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Abstract
In this paper, a very low complexity Lattice Reduction technique, called Dual Shortest 
Longest Vector algorithm (SLV), is adopted to improve the Bit Error Rate (BER) perfor-
mance of the Minimum Mean Square Error (MMSE) detector in high-load Massive MIMO 
systems, whereby resulting in the so-called SLV-aided MMSE (MMSE–SLV) detector. An 
efficient combination scheme of Generalized Group Detection (GGD) algorithm and the 
MMSE–SLV, called MMSE–GGD–SLV, is further proposed to enhance BER performance 
of the system more significantly. In order to do so, we first convert the Group Detection 
approach to the generalized one (GGD) by creating an arbitrary number of sub-systems. 
Then, an additional operation, i.e., channel matrix sorting, is applied to the GGD to reduce 
the error propagation between sub-systems. To make the detection complexities of the 
MMSE–GGD–SLV detector more practical, the MMSE–SLV detection procedure is only 
applied to the first sub-system. Various BER performance simulations and complexity 
analysis show that both the MMSE–GGD–SLV and the MMSE–SLV detectors noticeably 
outperform their conventional MMSE counterpart, yet at the cost of higher detection com-
plexities. However, their complexities are kept at acceptable levels, which are much lower 
than those of the conventional BLAST detector. Therefore, the proposed detectors are very 
good candidates for signal recovery in high load Massive MIMO systems.
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1 Introduction

In the coming decades, wireless communication systems are required to provide high data 
rate and high quality of services. Massive Multiple-Input-Multiple-Output systems (Mas-
sive MIMO), which have been intensively researched in recent years, are capable of meet-
ing these demands and rapidly becomes a key technique in the Fifth Generation mobile 
communication (5G). Massive MIMO systems can provide not only a very large spectral 
efficiency but also huge energy efficiency thanks to hundreds of antennas deployed at each 
cell site [1–3].

In a Massive MIMO system, the tranceivers must be implemented with low complexi-
ties, while providing good Bit Error Rate (BER) performance. Therefore, high quality 
detectors, such as Maximum Likelihood (ML), Sphere Detector (SD) or Bell Labora-
tory Space Time (BLAST) [4], are not applicable in Massive MIMO systems due to their 
extremely high computational costs. Low complexity linear detectors including Zero-Forc-
ing (ZF) and Minimum Mean Square Error (MMSE) ones are good candidates because 
they can provide near optimal qualities as the systems work in low-load conditions [1]. 
Unfortunately, in high load scenarios, their performances reduce remarkably, thereby mak-
ing them impractical.

In order to address the performance problems of linear detectors in high load systems, 
a detection scheme using the Post Detection Spare Error Recovery (PDSR) algorithm was 
proposed in [5]. The empirical simulations showed that the PDSR detector achieves huge 
performance gain in the error performance compared to the conventional ones. However, 
this detector can be applied only for Binary Phase Shift Keying (BPSK) as well as Quad-
rature Phase Shift Keying (QPSK) signals. Consequently, the overall throughput of the 
system is limited. Using search algorithms such as Likelihood Ascent Search (LAS) and 
Random Tabu Search (RTS) [6] ones is other way to improve BER performance of Mas-
sive MIMO systems. Nevertheless, the complexities of these algorithm are proportional to 
the third order of the number of transmit antennas, thereby making the algrithms impracti-
cal as the number of transmit antennas get sufficiently large. Nguyen et al. [7] utilized the 
Group Detection (GD) approach and proposed the ZF-GD and ZF-IGD detectors, which 
give higher BER performance than that of the classical ZF detector while their complexi-
ties are comparable. The main drawback of these detectors is that their BER performance 
is poorer than that of the classical MMSE one in full load system.

Recently, a very low complexity Lattice Reduction technique, named Element Based 
Lattice Reduction (ELR), was proposed in [8]. This technique includes two versions called 
the Shortest Longest Vector (SLV) and the Shortest Longest Basis (SLB), which are suit-
able for large scaled MIMO system [8]. The ELR methods are shown to attain better error 
performance than the state-of-the-art Lattice Reduction algorithms for large MIMO sys-
tems while requiring lower complexity with respect to the number of arithmetic operations.

In this paper, we develop the so-called SLV-aided MMSE (MMSE–SLV) detector by utiliz-
ing the very low complexity Dual Sorted Longest Vector algorithm (SLV) to improve the Bit 
Error Rate (BER) performance of the Minimum Mean Square Error (MMSE) detector in high-
load Massive MIMO systems. An efficient combination scheme of Generalized Group Detec-
tion (GGD) algorithm and the MMSE–SLV, called MMSE–GGD–SLV, is further proposed to 
enhance BER performance of the system more significantly. In order to do so, we first adopt 
the Group Detection (GD) approach to create the generalized one (GGD) with an arbitrary 
number of sub-systems. Then, the channel matrix sorting is additionally applied to the GGD 
to reduce the error propagation between sub-systems. To make the detection complexities of 
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the MMSE–GGD–SLV detector more practical, the MMSE–SLV detection procedure is only 
applied to the first sub-system. Various simulation and analysis show that the proposed detec-
tors significantly outperform their classical linear counterparts at comparable complexities. 
Therefore, they are good candidates to use in high load massive MIMO systems.

The rest of the paper is organized as follows: Sects. 2 and 3 respectively illustrate system 
model and Lattice Reduction aided detectors. BER performance comparison and complexity 
analysis are represented in Sect. 4. Finally, Sect. 5 concludes the paper.

Notations ℂ and ℤ denotes set of complex number and integer one; Q is slicing operation, 
where estimated symbol is sliced to the nearest value in the set of integer number represented 
QAM constellation; �N is N × N identity matrix, and �N is N × 1 one vector whose its ele-
ments are 1; (·)T and (·)H are transpose and Hermitian transpose operations; �[·] and ⊗ denote 
expectation operation and Kronecker product, respectively; �† is pseudo- inverse of matrix � 
and ⌈·⌋ is round operation.

2  System Model

Let us consider an up-link Massive MIMO system as shown in Fig. 1. In the system, all K 
activated multiple-antennas-users simultaneously transmit their signals through wireless chan-
nel to the Base Station (BS) using the same frequency resource. The received signals at the BS 
obtained from Nr receive antennas can be modeled as follows:

where pu is average transmit power of each user; Es is average energy of Mary-QAM 
(M_QAM) signal; � ∈ ℂ

N×1, N = KNT , is transmit signal vector collected from all users, 

(1)� =

√
pu

NTEs

�̄� + �,

NT

Nr

r

d0

Fig. 1  System model
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�
[
��H

]
= Es�N; � ∈ ℂ

Nr×1 denotes noise vector, whose entries are assumed to be i.i.d1 ran-
dom variables with zero mean and unit variance; and �̄ ∈ ℂ

Nr×N is channel matrix between 
the BS and all K users. It is worth noting that the channel between the BS and the users 
suffers from both large scale and small scale fading effects. Hence, each entry of �̄ is deter-
mined as a product of small scale fading coefficient and a large scale one. In addition, the 
large scale fading coefficients of a user are assumed to be equal due to the distance between 
the antennas on each user is much much smaller than that between this user to the BS. 
Therefore, �̄ is further represented as

where � ∈ ℂ
Nr×N represents the small scale fading coefficients and is given by 

� =
[
�1 �2 ⋯ �K

]
 , �i ∈ ℂ

Nr×NT , i = 1, 2,… ,K , denotes small scale fading matrix 
between ith user and the BS; � is a K × K diagonal matrix, in which the diagonal element, 
�i , shows the large scale component between ith user and the BS. In order to compute �i , 
we assume that the cell has circular sharp with the BS placed at its origin; all active users 
are distributed randomly between reference distance d0 and cell radius r. Let di be the dis-
tance from the ith user to the BS. Then �i is given by [9]:

where zi is the log normal shadow fading coefficient with zero mean and standard deviation 
�shadow , and � is the path loss factor. For the sake of simplicity, let us define � =

√
pu

NTEs

�̄ . 
Now, the Eq. (1) can be rewritten as follows:

3  Lattice Reduction Aided Detectors

3.1  Review of the MMSE Detector

The MMSE detector is preferred to use in Massive MIMO systems due to their low com-
plexity. Using the MMSE detector, the transmit symbols from all K users can be recovered 
simultaneously as

where � denotes the MMSE weight matrix defined by

The error estimation given by MMSE detector is � = �̃ − � = �� . Therefore, the error co-
variance matrix is [10]

(2)�̄ = �(�⊗ �NT
)1∕2.

(3)�i =
zi

(di∕d0)
�
,

(4)� = �� + �.

(5)�̂ = Q(�̃) = Q(��) = Q(� +��),

(6)� =

(
�H� +

1

Es

�N

)−1

�H .

1 Independent identical distributed.
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There are two important notices when using the MMSE detector in Massive MIMO sys-
tems: (1) The diagonal entry of Φ , i.e., Φk,k , k = 1, 2,… ,N , represents the estimation error 
of the kth transmit symbol and (2) Diversity order of the MMSE detector is just Nr − N + 1 
[11]. Therefore, the BER performance of the MMSE detector is degraded as either the 
value of Φk,k is large or the system load is high (i.e., N approaches Nr).

3.2  Linear MMSE Detector Based on Lattice Reduction

As mentioned earlier, the main drawback of the MMSE detector in high load Massive 
MIMO systems is the degradation in the BER performance due to low diversity order. The 
problem can be addressed by adopting the Lattice Reduction techniques. The purpose of 
using LR is to find out the matrix � , whose columns are more orthogonal in pairs than 
those of � . Hence, LR-aided detectors always provide better performance than the original 
ones. The relation of � and � is

where � is uni-modular matrix having integer entries and det(�) = ± 1 . In [8], the authors 
represented a low complexity LR technique, called ELR, with two versions, namely, Short-
est Longest Vector (SLV) technique and Shortest Longest Basis (SLB) one. Both versions 
find out � and � matrices from � by minimizing the diagonal elements of Φ in (7). How-
ever, the difference between these versions is that while the SLB minimizes all diagonal 
entries of Φ , the SLV only performs on the maximum one. Therefore, BER performance 
given by the SLB aided detector is better than that of the SLV, yet at the cost of higher 
complexity. For the purpose of reducing detection complexity, only the SLV is utilized in 
this Sub-section to improve BER performance of the MMSE detector. The SLV can be 
found in [8] and summarized in Algorithm 1. The MMSE–SLV detector is described as 
follows. Rewrite Eq. (4) as 

(7)Φ = �
[
��H

]
=

(
�H� +

1

Es

�N

)−1

.

(8)� = ��,
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where � , � are generated by the SLV in Algorithm 1 and � =
(
�−��

)
 . Note that the entries 

of � in LR domain must be selected from a set of consecutive integer numbers due to round 
operation in LR detection’s procedure. Hence, when a M−QAM modulation technique is 
used, the shift and scaling operations must be adopted at the receiver to recover the signals. 
Specifically, let us define m = log2 (M) , �̄� = 1∕2 , 𝛽 = (m − 1)(1 + j)∕2 . Then, the shifted 
and scaled transmit signal vector is �̄ = �̄�� + 𝛽  . This results in the shifted and scaled trans-
mit signal vector in LR domain as follows [12]:

Using the MMSE detector, �̃ in (9) is recovered as follows:

Therefore, based on (10), the hard decision of �̃ is given by:

Once �̂ is determined, the estimation of x is easily obtained by utilizing the following 
operation:

The quality of estimating �̂ depends on the accuracy of recovering �̃ , which is determined 
by the following error co-variance matrix:

(9)
� = (��)

(
�−��

)
+ �

= �� + �,

(10)�̄ = T−1x̄ = T−1(�̄�x + 𝛽) = �̄�c + 𝛽T−11N

(11)�̃ =

(
�H� +

1

Es

�H�

)−1

�H�.

(12)�̂ =
1

�̄�

(⌈
�̄��� + 𝛽�−11N

⌋
− 𝛽�−11

N

)
.

(13)�̂ = Q(T �̂).
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Shown in Fig.  2 is the Empirical Cumulative Distribution Function (Empirical CDF) of 
max

(
Φk,k

)
 in (7) and (14) when Nr = N = 64 and Nr = N = 128 antennas realized with 

104 iterations. It can be clearly seen from the figure that the SLV enables the system to 
significantly reduce the maximum value of the diagonal elements of the error co-variance 
matrix compared to those without LR. This implies that �̃ is recovered more reliably by the 
SLV-added detectors. A a consequence, the BER performance of the system is improved as 
shown in the below section.

3.3  A Combination of SLV Technique and Group Detection Aided MMSE Detector

As mentioned in the previous sub-section, the MMSE–SLV detector can improve BER per-
formance of classical ones. However, the BER performance enhancements of these detectors 
are still limited because the SLV algorithm minimizes only the largest entry of the error co-
variance matrix. In this sub-section, we propose an efficient scheme by combining the SLV 
technique with Group Detection algorithm to enhance the reliability of signal detection while 
remaining its complexity at practical levels. First, we modify the Group Detection approach 

(14)Φ = �
[
(�̃ − �)(�̃ − �)H

]
= �−1

(
�H� +

1

Es

�N

)−1(
�−�

)H
.

ax(Φk,k )
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Fig. 2  Empirical CDF of the maximum diagonal entry of Φ with and without SLV when Nr = N = 64 and 
Nr = N = 128 . The channel coefficients are generated from i.i.d. small scaled fading coefficients and large 
scaled fading with SNR = 20 dB, � = 3.5 , �2

shadow
= 8 dB, d0 = 100 m, r = 1000 m, d0 ≤ dk ≤ r , 4 − QAM
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in [7] to create the so called Generalized Group Detection (GGD). After that, the SLV aided 
signal detection is applied to the sub-systems to recover transmitted signals.

3.3.1  GGD Algorithm

Figure 3 shows a detection scheme based on the GGD algorithm, which is modified from GD 
in [7] by generating an arbitrary number of sub-systems instead of 2. Moreover, two addi-
tional blocks, called sorted channel and resort estimated signal one, are used in the GGD to 
reduce the error estimation within the sub-systems, whereby improving the overall quality 
of the system. The details of the GGD are described as follows. First, the channel matrix � 
is sorted to generate the sorted matrix �s , such that the norm square of its columns satisfy 
‖‖�(1)s

‖‖
2
≤ ‖‖�(2)s

‖‖
2
≤ ⋯ ≤ ‖‖�(N)s

‖‖
2 , where �(g)s , g = 1, 2,… ,N , is gth column of �s , and 

the associated permutation vector, � . This operation is summarized in Algorithm  2. Sec-
ond, let L be number of stages in the GGD method and lq ∈ ℤ

+ is the number of symbols, 
which are detected in qth stage (i.e 

∑L

q=1
lq = N ). Without loss of generality, we assume that 

lq = l = N∕L then signal processing in each stage, say qth one, is carried out in the 3 follow-
ing steps:

Step 1 Generate the qth sub-system corresponding to the qth stage, in which the transmit-
ted sub-vector, �q ∈ ℂ

l×1 , is to be estimated. In this step the received vector, �̃(q) ∈ ℂ
Nr×1 , and 

channel matrix, �̃(q) ∈ ℂ
Nr×l are generated before they are used to estimate �̂q in the next step. 

In order to do so, let us define the sub-matrices �q ∈ ℂ
Nr×l and �(q) ∈ ℂ

Nr×a, a = N − ql , as 
�q = �s(∶, (q − 1)l + 1 ∶ ql) and �(q) = �s(∶, ql + 1 ∶ N) then we can write:

where �(q) = (�Nr
−�(q)�(q)†) is projection term, �(q) is received signal vector given by 

(q − 1) th stage as in (19) in Step 3 below.
Step 2 Recover �̂q by applying the classical MMSE detector to the sub-system with the 

associated channel matrix, �̃(q) , and received signal vector, �̃(q) , which are constructed as in 

(15)�̃(q) = �(q)�q,

(16)�̃(q) = �(q)�(q),

s

L

L

s q
q

L

Fig. 3  Block diagram of a detector based on the GGD algorithm
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Step 1. The estimated signal vector and its co-variance error matrix are respectively given 
by:

Step 3 Generate the received signal vector for the next stage using the recovered signal 
vector �̂q as follows:

These above 3 steps are repeated for the first stage to the last one to recover all sub-vectors, 
�̂q, q = 1 ∶ L , which are subsequently rearranged as �̂s =

[
�̂T
1
�̂T
2
⋯ �̂T

L

]T.
Finally, the re-sorting operation using the permutation vector � is applied to �̂s to get the 

estimated vector at the output of the detector as:

It is worth noting the following important remarks:

Remark 1 Signal detection in Step 2 is repeatedly carried out from Stage 1 to Stage L. In 
the 1st stage, �(1) = � while the channel matrix and received vector of Lth stage are already 
generated in (L − 1)th stage as �̃(q) = �L , �̃(q) = �(L).

Remark 2 In our proposed approach, we use the weight matrix as in (17) in stead of the 
exact weight matrix 

(
�̃(q)H�̃(q) +

1

Es

�(q)H�(q)
)−1

�̃(q)H because the term (
�̃(q)H�̃(q) +

1

Es

�(q)H�(q)
)
 is almost singular, and hence not invertible.

(17)�̃�q ≈

(
�̃�(q)H�̃�(q) +

1

Es

𝐈N

)−1

�̃�(q)H �̃�q,

(18)Φ(q) =

(
�̃(q)H�̃(q) +

1

Es

�N

)−1

.

(19)�(q+1) = �(q) −�q�̂q.

(20)�̂ = �̂s(�, ∶).
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Remark 3 The aim of adopting the channel sorting and the re-sorting operations is to fur-
ther improve the BER performance of the system. Illustrated in Fig. 4 is the ECDF of max-
imum value of Φ(q), q = 1 ∶ L , in (18) with and without the channel sorting channel when 
the MMSE detector is used and the error propagation from one stage to the next is ignored. 
It can be clearly observed from the figure that the estimation error of the first L − 1 stages 
is increased significantly if the channel sorting operation is not used. This confirms the 
importance of the channel sorting operation in the proposed GGD algorithm to improve 
the quality of the overall signal detection process as confirmed by simulation results below.

Remark 4 The load factor of each sub-system is equal to � = l∕Nr , which is much smaller 
than � = N∕Nr of original system. In addition, the diversity order of qth sub-systems cor-
responding to the qth stage equals Nr − l + 1 , which is much higher than that of original 
system in (4) (i.e., Nr − N + 1 ). Consequently, the BER performance of each sub-system 
when detected by the proposed GGD algorithm can be much better than that of original 
system. Note, however, that the error propagation from previous stages (especially from 
the 1st one) to the subsequent stages is the main factor to reduce the overall quality of the 
proposed GGD method.

max (Φ(q)
k,k)
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E
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F
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Group 1, unsorted channel
Group 2, unsorted channel
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Group 1, sorted channel
Group 2, sorted channel
Group 3, sorted channel
Group 4, sorted channel

Fig. 4  Empirical CDF of max
(
Φ

(q)

k,k

)
 of all sub-systems with and without channel sorting operation when 

Nr = N = 64 , L = 4 ; all large scaled fading coefficients are generated from SNR = 20  dB, � = 3.5 , 
�2

shadow
= 8 dB, d0 = 100 m, r = 1000 m, d0 ≤ dk ≤ r , 4 − QAM



Low Complexity Lattice Reduction Aided Detectors for High Load…

1 3

3.3.2  Proposed MMSE–GGD–SLV Detector

In general, the proposed MMSE–SLV can be applied to all L stages in the GGD algo-
rithm to improve BER performance of the system. However, the overall detection com-
plexity of this approach will be significantly high. On the other hand, the quality of 
signal detection in L sub-systems is not identical. Therefore the MMSE–SLV detector 
should be applied to the stages, which inherently have large detection errors. Let us 
neglect the error propagation propagated from one stage to another and define an error 
metric for the qth stage as follows:

where Φ(q) is the error co-variance matrix in (18); e(q) denotes the error metric given by 
the summation of the squared errors at qth stage. It is noteworthy that the larger e(q) is, 
the poorer BER performance of qth sub-system becomes. Figure  5 shows e(q) when 
Nr = N = 64 , the number of sub-systems is L = 4 . The results are obtained using 104 reali-
zations of the channel matrix. Other parameters are as follows: � = 3.5 , �shadow = 8  dB, 
d0 = 100 m, r = 1000  m, d0 ≤ dk ≤ r , 

(
pu∕�

2
)
= [10 ∶ 3 ∶ 34]  dB. The results clearly 

show that the 1st group have much larger error than the rest ones. Therefore, when the 
error propagation is taken into account, the large error given by the 1st stage sig-
nificantly degrades the BER performance of the system. This allows us to create the 
MMSE–GGD–SLV detector by applying the MMSE–SLV to the first sub-system in order 

(21)e(q) = trace
(
Φ(q)

)
,

pu/σ2 in dB
10 15 20 25 30 35

A
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Fig. 5  The error metric realized by averaging over 104 channel realizations; Nr = N = 64 , L = 4 , 4 − QAM , 
� = 3.5 , �2

shadow
= 8 dB, d0 = 100 m, r = 1000 m, d0 ≤ dk ≤ r , SNR = [10 ∶ 3 ∶ 34] dB
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to reduce the effect of error propagation of this sub-system to the remaining ones, while 
keeping the detection complexity at practical levels.

This proposed detector is further investigated by considering the Empirical CDF of 
max

(
Φ

(q)

k,k

)
, q = 1 ∶ L , with and without SLV technique. Most of the simulation parame-

ters are the same as those used to generate Fig. 5 except the SNR 
(
pu∕�

2
)
= 20 dB. The 

results in Fig.  6 show that compared to the MMSE detector, the MMSE–SLV strongly 
improves the empirical CDF of the first stage. However, the improvements are marginal for 
the other stages. The results suggest us that the MMSE–SLV be adopted at the first stage, 
while the classical MMSE be used at the subsequent stages. This lead to the proposed 
MMSE–GGD–SLV detector, whose details are summarized in Algorithm 3. 

max(Φ(q)
k,k)
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Fig. 6  Empirical CDF of max
(
Φ

(q)

k,k

)
 of all sub-systems with and without SLV when error propagation 

between stages is ignored; Nr = N = 64 , L = 4 , � = 3.5 , �2

shadow
= 8  dB, d0 = 100  m, r = 1000  m, 

d0 ≤ dk < r , 4 − QAM , and SNR = 20 dB,
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4  Performance Comparison and Complexity Analysis

4.1  Performance Comparison

In this sub-section, BER performances of all proposed detectors, the conventional MMSE 
detectors as well as the BLAST one are evaluated. In the simulations, the channel is 
assumed to be block fading, i.e., it remains constant with a signal block and changes inde-
pendently from one block to another. The main assumptions and simulation parameters are 
as follows. The cell radius r = 1000 m and the reference distance d0 = 100 m; all active 
users are randomly located in the cell with d0 ≤ dk < 990 m; the path loss component and 
the variance of the shadowing term are selected as � = 3.5 and �2

shadow
= 8 dB, respectively; 

The entries of noise vectors at the receiver are assumed to be i.i.d. with zero mean and 
variance of �2 = 1 . The BER curves are drawn versus the SNR defined as 

(
pu∕�

2
)
 in dB.
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Shown in Fig. 7 are the BER curves of all the detectors under consideration in a full-
load system with K = 16 , NT = 4 , Nr = 64 . The transmitted signals are modulated using 
the 4 − QAM scheme. The numbers of sub-systems to be generated are L = 2 , 4, and 8. 
The results demonstrate that the proposed detectors can improve BER performance of 
the system significantly. Specifically, at BER = 10−4 the performance gap between the 
MMSE–SLV detector and the classical MMSE one is about 9.2  dB in SNR. The gaps 
become much widen as the MMSE–GGD–SLV detector is adopted. They increase from 
9.2 dB to approximately 13.2 dB, 13.9 dB, 14.2 dB respectively for L = 2 , 4, and 8. It can 
also be observed from the figure that the BLAST detector remarkably outperform all the 
remaining detectors, including the proposed ones. However, as we will show later, the low 
BER of the BLAST is achieved at the cost of impractically high computational complexity.

The BER performances of the aforementioned detectors with different antenna configu-
rations are further illustrated in Fig. 8. In the figure, two different antenna configurations, 
namely, K = 12 , NT = 4 , Nr = 64 and K = 12 , NT = 4 , Nr = 128 , are used.

For both configurations, 16 − QAM constellation is used to generate the trans-
mitted symbols. In addition, the numbers of sub-systems are L = 2 , 4 for the 
MMSE–GGD–SLV detector. One can see from the figure that in either configuration, 
our proposed MMSE–GGD–SLV detector noticeably outperform the remaining ones. At 
BER = 10−4 , the MMSE–GGD–SLV provides SNR gains of about 1.2  dB and 1.6  dB, 
respectively for L = 2 and L = 4 when Nr = 128 . The gains increase up to around 4.1 dB 

SNR(pu/σ2) in dB
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Fig. 7  BER curves of the BLAST, the MMSE, the MMSE–SLV and the MMSE–GGD–SLV detectors 
when K = 16 , NT = 4 , Nr = 64 , and 4 − QAM ; L = 2 , 4, 8 for the MMSE–GGD–SLV detector
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and 5.1 dB as Nr reduces to 64. This confirm the advantage of our proposed detector when 
it work in systems with high loads, i.e., the number of data streams is comparable to that of 
the receive antennas. Unfortunately, the MMSE–SLV detector shows no advantage in term 
of SNR gain as the number of receive antenna increases from 64 to 128. This implies that 
when Nr is sufficiently large (i.e., when load factor is small enough), the classical MMSE 
detector becomes a good candidate for signal recovery in massive MIMO systems.

4.2  Complexity Analysis

In this sub-subsection, we evaluate the complexities of all proposed detectors as well as of 
the classical BLAST and MMSE ones. The complexity of a detector is computed by count-
ing the necessary number of floating point operation (flops) to recover a transmit signal 
vector. In order to do so, we follows the method in [7, 13, 14] by assuming that each real 
operation such as a real addition, a real subtraction, a real multiplication, a real division or 
a square root of a real number is counted as a flop. By using this counting rule, a complex 
multiplication and a complex division are respectively counted as 8 flops and 11 flops. 
Besides, the inversion of a × a matrix requires a3 multiplications and a3 additions and the 
multiplication of a a × b matrix by a b × c requires acb multiplications and ac(b − 1) addi-
tions [15]. In this paper, the complexity of slicing operation, matrix/vector transformations 
are ignored.
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Fig. 8  BER curves of the MMSE, the MMSE–SLV and the MMSE–GGD–SLV detectors when K = 12 , 
NT = 4 , Nr = 64, 128 , 16 − QAM ; L = 2 , 4 for the MMSE–GGD–SLV detector
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Based on these assumptions and notices, the complexity of the classical MMSE detector 
is [14]

The results in (22) will be used to compute the computational complexities of proposed 
detectors in the next representations.

MMSE–SLV complexity evaluation. The computational cost of MMSE–SLV detector, 
CMMSE−SLV , can be determined as

where Cnew is number of required flops to implement the classical MMSE detection proce-
dure in LR domain described in Sect. 3.2; CSLV denotes the SLV algorithm’s complexity.

Note that the dimensions of the original system and the one in LR domain are exactly 
the same. In addition, the MMSE–SLV is just different from the MMSE by the additional 
term 1

Es

�H� as shown in Eq.  (11). Evaluation of this term requires approximately 
12N2 − 2N + 1 flops. The hard decision of �̂ in (12) requires 4N2 + 6N flops, and the esti-
mation of �̃ in (13) needs to compute 8N2 − 2N flops. Therefore the total complexity of 
Cnew , in terms of flops, is:

Following Algorithm  1 line by line, the complexity of the SLV operation, CSLV , can be 
evaluated to be:

Substituting the results in (24) and (25) into (23), the overall complexity of the 
MMSE–SLV detector finally equals:

MMSE–GGD–SLV complexity. Following Algorithm  3, the complexity of the 
MMSE–GGD–SLV is determined as

where CSort is the complexity of the channel sorting procedure, CPre denotes the complex-
ity of generating the L sub-systems corresponding to L stages, and CSub is that of using 
sub-detectors in L sub-systems. It is well known that sorting a complex m × n matrix needs 
1

2

(
n2 + 16mn − 7n

)
 flops. Thus, the computational cost of the channel sorting procedure is:

The remaining two terms in (27) are evaluated and respectively given by:

(22)CMMSE = 8N3 + 16N2Nr − 2N2 + 6NNr,

(23)CMMSE−SLV = Cnew + CSLV ,

(24)
Cnew = CMMSE + 24N2 + 2N + 1

= 8N3 + 16N2Nr + 22N2 + 6NNr + 2N + 1.

(25)
CSLV = 16N3 + 16N2Nr − 2N2 − 2NNr

+ 4C� + 10C△ + 24NCupdate (flops).

(26)
CMMSE−SLV = 24N3 + 32N2Nr + 20N2 + 4NNr + 2N + 1

+ 4C� + 10C△ + 24NCupdate.

(27)CMMSE−GGD−SLV = CSort + CPre + CSub,

(28)CSort =
1

2

(
N2 + 16NrN − 7N

)
(flops).
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and

where C(1)

MMSE−SLV
 is the complexity of MMSE–SLV detection procedure utilized on the 

1st stage; C(q)

MMSE
 is the complexity of the classical MMSE detector on qth sub-system, 

q = 2, 3,… , L . They are evaluated to be:

(29)

CPre = (L − 1)
(
8N2

r
l + 6N2

r
− Nr + 6Nrl

)

+

L−1∑

q=1

[
8a3 + 16a2Nr − 2a2 − 2aNr + 8aN2

r

]
,

(30)CSub = C
(1)

MMSE−SLV
+ (L − 1)C

(q)

MMSE

(31)
C
(1)

MMSE−SLV
= 24l3 + 32l2Nr + 20l2 + 4lNr + 2l + 1

+ 4C
(1)

�
+ 10C

(1)

△
+ 24lC

(1)

update
(flops),

(32)C
(q)

MMSE
= 8l3 + 16l2Nr − 2l2 + 6lNr (flops).
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Fig. 9  Complexities of the classical MMSE, the BLAST detectors as well as the MMSE–SLV and the 
MMSE–GGD–SLV ones when Nr = N = [60 ∶ 20 ∶ 160] antennas
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Fig. 10  Complexity comparison of the MMSE, the BLAST, the MMSE–SLV and the MMSE–GGD–SLV 
detectors in two system antenna’s configurations as N = 48, Nr = 64 and N = 48, Nr = 128

Table 1  Complexity comparison

N = KNT ; l = N∕L ; a = N − ql ; The average value of C�, C△, Cupdate , C
(1)

�
, C

(1)

△
 and C(1)

update
 are given by 

simulations

Detectors Number of required flops per vector

ZF [14] 8N3 + 16N2Nr − 2N2 + 6NNr − 2N

MMSE [14] 8N3 + 16N2Nr − 2N2 + 6NNr

BLAST [14] 15

4
N4 + 2N3Nr + N2N2

r
+ N

(
16Nr − 2

)

MMSE–SLV 24N3 + 32N2Nr + 20N2 + 4NNr + 2N + 1 + 4C� + 10C△ + 24NCupdate

MMSE–GGD–SLV 1

2

�
N2 + 16NrN − 7N

�
+ (L − 1)

�
8l3 + 16l2Nr − 2l2 + 6lNr

�

+ (L − 1)
�
8N2

r
l + 6N2

r
− Nr + 6Nrl

�

+
L−1∑
k=1

�
8a3 + 16a2Nr − 2a2 − 2aNr + 8N2

r
a
�

+24l3 + 32l2Nr + 20l2 + 4lNr + 2l + 1 + 4C
(1)

�
+ 10C

(1)

△
+ 24lC

(1)

update
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The total complexities of the proposed MMSE–SLV and MMSE–GGD–SLV detectors 
are computed and summarized in Table 1 together with those of the conventional MMSE 
and BLAST detectors.

Figure  9 illustrates the complexities of the aforementioned detectors in full load sys-
tems, where Nr = N = [60 ∶ 20 ∶ 160] antennas. For the MMSE–GGD–SLV detector, the 
numbers of sub-systems under investigation are L = 2 and L = 4 . One can observe from 
the figure that the complexities of all the detectors are increased proportionally to the num-
ber of antennas. Among the detectors, the BLAST has much higher complexity than those 
of the rest ones. Therefore, it could hardly be adopted in Massive MIMO systems, where 
large numbers of antennas are deployed at the cell sites. The results also show that the 
complexity of the MMSE–SLV detector is higher than those of the conventional MMSE 
and the MMSE–GGD–SLV ones. The higher complexity of the MMSE–SLV comes at a 
price of higher BER performance Interestingly, the MMSE–GGD–SLV detector has lower 
computational complexities than that of the MMSE–SLV one for all L. Its complexity is 
even comparable to that of the MMSE when L = 2 . The higher value of L is selected, the 
higher complexities are required for the MMSE–GGD–SLV detector. This means that L 
should be chosen sufficiently small for the trade-off between the BER performance and 
detection complexity.

In Fig. 10, the complexities of the four detectors are further illustrated when they are 
adopted in the systems with load factor of � =

N

Nr

= 0.75 and � = 0.375 , which are corre-
sponding to two systems configurations: (1) N = 48, Nr = 64 and (2) N = 48, Nr = 128 . 
The results in Fig. 10 show that the complexities of proposed detectors are slightly higher 
than that of the MMSE one when � = 0.75 . However, when the load factor of the system 
reduces to � = 0.375 , the proposed detectors are of higher computational complexities than 
their conventional MMSE counterpart, especially for the case of the MMSE–GGD–SLV 
detector with L = 4 . It is clear from both the performance results and complexity analysis 
that the proposed detectors are more advantageous than the conventional MMSE one in 
Massive MIMO with sufficiently high loads. In low load scenarios, the MMSE obviously 
has stronger advantages.

5  Conclusion

In this paper, two efficient detectors, called MMSE–SLV and the MMSE–GGD–SLV, have 
proposed based on the SLV technique, the group detection technique, and the conventional 
MMSE detection procedure for signal detection in Massive MIMO systems. Simulation 
results and complexity analysis show that in the systems with sufficiently high loads, the 
proposed detectors achieve significantly BER performance improvement compared to 
the classical MMSE one, while their complexities are kept at practical levels. The big-
ger the load factor is, the more performance improvement the proposed detectors achieve. 
As a consequence, they are good candidates for signal detection in the high-load Massive 
MIMO systems. On the contrary, the classical MMSE detector is still of the best candidate 
for signal recovery in low-load Massive MIMO systems.
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