.

D. Local Outlier Factor

LOF [8] views the datapoints that have a considerably lower
local density than their neighbors as anomalies. It estimates a
density deviation score, called LOF. The larger the LOF score
a given data point has, the higher the probability the data point
is anomalous. The algorithm has shown its power on NAD
domain [20]. In practice, however, it has some limitations
when dealing with high-dimensional data. [3].

E. Shrink Autoencoder

Shrink Autoencoder is an extension of AutoEncoder (AE),
which is a type of artificial neural network used to learn
a representation (encoding) for a set of data, usually for
dimensional reduction [3], [25]. Shrink AutoEncoders(SAE)
introduced newly by Cao et al. [3]. By adding regularizer to
the loss function of an AE to encourages the AE to form a
reproduction of normal data in the latent space, this considers
as an anomaly score.

IV. PROPOSED MODEL

This section presents our proposed model called fusion
network anomaly detection (FuseNAD) based on the D-S
theory. As mentioned in section I, single anomaly detectors
(ADs) are assumed to perform efficiently on some certain
attacks, but may yield poor results on others. In order to
complement this drawback, the D-S theory will be use to fuse
traditional anomaly detection methods and a deep learning one
to form a robust anomaly detection model.

Fig. 3 briefly describes our model. It consists of four com-
ponents: (1) Network data records; (2) Pre-processing module;
(3) Four single ADs: SAE [3], OCSVM [18], KDE [19], and

LOF [20]; and (4) Fusion module using the D-S theory (D-
S Unit). In the training phase, the four anomaly detection
methods were trained on only normal independently to obtain
the four corresponding models. For each model, a classifi-
cation threshold is also estimated so as to correctly classify
a certain number percent of normal training data (say 90%).
The threshold will split the output scores of these models into
three parts as described in Fig. 2: Normal area (N), Anomaly
area (A) and uncertain area (N/A). In the testing phase: each
query data point will be fed into each of these single anomaly
detection models, and their anomaly score outputs will be use
as the inputs for the main part of the fusion model, D-S Unit.
The D-S Unit component will do two main task in order to
yield the final decision of our model. These task will be carried
out through the BPA AD function showed in Algorithm 1,
and the DRC AD rule described in Algorithm 2 that is the
modification of Dempster’s rule showed in Eq. 3. Based on
the output of the DRC AD function, the final decision will
be made. The following paragraph will explain how the D-S
Unit component work.

In order to apply the D-S theory for anomaly detection
domain, we need to define system state, hypothesis and
sources of evident information. In this domain, we have two
system state: N representing normal status; and A representing
anomaly status. The FoD function in Eq. 1 can be defined
as, Θ = {A,N}, so that a set of hypotheses P (Θ) =
(A,N,NA, ø), where N ∩ A = ø. Now we define a BPA
function for the anomaly detection domain, BPA AD, based
on Eq. 2 as presented in Algorithm 1. We use terms sSAE

i ,
sSVM
i , sKDE

i , sLOF
i to refer to the output anomaly score of

the data point xi produced by SAE, OCSVM, KDE and LOF
respectively. We normalize the output anomaly score produced
by the four classifiers in the same format. This means that
the larger score a model assigns for a data point, the higher
probability the point is classified as anomaly. The anomaly
score range produced by these ADs is split into three parts
A, NA and N by using a threshold t and sigma parameter σ
as showed in Fig. 2. The uncertain area, NA, is determined
within the range [t − σ, t + σ]. Threshold t is determined so
that ADs can classify correctly 90% of the normal training
data. The sigma σ is set equal to d ∗ bw, where d is the
distance from the smallest anomaly score to threshold t, and
bw is a scale parameter estimated based on each dataset. In
the BPA AD function, we introduce mass functions, namely
cal a, cal b, with the input initial mass x0 ≈ y0 ≈ 0.5
and a very small value z0 = 10−5. This makes sure that the
confident values m(A),m(NA),m(N) will satisfy the criteria
m(A) +m(NA) +m(N) = 1 and m (∅) = 0 in Eq. 2.

When applying conventional D-S theory’s rule in Eq. 3, all
ADs should have the same role in despite of their different
performance [10], [26]. In order to solve this problem, we
modified the D-S theory’s rule by adding weights to the
confident values of hypotheses on each anomaly detectors to
create a new D-S theory’s rule. This is the main contribution
of our paper. Specifically, we assign weights wN and wA for
m(N) and m(A) respectively. This weights not only amongst
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Algorithm 1 BPA AD function
Input: anomaly score si, threshold t, sigma σ và Θ
Output: m(A),m(NA),m(N)

1: a = cala(si, σ, x0, z0)
2: b = calb(a, x0, y0, z0)
3: if si ∈ the area of s(1) then
4: m(N) = x0 ∗ a;m(A) = z0;m(NA) = y0 ∗ b
5: else
6: m(A) = x0 ∗ a;m(N) = z0;m(NA) = y0 ∗ b
7: end if
8: return m(A),m(N),m(NA)

single anomaly detectors, but also between the confidence
values of the hypotheses. This is very different from a previous
work [10] that only adds weights to support anomaly detectors
involving in a fusion model. The Dempster’s rule of com-
bination function that combines the four anomaly detectors
(DRC AD) can be described in Algorithm 2.

Algorithm 2 DRC AD function
Input: Θ, m(A),m(N),m(NA), wA, wN of each AD
Output: m(A),m(N),m(NA) of the Fusion model

1: Recalculate the mass based on their weight of each AD
2: m(N) = m(N) ∗ wN

3: m(A) = m(A) ∗ wA

4: m(NA) = 1−m(N) ∗ wA −m(A) ∗ wN

5: Calculate m(N),m(A),m(NA) of FuseNAD by Eq. 3
6: return m(A),m(N),m(NA) of FuseNAD

In the Algorithm 2, wA and wN are used to weight the
confident value of the state A and N respectively. These values
are calculated as in [10]. Finally, the decision of the entire
system can be made by using the rule: if the mass value of the
state N , m(N), is higher than that of the state A, m(A), the
state of the system will be is Normal, otherwise it is Anomaly.

Fig. 1. Simulation of choosing threshold (t) and deviation (σ) from the score
of training data (using SAE).

V. EXPERIMENTAL SETTINGS

A. Data sets

The experiments are conducted on two publicly datasets,
namely NSL-KDD [23] and UNSW-NB15 [27]. The normal
network traffic presented in the UNSW-NB15 and NSL-KDD

datasets is considered as normal data, while all network attacks
are treated as anomalies.

NSL-KDD is created from the KDD Cup’99 dataset by
removing redundant information and making it more difficult
for classifying than KDD Cup’99. The dataset is split into two
parts: the training set (67343 examples) and the testing set
(9711 normal examples and 12833 anomalies). Each record
consists of 41 features and a label (normal or a specific
attack type). UNSW-NB15 is released recently, which attempts
to solve some drawbacks in the previous public datasets.
UNSW-NB15 consists of a training set (56000 records) and
a testing set (37000 normal instances and 45332 anomalies).
Each connections is constructed from 47 features, and can be
assigned a normal label or one of the nine attack types. These
datasets have some categorical features that are processed by
using one-hot-encoding resulting in higher dimension versions,
122 for NSL-KDD and 196 for UNSW-NB15). During our
experiments, both the label of the training set in NSL-KDD
and UNSW-NB15 are removed, testing dataset including 3000
records of Normal and 3000 records of Abnormal was ran-
domly selected from the original testing data.

B. Parameter Settings

The hyper-parameters of classical ADs and SAE are config-
ured followed the previous work [3]. KDE and OCSVM use
the same Gaussian kernel function and the scaling parameter
γ (other form of kernel bandwidth) is set by a default value,
γ = 1

nf , where nf is the number of input features. The trade
off parameter ν is set 0.5. The number of nearest neighbors
in LOF, k, is chosen as 10% of the training size.

The network architecture and its hyper-parameters of SAE
are set as in [3]. The weights of SAE are initialized by
following [28] and the activation function is tanh. We train
the model over 1000 epochs by an adaptive SGD algo-
rithm (ADADELTA). For the D-S Unit, we choose bw ∈
{0.01, 0.1, 0.5} and report the best results.

VI. RESULTS AND DISCUSSION

We conduct two sets of experiments. The first is to compare
the performance of each single ADs against an anomaly
detection model based on the classical D-S theory’s rule,
called FuseNAD C. The second one is the primary experi-
ment, which compare the performance of the proposed model,
FuseNAD, with single anomaly detectors. The performance of
these models are measured by common parameters, accuracy
(ACC), detection rate (DR), and false alarm rate (FAR).

It can be seen from Tables I and II that the fusion model
based on the classical D-S theorys’s rule (FuseNAD C) yields
quite good performance. Its performance is often better than
those of single ADs. In terms of accuracy, however, it produces
lower values than those of SAE and KDE on NSL-KDD, and
also SAE on UNSW-NB15. These show that single ADs tend
to have different performance on the same problem. When
comparing our proposed model, FuseNAD, with FuseNAD C
and the four single ADs, we can see better performance (FAR,
DR and ACC) on the two datasets. This indicates that the
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Fig. 2. The output anomaly score of anomaly detectors: a threshold split the score range into two areas s(1) and s(2).
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Fig. 3. Our proposal fusion network anomaly detection model (FuseNAD).

new D-S theory’s rule can combine these single ADs more
efficiently than the classical D-S theory’s rules: taking the
advantages from both of these anomaly detector.

TABLE I
COMPARISON OF INDIVIDUAL ADS AND FUSENAD ON NSL-KDD

NSL-KDD Dataset

Tested AM TP FP FN TN FAR DR ACC

SAE 2773 227 399 2601 0.133 0.924 0.895
LOF 1145 1855 1181 1819 0.394 0.382 0.813
KDE 2923 77 554 2446 0.185 0.974 0.894

OCSVM 2158 842 215 2785 0.072 0.719 0.823
FuseNAD C 2751 249 412 2588 0.917 0.137 0.889

FuseNAD 2786 214 383 2617 0.128 0.929 0.901

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a novel fusion-based network anomaly
detection, called FuseNAD. The main purpose of FuseNAD is

TABLE II
COMPARISON OF INDIVIDUAL ADS AND FUSENAD ON USNW-NB15

UNSW Dataset

Tested AD TP FP FN TN FAR DR ACC

SAE 2316 684 388 2612 0.129 0.772 0.821
LOF 1373 1627 1402 1598 0.467 0.458 0.495
KDE 2398 602 541 2459 0.18 0.799 0.809

OCSVM 1112 1888 244 2756 0.081 0.371 0.644
FuseNAD C 2145 855 237 2763 0.079 0.715 0.818

FuseNAD 2265 735 170 2830 0.057 0.755 0.849

to take the advantages from both single anomaly detectors
to increase classification accuracy and detection rate, and
also reduce false alarm rate. We employ the Dempster-Shafer
theory (D-S) of Evidence to construct a fusion-based network
anomaly detection. In other words, we introduce a new D-S
theory’s rule that determines how to combine the confidence
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values of hypotheses produced by single ADs to make a
final decision. We also adjust FoD, and a basic probability
assignment (BPA) function to implement the rule. FuseNAD
is constructed from four anomaly detection methods: a deep
learning technique and three traditional ones.

We conducted the experiments on two publicly datasets to
compare our proposed model with a fusion-based model using
the classical D-S theory’s rule, and four well-known anomaly
detection methods. The results illustrates that our model out-
performs both the four single ADs and the fusion-based model
using the classical D-S theory’s rules. This suggests that the
new D-S theory’s rule is more suitable for constructing a
fusion-based anomaly detection model from single anomaly
detection methods.

In the future, we plan to carry out an extensive experiment
to investigate the performance of FuseNAD on a wide range
of anomaly detection problems. We also develop new D-S
theory’s rules for the case the system state is larger than
two (normal and anomaly), such as normal and a number of
specific attack types.
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