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a b s t r a c t 

Objective: Diabetes is responsible for considerable morbidity, healthcare utilisation and mortality in both 

developed and developing countries. Currently, methods of treating diabetes are inadequate and costly 

so prevention becomes an important step in reducing the burden of diabetes and its complications. Elec- 

tronic health records (EHRs) for each individual or a population have become important tools in under- 

standing developing trends of diseases. Using EHRs to predict the onset of diabetes could improve the 

quality and efficiency of medical care. In this paper, we apply a wide and deep learning model that com- 

bines the strength of a generalised linear model with various features and a deep feed-forward neural 

network to improve the prediction of the onset of type 2 diabetes mellitus (T2DM). 

Materials and methods: The proposed method was implemented by training various models into a logis- 

tic loss function using a stochastic gradient descent. We applied this model using public hospital record 

data provided by the Practice Fusion EHRs for the United States population. The dataset consists of de- 

identified electronic health records for 9948 patients, of which 1904 have been diagnosed with T2DM. 

Prediction of diabetes in 2012 was based on data obtained from previous years (2009–2011). The im- 

balance class of the model was handled by Synthetic Minority Oversampling Technique (SMOTE) for 

each cross-validation training fold to analyse the performance when synthetic examples for the minor- 

ity class are created. We used SMOTE of 150 and 30 0 percent, in which 30 0 percent means that three 

new synthetic instances are created for each minority class instance. This results in the approximated 

diabetes:non-diabetes distributions in the training set of 1:2 and 1:1, respectively. 

Results: Our final ensemble model not using SMOTE obtained an accuracy of 84.28%, area under the re- 

ceiver operating characteristic curve (AUC) of 84.13%, sensitivity of 31.17% and specificity of 96.85%. Using 

SMOTE of 150 and 300 percent did not improve AUC (83.33% and 82.12%, respectively) but increased 

sensitivity (49.40% and 71.57%, respectively) with a moderate decrease in specificity (90.16% and 76.59%, 

respectively). 

Discussion and conclusions: Our algorithm has further optimised the prediction of diabetes onset using a 

novel state-of-the-art machine learning algorithm: the wide and deep learning neural network architec- 

ture. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Diabetes is responsible for considerable morbidity, healthcare

tilisation and mortality in both developed and developing coun-
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ries. Globally, in 2017 it was estimated that 425 million people

ad diabetes – this is predicted to increase to 629 million by the

nd of 2045 [1] . Type 2 diabetes mellitus (T2DM) is the most com-

on type of diabetes (95%) in the United States (US) [2] . In the

S, more than 30 million people had diabetes in 2017 [1] . The

igh costs of hospital treatment and the high rate of readmission

ssociated with diabetes means that early prevention and effec-

ive treatment is crucial [3] . The early prediction of the onset of
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diabetes using routinely available data such as electronic health

records (EHRs) is therefore important [4] . 

EHRs are relatively complete electronic systems that have

the potential to store information from millions of patients

across many healthcare institutions, including patient demograph-

ics, medical data (e.g., diagnoses, laboratory tests and medica-

tions), clinical notes and so on [5,6] . In the past, EHRs were used

by doctors, healthcare practitioners and public health workers to

store and extract patients’ information for clinical care [7] . The

secondary use of EHR data for tool development aims to assist

healthcare practitioners and policy makers to initiate or modify in-

terventions, understand disease progress and introduce or improve

policies to help prevent disease [8] . Patient information in EHRs is

highly varied with dimensions, class imbalanced data (i.e., a het-

erogeneous sample of diabetic and non-diabetic patients) [4] and

missing data [6] , making it difficult to develop efficient analytic

models using classical statistical analysis methods [9] . The avail-

ability of electronic health records (EHRs) along with advances

in hardware (Central Processing Units (CPUs) and Graphical Pro-

cessing Units (GPUs)) and computer algorithms (machine learn-

ing and especially its sub-field deep learning) make it possi-

ble to predict disease onset with high accuracy. With respect to

diabetes, most studies utilising EHRs used and compared the

performance of common machine learning algorithms ( k -Nearest

Neighbors, Naive Bayes, Decision Tree, Random Forest, Support

Vector Machine, and Logistic Regression) in prediction of diabetes

progression [10–17] . 

Deep learning algorithms have been used in recent years for

the prediction of the onset of diseases based on secondary uses

of EHRs. With respect to healthcare research, deep learning mod-

els can outperform classical machine learning methods which re-

quire more manual feature engineering [6] . Moreover, longitudinal

event and continuous monitoring characteristics data from EHRs

allows training of complex and challenging deep learning mod-

els [6] . Compared with statistical models for the prediction of

the onset of diabetes using risk factors (logistic regression [18] )

and patient mortality using hazard ratios (survival analysis [19] ),

and classical machine learning (decision tree, random forest and

support vector machine [20] ), deep learning is capable of auto-

matically learning represented features from input data and sub-

sequently reduces the feature engineering [21] . To attain state-of-

the-art performance with less computational resource, a wide and

deep learning framework was developed by Google to achieve both

memorisation and generalisation [22] . Memorisation is learning a

wide set of crossed-product feature transformations representing

the correlation between the co-occurrence of a feature pair and

the target label. Generalisation is obtained by matching different

features that are close to each other in an embedding space gen-

erated by a deep feed-forward neural network. In this framework,

the wide part accounts for a generalised linear model and the deep

element represents a feed-forward neural network. By combining

the advantages of both components, this framework is able to use a

data structure which is highly varied and complicated. To the best

of our understanding, there has been little previous work which

has used deep learning approaches to develop risk scores using

large healthcare data [23–27] . 

Miottothe et al. [8] developed a novel unsupervised deep learn-

ing algorithm (Deep Patient) to predict the future of patients

using 70 0,0 0 0 records from the Mount Sinai EHRs. They used de-

mographic information (age, sex and race), clinical notes as ICD-9

codes, medical prescriptions, procedures and laboratory tests. They

designed a multi-layer deep representation neural network opti-

mised with stochastic gradient descent to a local unsupervised cri-

terion. Their model was tested using 76,214 patients comprising 78

diseases. The prediction of T2DM with complications within one

year using AUC score was 90.7%. The algorithm was found to im-
rove the prediction of various diseases in EHRs and other tasks

uch as clinical trial testing and treatment suggestions. 

In recent work, Pham et al. [27] introduced a deep dynamic

eural network framework (DeepCare) that performed various

asks including assessing patient trajectories and predicting future

isease outcomes. The dataset contained more than 12,0 0 0 pa-

ients between 2002 and 2013 with 7191 patients selected. The

ataset was divided into three parts: 67% for parameter estima-

ion, 16.5% for tuning, and 16.5% for testing. The performance of

eepCare using max-pooling on the diabetes dataset was a F-score

f nearly 60%. 

One of the most important applications of using secondary

HRs is the development of web-based tools or software for the

rediction of future outcomes. One of the examples of these on-

ine tools and software is QDiabetes TM -2018 [28] , an algorithm de-

eloped using Cox proportional hazards models by ClinRisk Ltd

sing information from QResearch database in UK ( https://www.

research.org ). QDiabetes is a risk prediction algorithm which cal-

ulates an individual’s risk of T2DM for the next 10 years for peo-

le aged 25 to 84 years taking account of their individual risk fac-

ors (age, sex, ethnicity, clinical values and diagnoses) [29] . This

ool is used to predict the risk of developing T2DM and integrated

n doctors’ computer systems with an average receiver operator

urve statistic of 0.85 for women and 0.83 for men. 

In summary, compared with classical machine learning mod-

ls, deep learning can extract useful information from EHRs by

earning features related to diabetes outcomes and therefore help

n the targeting of people who are likely to develop the dis-

ase so that they can change their lifestyles. This information is

mportant for developing tools and software for secondary uses

f EHRs. In this study, we applied a wide and deep learning

pproach to predict the onset of type 2 diabetes mellitus us-

ng the Practice Fusion EHR dataset and compared the perfor-

ance of this approach with a machine learning approach used

y Pimentel et al. [17] . The wide and deep learning approach

as been increasingly used for clinical risk prediction and clas-

ification. It is anticipated that predictive modelling using data

rom EHRs will drive personalised medicine resulting in improved

ealthcare quality. This information is important for develop-

ent of the potential tools to assist health practitioners (doc-

ors/clinicians) with the prognosis of diabetes disease and policy

akers with creating suitable interventions to reduce the burden

f diabetes. 

. Material and methods 

.1. Data source 

We used a publicly available EHR dataset from the United States

eleased by Practice Fusion in 2012 for a data science competition

nd compared our model performance with another study by Pi-

entel et al. [17] who applied a random forest with temporal fea-

ures and feature selection for onset T2DM prediction using this

ataset. The dataset consisted of de-identified electronic health

ecords of 9948 patients, with 1904 diagnosed with T2DM over

 four-year period (2009–2012). The dataset also included doc-

or transcripts with diagnoses, laboratory tests and medications.

o prevent biases on the prediction of diabetes, direct diabetes-

elated information in the dataset was removed by Practice Fusion

o make the classification challenge more difficult for the compe-

ition with some additional modifications. The first modification

as to exclude patients that have diagnoses for diabetes compli-

ations without a basic diagnosis of T2DM. The second modifica-

ion was to remove ICD-9 codes (250, 250.0, 250. ∗0, 250. ∗2, 357.2,

nd 362.0 ∗). The third modification was to remove diabetes medi-

ations from the medication records. The final modification was to

https://www.qresearch.org
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Fig. 1. Calculating the similarity of each feature column x i and label (target) col- 

umn y by measuring cosine distance. If the feature column x i is more related to the 

column y ( cos i goes to 1) then it is a good feature column to be selected. 
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Table 1 

Special diseases and their ICD-9 codes. 

Special diseases ICD-9 codes 

heartDisease 410–414, 420–425, 427, 429, 745, 746 

CHF 426 

Stroke 430, 431, 433–436, 997.02 

sleepApnea 727.23, 780.57 

gestDiab 648.8 

polyOvary 256.4 

frozenShoulder 726.0 

Hemochr 275.03 

Hepatitis 070.2, 070.3 

kidneyFailure 584, 585 

Dementia 331, 290, 294, 797 

Acanthosis 701.2 

Blindness 369 

preDiabetes 790.29 

sDysfunction 302.7 

EssentialHypertension 401, 401.0, 401.1, 401.9 

MixedHyperlipidemia 272.2 
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emove laboratory tests that identified glucose or insulin related

ests. 

.2. Feature extraction and selection 

The dataset was processed using feature extraction and selec-

ion. This process can be used to reduce the dimensions of the

ataset by selecting main and important features. We grouped

312 features into (1) basic and fixed features (age, sex, body mass

ndex (BMI) and blood pressure), (2) adjustable features (diagnos-

ic features based on ICD-9 codes, medication and laboratory tests)

ith labels encoded into binary vectors corresponding to three

mbeddings and (3) crossed features by selecting top diagnosis

eatures to cross with top medication features. Embeddings are a

apping of a categorical variable to a vector of continuous num-

ers which are useful for reducing the dimensionality of categor-

cal variables and meaningfully represent categories in the trans-

ormed space. Three types of features (diagnoses, medications and

aboratory tests) were label encoded into binary vectors. Each type

f features was subsequently mapped into corresponding embed-

ings using a linear layer of neural network from the deep part of

he learning model. 

Steps taken for feature extraction and selection are described

elow: 

(1) Outliers of BMI, height and weight variables were cleaned

or each patient. 

(2) BMI-related features were generated from BMI data for each

atient including BMI median, minimum, maximum values, isOver-

eight, isObese and difference between BMI min and BMI max val-

es. isOverweight and isObese features were determined based on

ome cut-offs (ranges) of BMI median value of each patient. BMI

ata was already calculated from height and weight of each pa-

ient. Each patient could have more than one BMI data record. This

ata was used to generate 6 BMI-related features. 

(3) Systolic and diastolic blood pressures were calculated to

enerate blood pressure features (median, min and max val-

es), difference between min and max values of blood pressures,

hether a patient had high blood pressure (HBP) in the first, sec-

nd stage or not. These HBP features (1/0 ∼ yes/no) were deter-
ined based on a range of threshold values of blood pressures for

ach patient which were ranked in medical research. 

(4) Diagnosis data was analysed to extract ICD-9 codes, exclud-

ng the data in 2012, there was a total of 3903 different codes for

ll the patients. These diagnosis features were encoded with labels

s a sparse binary vector (each ICD-9 code was labelled with value

, otherwise 0) for each patient. 

To reduce the dimensions of diagnosis feature vectors for all

atients, each column vector corresponding to one column ICD-9

ode feature was assigned an important feature score by measur-

ng cosine distance between column feature vector and label col-

mn vector (target) (labelled as 1/0 corresponding with yes/no di-

betes, respectively). Fig. 1 illustrates the method used to assess

he important feature score of the column x i by a measure that

alculates the cosine of the angle between the feature column x i 
nd column label y . All feature columns associated with diagnosis

eatures were assessed using the important feature score. A his-

ogram of the important feature scores was used to select a thresh-

ld value. Feature columns with important feature scores greater

han this threshold were selected as important features to create a

ew set of features. Less important features containing ICD-9 codes

ere discarded to reduce the dimensions of the diagnosis feature

ector. 

(5) Medication data was analysed to extract the names of med-

cation using data from 2009 to 2011. There were 2553 types of

edication extracted, and similar to diagnosis features, the labels

f medication were encoded as a sparse binary vector for each pa-

ient. A similar method to diagnosis feature vector was applied to

educe the dimensions of medication feature vector. 

(6) Laboratory test data was analysed to extract information on

aboratory tests completed for each patient illustrated by a HL7

essage. Each HL7 message contains one or more segments in

hich each segment consists of one or more composites (fields). A

otal of 334 laboratory tests were reported for all patients. Labora-

ory test features vector was selected in the same way as diagnosis

eatures ( Fig. 1 and step 4) and medication features (step 5). 

(7) Special features were created by analysing ICD-9 codes cor-

esponding to some groups of special diseases such as heart dis-

ase, cardiomyopathy, kidney failure, blindness and so on. There

ere total of 17 such special features including risk factors for

2DM ( Table 1 ). 

(8) Diagnosis descriptions were grouped by ICD-9 codes to cre-

te new properties. There were 19 groups of ICD-9 codes to be

sed ( Table 2 ). 

(9) Crossed-product features were created from diagnosis de-

cription features and medication name features ( Fig. 2 ). Diagno-
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Table 2 

Groups of diagnosis descriptions and their ICD-9 codes. 

Diagnosis group ICD-9 codes 

neoplasms 140–149, 200–239 

endoctrine 240–279 

blood 280–289 

mental health 290–299, 300–319 

nervous 320–359 

sense 360–389 

circulatory 390–399, 400–459 

respiratory 460–499, 500–519 

digestive 520–579 

genitourinary 580–599, 600–629 

pregnancy 630–679 

skin 680–699, 700–709 

musculoskeletal 710–739 

congenital 740–759 

perinatal 760–779 

symptoms or ill-defined 780–799 

injuries 800–899, 900–999 

suppl E, V 

infectious others 
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sis description features associated with medication name features

creates crossed product features that have the potential to better

generalise the data. Only top diagnosis description features and top

medication name features were used to perform feature crossing.

In our setting, 27 diagnosis description features from over 500 ob-

servations were used to cross with 33 medication name features

over 200 observations. Crossed values were encoded into binary

vectors which became diagnosis medication crossed features. 

(10) Basic features (age and sex) were extracted for each pa-
tient. t  

Fig. 2. Generating new crossed features from diagnosis description and medication name 

features. 
The above properties were combined to create 1312 features for

ach patient (the number of features could be adjustable with se-

ected parameters in the current setting). Among the total of 9948

atients (43% male and 57% female) aged from 21 to 93 years old,

890 patients (19%) had a diagnosis of diabetes. 

.3. Wide and deep model architecture 

In this study, we developed an algorithm for the prediction

f diabetes onset based on the wide and deep learning frame-

ork [22] . This framework was used since it was capable of com-

ining the benefits of memorisation and generalisation with less

eature engineering, useful for analysing EHR data. 

The dataset was divided into a development set (70%) and a

esting set (30%), of which the development set (adopting a similar

pproach to Pimentel et al. [17] ) was divided into 10 folds (9 for

raining and 1 for validation) so that we could compare out results

ith Pimentel et al. [17] . The workflow for predicting the onset of

2DM using the wide and deep model is illustrated in Fig. 3 . 

The 1312 patient features were processed by a wide and deep

rchitecture ( Fig. 4 ) which consists of a wide component and a

eep component. 

The wide component was a generalised linear model used for

arge-scale regression and classification problems [22] . This com-

onent is responsible for memorising feature interactions. 

The deep component was a deep neural network that can gen-

ralise better to new features using low-dimensional dense em-

edding. In our framework, this component was composed of two

ypes of layers: embedding and hidden layers. Embedding layers

ncluded three embeddings corresponding to three groups of fea-

ures: (1) diagnosis with 151 input features, (2) medication with
using crossed product. Crossed values are label encoded to binary vector of crossed 
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Fig. 3. Summary of the workflow for predicting the onset of diabetes. 

Fig. 4. Wide and deep model structure for predicting the onset of diabetes. 
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Fig. 5. Training loss and validation loss when training Model 1 in Table 3 with 5 levels of learning rate (see the text for details). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Results as percentages obtained from the test set using 10 models from 

a 10-fold stratified cross validation and the final ensemble model. 

Model AUC Sensitivity Specificity Accuracy 

1 83.31 29.59 96.27 83.51 

2 82.90 25.56 97.22 83.52 

3 83.34 25.56 97.05 83.38 

4 83.59 31.52 95.81 83.51 

5 82.96 30.64 95.36 82.98 

6 82.72 26.44 96.27 82.91 

7 82.43 28.37 96.39 83.38 

8 83.40 32.74 96.06 83.95 

9 82.79 37.30 94.53 83.58 

10 83.95 34.32 95.89 84.12 

Ensemble 84.13 31.17 96.85 84.28 
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134 input features, and (3) laboratory test with 80 input features.

We applied one linear layer for each embedding for learning from

a sparse binary vector to a dense 16-dimensional vector. We ap-

plied hidden layers with two hidden layers of 256 and 128 neurons.

All features were put into the wide part which included the

crossed features joined with the output of the deep part in the last

layer to form a 1439-dimensional vector. The final output layer of

the framework was a linear 128-to-1 layer with sigmoid activation

function. The activation function in other layers was the rectified

linear unit (ReLU) [30] . 

2.4. Experimental settings 

True positive (TP), true negative (TN), false positive (FP) and

false negative (FN) were used to measure the performance of clas-

sifiers using the following evaluation metrics: 

Sensitivity = 

T P 

T P + F N 

Specificity = 

T N 

T N + F P 

Accuracy = 

T P + T N 

T P + F N + T N + F P 

Sensitivity was defined as the proportion of subjects with dia-

betes that were correctly classified as having diabetes. Specificity

was defined as the proportion of people without diabetes that

were correctly classified. Accuracy was defined as the proportion

of all subjects that were correctly classified. 

Using 10-fold cross-validation (CV), 10 predictive models corre-

sponding to 10 different sets of training and validation data were

built. The stochastic gradient descent (SGD) optimiser and the bi-

nary cross entropy loss function [30] were used in our model train-

ing. Each model was trained with five levels of learning rates (1e-

3, 5e-4, 1e-4, 5e-5 and 1e-5) corresponding to five patience values

(40, 40, 30, 20 and 20 epochs). A patience is the number of epochs

to wait if the validation loss does not decrease before moving to

the next learning rate or stop if the last learning rate has already

been used. When moving to the next learning rate, the snapshot

corresponding to the current least validation loss was loaded. Af-

ter stopping, the snapshot corresponding to the best validation loss

was used as the final model. 
Fig. 5 shows the train loss (in blue) and validation loss (in or-

nge) when training a model (Model 1 in Table 3 ). Dashed vertical

ines denote the epochs at which a new learning rate was used

ecause the corresponding patience value was reached. The ma-

enta vertical line denotes the epoch at which the validation loss is

inimum, and the snapshot at that epoch was used as the trained

odel. 

Samples from the testing set were subsequently predicted by 10

ptimal models after training. The performance of each model was

valuated on the testing set using the following metrics: accuracy,

UC, sensitivity and specificity. An ensemble model was created

y calculating the mean of the output probabilities from the above

0 best models and compared with a threshold (0.5) for diabetes

etermination. This ensemble model was used as a final predictive

odel of the onset of T2DM. 

As the dataset was imbalanced (only 19% subjects with di-

betes), Synthetic Minority Over-sampling Technique (SMOTE)

31] was used in each CV training fold to analyse the performance

hen synthetic examples for the minority class were created.

imilar to Pimentel et al. [17] ), we used SMOTE of 150% and

0 0%, in which 30 0% means that three new synthetic instances

ere created for each minority class instance. This results in the

pproximated diabetes:non-diabetes distributions in the training

et of 1:2 and 1:1, respectively. 
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Fig. 6. ROC curve corresponding to the ensemble model in Table 3 . 

Table 4 

Results as percentages obtained from the test set of 10 different data par- 

titions and comparison with results from Pimentel et al. [17] . 

SMOTE Model AUC Sensitivity Specificity 

0% Our ensemble model 84.01 29.12 96.18 

Best model in [17] 83.19 16.07 99.28 

150% Our ensemble model 83.33 49.40 90.16 

Best model in [17] 84.22 29.19 96.42 

300% Our ensemble model 82.12 71.57 76.59 

Best model in [17] 84.11 36.23 93.77 
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. Results and discussion 

Table 3 shows the performance obtained from the test set using

0 models from a 10-fold stratified cross validation and the final

nsemble model. The ensemble model produced an AUC of 84.13%

 Fig. 6 ) which is higher than that of each individual model. This

eans the modeling averaging ensemble is more robust and pro-

uces better performance on average than a single model. 

We further tested the algorithm using 10-fold cross-validation

nd the final ensemble model was selected for assessing the per-

ormance from the test set of 10 different data partitions (10 sets

f 10-fold cross-validation). The model not using SMOTE showed

igher AUC score than other models using SMOTE (150% and 300%)

 Table 4 ). Using SMOTE with variation of minority and majority

atio only improved sensitivity but did not improve other perfor-

ance metrics. The ensemble model without using SMOTE, on av-

rage, obtained an AUC score of 84.01%, sensitivity score of 29.12%

nd specificity of 96.18% ( Table 4 ). 

Results on the model comparisons ( Table 4 ) indicated that the

nsemble model without SMOTE performed better than the en-

emble model using SMOTE (150% and 300%) with higher AUC

core (by 0.68% and 1.89%, respectively) and higher specificity (by

.02% and 19.59%, respectively). However, the models using SMOTE

ncreased sensitivity (24.34% and 42.45%, respectively). These re-

ults are in contrary to another study by Pimentel et al. [17] who

eported that the performance of their random forest model using
MOTE (150% and 300%) remarkably improved AUC and sensitiv-

ty scores. In another study, Alghamdi et al. [4] showed that using

MOTE with ensemble machine learning remarkably improved the

odel performance for the prediction of incidence of T2DM. The

se of an ensemble-based approach with SMOTE has been found

o obtain high accuracy of predicting the incidence of diabetes in

etropolitan Detroit, Michigan in the US [4] . 

Compared with the machine learning approach by Pimentel

t al. [17] who applied random forest with temporal features and

eature selection using the same dataset and experimental set-

ings as ours, the performance on the testing set of our model

as higher (AUC score (84.01%) and sensitivity score (29.12%)) than

heir model (AUC score (83.19%) and sensitivity score (16.07%))

hen not using SMOTE. The higher sensitivity score in our model

ould be a compensation for being able to better predict the pro-

ortion of subjects with diabetes that were correctly classified as

aving diabetes. Our results ( Table 4 ) highlighted some impor-

ant implications. Both sensitivity and specificity are mostly useful

here the target class (positive) is often smaller with a substan-

ial consequence if incorrectly classified. Therefore, the trade-off

etween sensitivity and specificity are to be carefully taken into

onsideration to get a good balance. Our ensemble model using

MOTE 300%, when compared to other models, had better sensitiv-

ty with a modest reduction in specificity. A prediction model for

ype 2 diabetes with good sensitivity will reduce the risk of un-

ecessary interventions and therapy being given to those with low

uture risk. The trade off of using the SMOTE 300% model however

s that a lowering in specificity may result in some people with-

ut type 2 diabetes will screen positive and therefore potentially

eceive unnecessary further investigation. From a clinical perspec-

ive, clinicians, when making shared decisions with patients, will

e more confident with using a prediction model that has high

ensitivity [32] . 

For a cursory comparison, it is worth mentioning other stud-

es using other machine learning approaches to predict T2DM

espite differences in datasets and experimental settings. Mani

t al. [10] explored different machine learning algorithms with fea-

ure selection to evaluate the risk of T2DM development from six
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months to one year. They used a de-identified EHR dataset man-

aged by the Vanderbilt University Medical Centre. This dataset in-

cluded demographic variables (age, sex and race), clinical notes

(body mass index (BMI) and diabetes status) and laboratory tests

of 2280 patients with 10% diagnosed with T2DM. To perform this

predictive modelling task, they used various forms of classifiers

(linear, decision tree-based, kernel-based and sampled-based). The

population was randomly divided into two groups for model de-

velopment (50%) and validation (50%). A five-fold nested cross-

validation framework was implemented to optimise the parame-

ters of the classification algorithm. The performance of the final

model was assessed by taking an averaging of the best k models.

The highest accuracy was reported with an AUC score greater than

80% for the prognosis of T2DM at 180 days and 365 days. 

Razavian et al. [11] applied logistic regression with L1 regular-

isation for predicting risk factors associated with T2DM between

2009 and 2011 using an electronic claim dataset provided by In-

dependence Blue Cross insurance company in Pennsylvania, the

United States. The dataset contained claim information (adminis-

trative papers, pharmaceutical records, healthcare utilisation and

laboratory tests) of 793,153 cases who matched the selection cri-

teria. The dataset was randomly divided into a training set (67%)

and a testing set (33%) using a five-fold cross-validation. The final

model improved the prediction accuracy with an AUC score of 80%

and was able to predict risk factors associated with the onset of

diabetes. 

Anderson et al. [12] used machine learning algorithms (multi-

variate logistic regression and random forest) for exploring the de-

tection and screening of T2DM for the US population using the

same dataset used in our study. They compared three separate

models: (1) a full model which included medical prescriptions

and conventional risk scores, (2) a restricted model similar to (1)

but excluding medical notes, and (3) a conventional model con-

taining some conventional risk scores with interactions (BMI, age,

sex, smoking and hypertension). For logistic regression, the perfor-

mance reported as AUC scores were 84.9%, 83.2%, and 75.0%, re-

spectively. For random forest, the AUC scores were 81.3%, 79.6%,

and 74.8%, respectively. The inclusion of EHR phenotyping signif-

icantly improves the performance of detection and screening of

T2DM in this study. 

Brisimi et al. [15] developed predictive models for diabetes-

related hospitalisations based on EHRs of 40,921 patients from

2001 to 2012 from the largest safety net hospital in New England.

Their new joint clustering/classification method achieved an AUC

of 89%. 

Zou et al. [16] applied machine learning techniques (decision

tree, random forest and neural network) to predict diabetes mel-

litus using hospital physical examination data containing 14 at-

tributes in Luzhou, China. A five-fold cross-validation was used to

assess the models. The highest accuracy was reported using ran-

dom forest with an accuracy greater than 80%. 

Compared to other machine learning systems and frequentist

statistics presented above, the primary advantage of the wide and

deep model is that it incorporates manual feature engineering

through the selection of features and the design of the crossed fea-

tures going into the wide part and auto feature engineering by us-

ing deep neural networks in the deep part. 

The accuracy of our model was affected by several factors. One

of the main challenges in our study is the high dimensions and

sparsity of the dataset. As many machine learning algorithms are

generally unable to handle insufficient and imbalanced data where

the classes are not equally presented, it is not surprising that our

approach of using wide and deep learning is severely impacted

by the same issue. In our model setting, 27 diagnosis descrip-

tion features and 33 medication features were selected to create

crossed-product features but the number of observations in these
roups were imbalanced due to a heterogeneous sample of pa-

ients having a diagnosis of diabetes and non-diabetes and some

eatures contained missing values or incorrect information. Work

y Habibi et al. [33] showed that decision tree could be used to

creen T2DM without using laboratory tests. Indeed, in addition to

lassical regression models, there is some successful research using

eep learning for improving the accuracy of diabetes risk predic-

ion [8,34] . However, our work is the first attempt to apply wide

nd deep learning for the prediction of the onset of diabetes using

HRs. Although our model achieves higher predictive power com-

ared to classical machine learning methods, similar to other deep

earning models [8,34] , the wide and deep model would not be

ble to predict some important risk factors incorporated into the

odel. 

. Conclusions 

In this study, we proposed a wide and deep learning neural net-

ork architecture for the prediction of the onset of diabetes using

 publicly available EHR dataset. Our ensemble model improved

UC and specificity risk scores and substantially improved sensitiv-

ty for predicting T2DM onset compared with other machine learn-

ng algorithms which used the same dataset and experimental set-

ings [17] . In the future, we will incorporate an auto feature selec-

ion method to design the crossed features and select the features

or the wide part of the model. Using a more sophisticated embed-

ing method for the deep part may be another way to improve the

erformance of the model. 
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