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Abstract:  29 

Purpose of Review This review aims to succinctly summarise recent advances of four key 30 

membrane processes (e.g. reverse osmosis (RO), forward osmosis (FO), electrodialysis (ED), 31 

and membrane distillation (MD)) in membrane materials and process designs, to elucidate the 32 

contributions of these advances to the steadfast growth of brackish water membrane 33 

desalination processes. With detailed analyses and discussions, the ultimate purpose of the 34 

review is to shed light on the future direction of brackish water desalination using membrane 35 

processes. 36 

Recent Findings Brackish water has widely varying particulate matter and boron contents, 37 

posing great risks of membrane fouling and excessive boron levels to the membrane 38 

desalination processes. Recent advances in these four membrane processes largely focus on 39 

improving fouling resistance, boron rejection, water flux, and energy efficiency. Aquaporin 40 

membranes and thin-film composite polyamide membranes incorporated with nanoparticles 41 

exhibit excellent performances for RO and FO, whereas super-hydrophobic membranes prove 42 

their great potentials for MD. While recent advances in RO and ED process designs are 43 

orientated towards membrane fouling prevention by exploring respectively novel energy-saving 44 

membrane-based pre-treatment and reversal operation, recent studies on FO and MD are centred 45 

on reducing the energy costs by advancing the fertiliser-drawn concept and utilising waste heat. 46 

Summary Membrane processes are dominating brackish water desalination, and this trend is 47 

hardly to change. Membranes based on nanoparticles and other novel materials are deemed the 48 

next membrane generation, and innovative membrane process designs have demonstrated great 49 

potentials for brackish water desalination. Nevertheless, further works are needed to scale up 50 

these novel membrane materials and designs. 51 

Keywords: brackish water desalination; membrane processes; reverse osmosis (RO); forward 52 

osmosis (FO); electrodialysis (ED); membrane distillation (MD).  53 
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1.  Introduction 54 

Desalination has become a viable alternative fresh water supply in many water-scared areas 55 

worldwide [1-4]. Currently, large-scale brackish water and seawater desalination plants around 56 

the world provide 95 million m3 of fresh water per day, meeting the daily demand of more than 57 

1% of the global population [4]. Given recent technological advancements, desalination 58 

processes have become significantly more energy-efficient and cost-effective. For example, the 59 

invention of pressure recovery devices has markedly reduced the energy consumption and the 60 

operational cost of the reverse osmosis (RO) process, rendering brackish water and seawater 61 

RO desalination a technically and economically viable supply of fresh water [5-7]. Compared 62 

to seawater, brackish water offers a more cost-effective fresh water supply because of its 63 

considerably lower salinity and inland location. As a result, half of desalination plants 64 

worldwide rely on brackish water in spite of its distinctly limited availability compared to 65 

seawater [4]. 66 

The global brackish water desalination market is largely dominated by membrane processes 67 

[6, 8-10]. The membrane desalination processes do not require the phase change of water to 68 

achieve the salt-water separation. Instead, they deploy membrane to facilitate the removal of 69 

salt from water, thus desalting saline waters with significantly less energy compared to thermal 70 

distillation desalination. The membrane desalination processes are also more compact and have 71 

smaller physical footprints than the thermal distillation ones. In other words, the membrane 72 

processes offer more cost-effective and energy-efficient desalination means for fresh water 73 

provision, particularly from brackish water. As a result, most of brackish water desalination 74 

plants worldwide use membrane processes as their core technology [4]. 75 

This paper aims to provide a comprehensive review on recent advances in membrane 76 

processes and materials destined for brackish water desalination. The membrane processes 77 

reviewed in this paper include pressure-driven RO, osmotically driven forward osmosis (FO), 78 

electrically driven electrodialysis (ED), and thermally driven membrane distillation (MD). The 79 

review starts with an analysis of brackish water characteristics to highlight the advantages of 80 

and challenges to the membrane processes for brackish water desalination. The review then 81 

thoroughly discusses the recent advances in membrane materials and process designs orientated 82 

towards brackish water desalination of each membrane process. The ultimate purpose of the 83 

review paper is to shed light on the future directions of brackish water desalination using these 84 

membrane processes. 85 
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2.  Characteristics of brackish water  86 

Brackish water is defined as water with salinity in the range of 1,00015,000 mg/L [11]. 87 

Given this salinity, brackish water needs to be reduced to fresh water (i.e. with salinity 500 88 

mg/L) via a desalination process to be usable by humans and plants. The characteristics of 89 

brackish water, including salinity, temperature, and potential membrane foulant concentrations, 90 

strongly affect the selection and performance of the desalination process. 91 

Brackish water salinity and temperature vary greatly with weather and geological location 92 

[11-14]. For example, the brackish water feed to the Gran Canaria desalination plant in Spain 93 

has salinity widely varying from 2,100 to 8,000 mg/L throughout the year [14]. Similarly, the 94 

salinity of brackish water feed to the desalination plant in Morocco changes from  650  to 1,300 95 

mg/L during a year due to water evaporation and rainfall dilution [12]. The brackish water RO 96 

desalination plant in Morocco also suffers from seasonal feed water temperature change (i.e. 97 

1022 C), leading to a 30% variation in the process water flux [12]. The variations in brackish 98 

water salinity and temperature have crucial implications for most membrane desalination 99 

processes because their performance indicators (e.g. water flux, salt rejection, energy 100 

consumption, and fouling propensity) are critically dependent on feed water salinity and 101 

temperature [11]. 102 

Brackish water is characterised as water sources with fluctuated particulate matter content 103 

[13, 15]. Unlike in seawater, particulate matter in brackish water is originated from natural and 104 

human-induced sources including erosion of stream bank and runoff from agricultural lands and 105 

production sites [15]. As a result, brackish water particulate matter content (i.e. turbidity) 106 

markedly differs depending on the season and geological location. For example, brackish water 107 

sourced from the Niger Delta, Nigeria has turbidity widely varying from 2.5 to 26 NTU [13]. 108 

The wide variation in brackish water turbidity poses a great risk of membrane fouling, and 109 

hence exerts strong influences on the design and operation of the brackish water membrane 110 

desalination processes. 111 

Highly deviated boron concentration is another notable characteristic of brackish water [16-112 

19]. While seawater has a stable boron concentration of around 4.6 mg/L, the boron 113 

concentration in brackish water wildly varies from 0.3 to 100 mg/L [17-19]. In brackish water, 114 

boron in the form of uncharged boric acid has a very small hydrated radius; therefore, it can 115 

penetrate through the membrane and contaminate the water product [20]. Indeed, commercial 116 

RO membranes are unable to completely remove boron from brackish water, and it has been 117 

well-recognised that boron contaminated water can lead to detrimental health and ecological 118 
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consequences [20]. Therefore, advances in membrane materials and process are critical for the 119 

brackish water RO desalination to meet the stringent regulations of boron level in desalted water. 120 

3.  Recent advances in membrane materials and processes for desalination of 121 

brackish water 122 

3.1.  Reverse osmosis (RO) 123 

The pressure-driven reverse osmosis (RO) desalination process relies on a dense, semi-124 

permeable membrane and a high hydrostatic pressure to achieve the salt-water separation. The 125 

dense RO membrane is selectively permeable to water while rejecting most dissolved salts and 126 

suspended solids. When the membrane separates brackish water and fresh water, under natural 127 

osmosis water migrates through the membrane to dilute the feed. To reverse the migration of 128 

water across the membrane, brackish water RO desalination applies a high hydrostatic pressure 129 

on the feed side (Fig. 1). The RO process water flux depends on membrane water permeability 130 

(A), the brackish water osmotic pressure, and the applied pressure as expressed below [6]: 131 

 waterJ A p           (1) 132 

where ∆p is the applied pressure and ∆ is the osmotic pressure difference between the brackish 133 

water feed and fresh water. 134 

 135 

Fig. 1 The illustration of water migration in a natural osmosis and reverse osmosis process 136 

(adapted from [21]). 137 

The efficiency of the brackish RO desalination process is reflected by the quality and cost 138 

of product water. Commercial RO membranes reject mostly all virus, bacteria, and divalent ions, 139 

while achieving above 96% rejection of monovalent salts. Therefore, RO desalination of 140 

brackish water effectively meets the regulations for fresh water supplies. However, the limited 141 
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removal of small-molecule contaminants such as boron remains a bottleneck for the practice of 142 

brackish water RO desalination for drinking water [22]. 143 

The cost of brackish water RO desalination is composed of capital investment and 144 

operation/maintenance costs, and strongly affected by the feed water salinity. Indeed, given its 145 

low salinity, brackish water RO desalination offers a lower desalted water cost than seawater 146 

RO desalination. For example, at the same capacity, the desalted water cost of brackish water 147 

RO can be a half of that of seawater RO [23]. Moreover, 60% of the RO desalted water cost is 148 

attributed to energy demand, feed water pre-treatment, membrane cleaning, and eventual 149 

membrane exchange [6]. Therefore, recent advances in brackish water RO desalination have 150 

mainly centred on membrane materials and process optimisation for reduced water cost and 151 

increased water quality. 152 

3.1.1.  Recent advances in RO membrane materials 153 

The semi-permeable membrane is the core of the RO desalination process and directly 154 

controls the process production capacity, desalted water quality, energy consumption, and 155 

hence the overall efficiency. Thus, attempts to improve the RO process efficiency have centred 156 

on enhancing the RO membrane performances such as water permeability, contaminants 157 

rejection, and fouling resistance. Commercial RO membranes are categorised into two groups: 158 

cellulose acetate (CA) and polyamide thin-film composite (TFC) membranes. 159 

CA membranes are produced via phase inversion in which cellulose acetate is precipitated 160 

from a polymer solution to form the membrane. Thus, recent advances in the fabrication of CA 161 

membranes focus on tailoring the phase inversion process or modifying the membrane surface 162 

[25-32]. For examples, Choi et al. [26] optimised the synthesis conditions (e.g. polymer 163 

concentration, solvent ratio, and evaporation time) and added multi-walled carbon nanotubes 164 

into the phase inversion process to tailor the CA membrane selectivity and permeability. 165 

Waheed et al. [27] blended antibacterial chitosan into the dope solution prior to casting the CA 166 

membrane. The resultant chitosan-blended CA membrane demonstrated noticeable 167 

improvement in antibacterial properties and salt rejection compared to the bare CA membrane 168 

[27]. Abedini et al. [32] incorporated TiO2 nanoparticles into a CA membrane and investigated 169 

the impacts of nanoparticles addition on the membrane morphology and thermal stability. The 170 

experimental analyses proved that TiO2 nanoparticles were uniformly dispersed into the 171 

membrane structure and increased the membrane porosity, thus improving the thermal stability 172 

and water permeability of the CA/TiO2 membrane [32]. In another study, Yu et al. [29] modified 173 

the structure and surface of an original CA membrane via hydrolysis and carboxymethylation. 174 

The modification increased the membrane pore size and surface hydrophilicity, hence 175 
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enhancing the membrane water permeability. It also rendered the membrane surface more 176 

negatively charged, thus improving the membrane salt rejection due to the enhanced Donnan 177 

effect as a result of increased membrane surface negative charge [29]. 178 

Despite the great efforts to improve their properties, CA membranes have been 179 

progressively replaced by the polyamide TFC membranes for brackish water and seawater 180 

desalination. Intrinsic drawbacks of CA membranes, including narrow operating pH and 181 

vulnerability to microbial attack, restrict the application of CA membranes to desalination of 182 

light-load saline water feeds. The polyamide TFC membranes have been dominating the 183 

brackish water and seawater desalination markets, and this trend is hardly to change in the 184 

foreseeable future [25]. 185 

The polyamide TFC membranes are composed of a polyamide active layer laminated on a 186 

polysufone substrate via an interfacial polymerisation (IP) process [24]. The polyamide active 187 

layer is responsible for salt-water separation while the support layer offers the mechanical 188 

strength to the membrane. Compared to CA membranes, polyamide TFC membranes exhibit 189 

much higher water permeability and are more resistant to bacterial degradation and hydrolysis, 190 

and hence compatible with wider pH feed waters. The layered construction of the polyamide 191 

TFC membrane allows for the separate optimisation of the active and the support layer to tailor 192 

the performance and durability of the membrane [24]. However, the polyamide TFC membranes 193 

are susceptible to the attack of free chlorine in the feed water and more susceptible to membrane 194 

fouling than CA membranes [21, 25]. 195 

The most notable advance in TFC membranes is the incorporation of nanoparticles into the 196 

IP process to improve their desalination efficiency and fouling resistance. Nanoparticles 197 

proposed for improved RO membranes include but are not limited to silica [33-35], zeolite [36-198 

38], bentonite [39], metal-organic frameworks (MOFs) [40-42], carbon nanotubes [43, 44], and 199 

carbon quantum dots [45, 46]. Given their hydrophilic nature, the incorporation of these 200 

nanoparticles into the RO membrane helps enhance the membrane hydrophilicity and facilitate 201 

the water diffusion through the membrane, hence increasing the membrane water permeability. 202 

The nanoparticles also render the membrane surface smoother; therefore, they increase the 203 

fouling resistance of the membrane. For example, the brackish water desalination RO process 204 

using a zeolite nanoparticles/polyamide TFC membrane achieved a two-time increase in water 205 

flux and salt rejection of 98.4% [36]. The MOFs/TFC membrane exhibited significantly 206 

increased water flux and salt rejection (i.e. 41 L/m2h and 97%, respectively) compared to those 207 

of the bare TFC membrane (i.e. 30 L/m2h and 69%) when being tested with a brackish water 208 

feed [40]. The carbon quantum dots/TFC hollow fiber membrane increased its water 209 

permeability by 47% while remaining its high salt rejection of 98.6% [46]. Thus, nanoparticle-210 
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incorporated TFC membranes are deemed the next generation of high performance RO 211 

membranes [36]. However, there exist several challenges to commercial nanoparticles/TFC RO 212 

membranes including their scale-up difficulty and the high cost together with health and safety 213 

issues associated with the use of nanoparticles [47]. 214 

Improving the membrane rejection against boron is essential to brackish water RO 215 

desalination. The boron rejection of the TFC membranes can be enhanced by regulating the IP 216 

process to optimise the polyamide layer. Hu et al. [48] proposed a novel TFC membrane with 217 

significantly increased boron rejection achieved by replacing m-phenylenediamine (MPD) with 218 

a new sulfonated monomer during the IP process [48]. The novel membrane had a unique 219 

membrane surface structure with charge-aggregate induced cavities and alternating hydrophilic-220 

hydrophobic-hydrophilic monomeric structure; therefore, it displayed excellent boron rejection 221 

while maintaining an acceptable water flux [48]. Alternatively, La et al. [49] added an aromatic 222 

polyamide layer onto a conventional polyamide layer to increase the surface hydrophobicity. 223 

The modified TFC membrane achieved a higher boron rejection but at the expense of declined 224 

water permeability [49]. 225 

Great efforts have also been devoted to surface modification of the polyamide layer for 226 

enhanced membrane fouling resistance [50-55]. Most recently, Zhang et al. [50] immobilised 227 

positively charged quaternary ammonium groups from 2,3-epoxypropyl ammonium chloride 228 

on the polyamide membrane surface to improve membrane fouling resistance and salt rejection. 229 

Zhang et al. [55] coated sulfonate polyvinyl alcohol (SPVA) to increase cross-links in the 230 

polyamide layer. The experimental investigations demonstrated that fouling resistance together 231 

with salt rejection of the polyamide membrane was considerably improved. In a membrane 232 

fouling test with a feed water containing 2,000 ppm bovine serum albumin or dodecyl trimethyl 233 

ammonium bromide, the SPVA-modified membrane lost only 8% of its initial water flux after 234 

12-hour filtration compared to 28% water flux loss of the virgin membrane [55]. Nevertheless, 235 

coating SPVA on the polyamide membrane surface also led to increase in membrane thickness, 236 

hence reducing the membrane water permeability. Therefore, the SPVA-surface coated 237 

polyamide membranes might be ideal for RO desalination of brackish waters with high fouling 238 

propensity whereby a low water flux is reasonably acceptable. 239 

3.1.2.  Recent advances in the RO process 240 

Together with the achievements in membrane materials, advances in the RO process have 241 

underpinned the growth of brackish water and seawater desalination industries. These 242 

technological advances have resulted in marked increase in energy efficiency, water flux, salt 243 

rejection, and membrane fouling resistance, thus reducing the cost of RO desalted water. Indeed, 244 
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the cost of RO desalted water has been reduced to as low as 0.26 US$/m3 for brackish water 245 

and 0.45 US$/m3 for seawater desalination [23]. As a result, RO has become the leading process 246 

for seawater and brackish desalination applications [4, 23, 56]. 247 

 Compared to seawater, brackish water largely has lower TDS but higher suspended solids 248 

content. Thus, the brackish water RO desalination process is operated at higher water flux and 249 

water recovery and under a lower hydrostatic pressure than seawater RO [57-59] (Table 1). 250 

However, the brackish water RO desalination process is more prone to membrane fouling than 251 

seawater RO. Recent advances in the brackish water RO desalination process have centred on 252 

optimising the feed water pre-treatment and process arrangement to mitigate membrane fouling 253 

and reduce energy consumption. 254 

Table 1 A comparison between the RO process desalination of seawater and brackish water 255 

[22]. 256 

Parameters Seawater RO Brackish water RO 

Water flux (L/m2h) 1217 1245 
Hydrostatic pressure (kPa) 5,5008,000 6003,000 
Water recovery (%) 3545 7590 
Salt rejection (%) 99.499.7 9599 

Most brackish water RO desalination plants rely on membrane-based pre-treatment to 257 

provide quality feed water to the RO membrane modules. Membrane-based pre-treatment 258 

combines a pressure-driven membrane filtration process (e.g. MF and UF) with the 259 

conventional pre-treatment, adding one barrier against colloids and suspended particles prior to 260 

the RO membrane modules. The conventional pre-treatment is only effective to particles larger 261 

than 10 m, whereas the UF process can remove colloids and particles with sizes ≥ 0.1 m [7]. 262 

Therefore, the combined conventional pre-treatment/UF is the most widely used pre-treatment 263 

method for brackish water RO desalination plants worldwide [7, 60, 61]. The membrane-based 264 

pre-treatment helps improve water flux, increase water recovery, and extend membrane 265 

lifetime; however, it also entails increase in capital costs of the brackish water RO desalination 266 

process. 267 

Recently, gravity driven membrane (GDM) has been explored as an energy-saving pre-268 

treatment for the RO desalination process [62, 63]. In GDM pre-treatment, the filtrated brackish 269 

water after media filtration is dead-end filtered through a UF membrane (Fig. 2). The UF 270 

process exploits the gravity to transfer water through the membrane, thus obviating the need for 271 

a high-pressure pump as required in a normal UF operation. During the gravity driven UF 272 

process, organic compounds (i.e. colloidal particles and particulate organic matter) and the 273 

added beneficial eukaryotic organisms in the feed water accumulate and form biofilm on the 274 
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membrane surface. The eukaryotic organisms biodegrade organic compounds in the biofilm, 275 

rendering the biofilm a porous and heterogeneous structure. As a result, the gravity driven UF 276 

process could achieve stable water flux for an extended filtration period of over 100 days 277 

without the need for membrane cleaning [62, 63]. Therefore, gravity driven UF pre-treatment 278 

not only mitigates membrane fouling propensity but also helps reduce the energy consumption 279 

of the brackish water RO desalination process. 280 

 281 

Fig. 2 A schematic describing the gravity driven UF process for brackish water pre-treatment. 282 

Optimising process arrangement plays a vital role in increasing the efficiency of the brackish 283 

water RO desalination process. Membranes destined for brackish water RO desalination have a 284 

looser polyamide active layer and hence exhibit higher water permeability compared to 285 

seawater RO membranes [22]. Moreover, the negative influence of feed water concentration 286 

increase on water flux of brackish water RO desalination process is less severe than that 287 

observed with seawater RO. As a result, brackish water RO desalination plants are operated at 288 

higher water flux and increased water recoveries [12, 22, 64]. Operating the brackish water RO 289 

desalination plants at high water recoveries helps utilise the pre-treated water feed more and 290 

enhance the energy efficiency of the plants. For example, increasing water recovery from 80% 291 

to 93% reduces the brackish water RO desalination energy consumption by 16% [58]. However, 292 

brackish water RO desalination plants at increased water recoveries entail higher risks of 293 

membrane fouling/scaling and increased process complexity. 294 
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A practical approach to increasing water recoveries of brackish water desalination is to 295 

combine RO with other desalination processes. For example, RO was coupled with membrane 296 

distillation (MD) for increased water recovery treatment of brackish produced water from coal 297 

seam gas exploration [65-67]. The brackish produced water was first treated by RO, and the 298 

brine following the RO process was fed to the MD process. Given its lower membrane fouling 299 

propensity, the MD process reduced the RO brine volume by five folds, resulting in the overall 300 

water recovery of 95% for the combined RO/MD process [65-67]. The MD process also 301 

concentrated sodium bicarbonate in the RO brine up to its saturation, facilitating its conversion 302 

to sodium hydroxide in a subsequent membrane electrolysis process (Fig. 3) [65]. With the 303 

availability of solar energy, the combined RO/MD process could offer a technically and 304 

economically feasible treatment for brackish produced water from coal seam gas exploration 305 

[66]. 306 

 307 

Fig. 3 The combined RO/MD process for zero-liquid discharge treatment of brackish water 308 

produced from coal seam gas exploration. The combined RO/MD process brings the sodium 309 

bicarbonate concentration in the brackish water up to its saturation limit, thus facilitating its 310 

conversion to sodium hydroxide in a membrane electrolysis process. 311 

3.2.  Forward osmosis (FO) 312 

Forward osmosis (FO) is an emerging desalination technology whereby an osmotic pressure 313 

difference generated by a chemical concentration gradient drives water transport across a semi-314 

permeable membrane. Unlike in RO, there is no external pressure requirement in FO as the 315 

transmembrane pressure difference is created by the high osmotic pressure draw solution. For 316 

the net flow of water to occur, the osmotic pressure of the draw solution must exceed that of the 317 
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feed solution. Therefore, FO membranes allow the selective diffusion of water from a feed 318 

solution towards the draw solution, resulting in a concentrated feed stream and a diluted draw 319 

solution. In most circumstances, FO desalination involves a two-step process: (1) dilution of 320 

the draw solution using FO and (2) fresh water recovery from the diluted draw solution using 321 

another desalination process (Fig. 4). Hence, the type of draw solution and the fresh water 322 

recovery technique have significant influence on the FO desalination process performance. 323 

For brackish water desalination applications, previous studies have demonstrated that FO 324 

provides less severe fouling [60, 68-70] and enhanced water recovery [72, 73] compared with 325 

conventional RO technology. However, challenges related to the development of suitable 326 

membranes, draw solutions, and the integration of fresh water recovery processes have hindered 327 

the uptake of FO processes in desalination markets. 328 

 329 

Fig. 4 The two-step FO process for brackish water desalination with (1) osmotic dilution of the 330 

draw solution and (2) fresh water recovery from the diluted draw solution using another 331 

desalination process. 332 

3.2.1.  Recent advances in FO membrane materials 333 

FO membranes are similar to RO membranes as they generally have an asymmetric structure 334 

and are composed of an active and support layer. The active layer has a dense selective structure 335 

and the support layer is porous to provide mechanical support. The first commercially available 336 

FO membrane from Hydration Technologies Innovation (HTI) was a cellulose triacetate (CTA) 337 

membrane with an embedded polyester screen or non-woven support. The membrane exhibited 338 

reasonable resistance to thermal, chemical, and biological degradation, as well as high 339 

mechanical strength [74]. The biggest disadvantage of CTA FO membranes is the thickness of 340 

the support layer which limits the membrane flux performance. The development of thin film 341 

composite (TFC) FO membranes consisting of a polyamide active layer and a polysufone 342 
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support layer has drastically improved the attainable water flux, salt rejection, and chemical 343 

resistance compared with CTA membranes [75]. The TFC membrane also provides a wider pH 344 

tolerance, but its mechanical stability still requires further improvement [74]. 345 

The major challenge associated with FO membranes is the occurrence of internal 346 

concentration polarisation (ICP) in the support layer, which reduces the effective osmotic 347 

driving force and hence water permeation. ICP is influenced by the thickness, porosity and 348 

tortuosity of the support layer [76]. Therefore, advances in membrane fabrication aiming to 349 

minimize the negative effects of ICP have focussed on altering the support layer structure. The 350 

inclusion of hydrophilic inorganic modifiers into the porous substrate has been extensively 351 

studied to improve the support layer characteristics. Carbon-based materials [77-79], titanium 352 

dioxide (TiO2) [80, 81], and zeolite nanoparticle [82] modifiers have resulted in improved water 353 

flux and less ICP, attributed to the higher hydrophilicity and porosity of the support layer. For 354 

example, a nanofibrous composite membrane containing a scaffold-like nanofiber support layer 355 

was developed for brackish water treatment [83]. The nanofibers created a thin support layer 356 

with low tortuosity and high porosity, contributing to a reduction in ICP and attaining a higher 357 

water flux compared with CTA and traditional TFC membranes. However, the improved water 358 

flux was coupled with high reverse salt flux, which is an inherent trade-off for high permeability 359 

FO membranes [84]. Alternatively, biomimetic aquaporin-based FO membranes have emerged 360 

as a possible game-changer in membrane development due to their exceptional process 361 

performance (Fig. 5). Aquaporin membranes are fabricated using aquaporin proteins that 362 

provide highly selective water channels [85-87]. Unlike traditional dense polymeric membranes, 363 

aquaporin membranes are capable of improving both water permeability and selectivity, 364 

without impacting on mechanical strength [85, 86]. Demonstrations of aquaporin and other 365 

modified FO membranes to brackish water applications are limited but will increase as 366 

improvements are made to fabrication methods and commercial availability. 367 
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 368 

Fig. 5 Illustration for the advantages of aquaporin FO membrane over the conventional TFC 369 

FO membrane (with the courtesy from [86]). 370 

 Improving the fouling resistance of FO membranes is another integral step for the 371 

commercial realisation of FO technology. Although FO is considered to have a low fouling 372 

propensity, fouling remains an issue for high fouling potential feed waters such as brackish 373 

waters containing high levels of colloids, micro-organisms, organic matter, and minerals [88]. 374 

Fouling during FO can lead to deterioration of the membrane and therefore diminish water 375 

permeation and separation performance. A number of anti-fouling membranes have been 376 

developed and involved chemically modifying the polyamide active layer to increase the 377 

membrane hydrophilicity, hence fouling resistance [89]. Modification can be achieved via 378 

coating, grafting, or chemical incorporation of hydrophilic materials on or within the membrane 379 

surface [90-92]. For example, layered double hydroxides have been incorporated into a 380 

polyamide TFC membrane and resulted in a significant resistance to both fouling and chlorine 381 

degradation [76]. Additionally, a membrane grafted with polyamidoamine dendrimer for 382 

improved ammonia rejection, consequently displayed a strong antifouling performance owing 383 

to the surface hydrophilicity and modified surface potential [92]. Despite these promising 384 

developments, several challenges remain, and further work is needed to improve membrane 385 

performance, anti-fouling capacity, and stability, as well as simplify and develop cost effective 386 

fabrication methods. 387 

3.2.2.  Recent advances in the FO process 388 

Currently, FO is not comparable to RO for desalination of brackish water for fresh water 389 

supply with respect to energy consumption. The FO process alone might consume less energy 390 
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than RO; however, the two-step FO brackish desalination process is not considered an energy-391 

saving alternative to RO. Indeed, the energy requirement of fresh water recovery from the 392 

diluted FO draw solution greatly exceeds that of the brackish water RO desalination process. 393 

As a result, most recent advances in brackish water FO desalination are to strategically develop 394 

the one-step FO process or hybridise FO with other desalination processes for increased water 395 

recovery and fouling mitigation. 396 

The one-step fertiliser drawn FO (FDFO) concept has emerged as a promising option for 397 

low energy brackish water treatment intended for irrigation [93]. FDFO utilises a fertiliser draw 398 

solution to simultaneously recover fresh water from brackish water and produce a diluted 399 

fertiliser for potential use in agriculture. A number of draw solutions have been evaluated such 400 

as potassium chloride amongst other pure and blended fertilisers and proved to be suitable for 401 

brackish water treatment [94]. FDFO is a stand-alone FO process whereby no fresh water 402 

recovery/draw solution regeneration process is generally needed. Therefore, it is considered to 403 

be a low-energy process as the driving force for FO water permeation is provided by the natural 404 

osmotic pressure gradient between solutions [95]. However, regeneration of the fertiliser draw 405 

solution is a useful step to optimise osmotic pressure and to regulate fertiliser concentrations in 406 

the product water. NF has been integrated with FDFO for this purpose and has improved the 407 

viability of system scale-up via flux enhancement [68, 96]. Furthermore, evaluation of an 408 

FDFO-NF system resulted in a reduced energy consumption of 21% compared with a UF-RO 409 

system [97]. Nonetheless, improvements in process flux, reverse solute flux, and membrane 410 

cost are essential steps to further improve the commercial viability of FDFO. 411 

Other hybrid FO-desalination processes have been developed for improved water recovery 412 

and fouling management for brackish water desalination. Most of these applications employ FO 413 

as a pre-treatment step for traditional desalination processes, taking advantage of FO low 414 

fouling propensity. For example, FO coupled with NF for brackish water desalination showed 415 

less flux decline caused by membrane fouling, and higher amounts of reversible FO fouling [68, 416 

70]. Similar findings have been reported for FO-RO systems [60], even when treating brackish 417 

waters with high scaling potential [69]. Another advantage related to the reduced fouling 418 

tendency of FO is the capability to increase system water recovery, hence reduce brine 419 

discharge. An NF-FO-RO hybrid system achieved >90% simulated water recovery for inland 420 

brackish water desalination at TDS between 1,000–2,400 mg/L [69]. Furthermore, an FO-MD 421 

hybrid process achieved 81% recovery when treating brackish water RO brine (i.e. TDS = 422 

7,500–17,500 mg/L) [73]. Overall, the high energy consumption of the water recovery process 423 

in FO hybrid systems dominates the overall operating costs, whilst the large amounts of FO 424 

membrane required for adequate water production represent the major capital cost. Therefore, 425 
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there are significant opportunities for thermally driven processes that can utilise low-cost waste 426 

heat or solar energy for brackish water desalination [71]. 427 

3.3.  Electrodialysis (ED) 428 

Electrodialysis (ED) is a well-established electrically driven membrane process with various 429 

industrial applications including brackish water desalination for potable water production [98, 430 

99]. The ED process uses ion-exchange membranes and an electric field to desalt saline waters. 431 

In an ED cell, cation-exchange membranes and anion-exchange membranes are alternatively 432 

arranged between an anode and a cathode to form different compartments as demonstrated in 433 

Fig. 6. Given their electrically charged functional groups, cation- or anion-exchange 434 

membranes only allow for the permeation of cations or anions, respectively. When a voltage is 435 

applied between the cathode and anode, cations and anions in the saline water streams 436 

selectively migrate through the membranes, leading to a salt concentration drop in the feed 437 

streams but increased salt concentration in the brine streams. As a result, fresh water together 438 

with concentrated brine is obtained following the ED process (Fig. 6). 439 

 440 

Fig. 6 The working principle of the ED process for desalination of brackish water (adapted from 441 

[100]). 442 

Unlike other membrane processes (e.g. RO, FO, and MD), the ED desalination process 443 

produces fresh water by removing salts rather than water from saline waters. Because salt 444 

concentration in brackish water is negligible compared to water concentration, brackish 445 

desalination by removing salts is much more energy efficient compared to removing water. 446 

Thus, for brackish water desalination the ED process exhibits an overwhelming advantage over 447 

other membrane processes with respects to energy efficiency [21]. Indeed, the brackish water 448 
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ED desalination process exhibits a significantly lower specific energy consumption (i.e. 0.72.5 449 

kWh/m3) compared to the RO process [2, 101]. 450 

The desalination performance of the ED process is critically dependent on the transport rate 451 

of ions through the ion-exchange membranes. Elevated ions transport rate will result in 452 

decreased salt concentrations and increased flowrate of the fresh water stream, thus improving 453 

the fresh water quality and production rate of the ED process. The ions transport rate through 454 

the ED membranes is regulated by ED membrane characteristics and applied current [102]. 455 

As an electrically driven desalination process, electricity is the primary energy input of ED. 456 

The electricity consumption is mainly for electric field between the cathode and anode, and it 457 

increases with the voltage drop over the electrodes. In turn, the voltage drop over the electrodes 458 

is attributed to the overall Ohmic resistance and the non-Ohmic voltage drop [102]. These two 459 

parameters are dependent on salt concentrations in the brine and fresh water compartments. 460 

Increased salt concentration gradient between the brine and fresh water compartments elevates 461 

the non-Ohmic voltage drop, whereas the overall Ohmic resistance decreases when the salt 462 

concentrations in compartments increase. The overall Ohmic resistance is also greatly affected 463 

by the ion exchange membrane properties including the membrane ionic conductivity [102]. 464 

Another electrically driven process that has gained increasing attention for desalination of 465 

brackish water is capacitive deionisation (CDI) [103-105]. Like ED, the CDI process employs 466 

an electrical field to drive the movement of ions towards electrodes to achieve the desalination 467 

of brackish water. However, unlike ED, CDI is strictly not a membrane-based desalination 468 

process because it does not require a membrane for salt-water separation. Instead, the CDI 469 

process employs porous electrodes to adsorb ions from the brackish water feed and hence 470 

desalinate it. The porous electrodes are the core of the CDI process as they profoundly affect 471 

the process efficiency. A key property of the CDI electrodes is their specific capacitance, which 472 

is measured in Faraday per gram (F/g) [100]. Specific capacitance indicates the electrostatic 473 

adsorption capacity of electrodes. In other words, electrodes with higher specific capacitance 474 

can adsorb more salt ions from the feed water and hence are compatible with brackish water 475 

feeds with higher salinity. Most current electrodes used for the CDI process have specific 476 

capacitance below 125 F/g [106]. As a result, the application of the CDI process has been 477 

limited to the desalination of brackish water with salinity less than 2,000 mg/L [107, 108], 478 

which is much lower than the feed water salinity allowed for the ED desalination process. 479 

3.3.1.  Recent advances in ED membrane materials 480 

In ion-exchange membranes, the charged functional groups attached to a polymer matrix 481 

are responsible for the selective permeation of ions through the membranes. The negatively 482 
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charged groups on the cation-exchange membranes exclude anions, thus rendering the 483 

membranes preferentially permeable to cations. Likewise, the anion-exchange membranes are 484 

selectively permeable to anions due to their positively charged groups. Key properties of ion-485 

exchange membranes that control the desalination efficiency of the ED process are ionic 486 

conductivity, perm-selectivity, and chemical, thermal, and mechanical stability. 487 

Given the maturity of the ED process, there have been relatively limited recent advances in 488 

ion-exchange membrane materials. Only few studies on ion-exchange membranes have recently 489 

been reported [109-112]. Most notably, Shukla and Shahi [109] fabricated a novel composite 490 

cation-exchange membrane whereby imidized graphene oxide with multi-functionalized groups 491 

was incorporated into the sulfonated polymer matrix to increase the ionic conductivity, per-492 

selectivity, ion-exchange capacity, and stability of the membrane. Afsar et al. [111] fabricated 493 

a cation-exchange membrane with integrated cationic and anionic layers for increased 494 

membrane perm-selectivity. A carboxyl membrane base was prepared from polyvinyl alcohol 495 

(PVA) and subsequently coated with the cationic and anionic layer of quaternized poly 496 

phenylene oxide and sulfone poly phenylene oxide, respectively. The double-layer structure 497 

increased the per-selective behaviour of the fabricated cation-exchange membrane, rendering it 498 

highly promising for desalination of brackish water containing monovalent and divalent cations 499 

[111]. 500 

Like other membrane processes, membrane fouling is a challenge to the application of ED 501 

for brackish water desalination. There is a consensus that brackish water contains high contents 502 

of negatively charged organic compounds. In the ED process, when the electric field is applied, 503 

these organic compounds (i.e. in the forms of colloidal particles and particulate organic matter) 504 

move toward the anode but are retained and subsequently deposited on or within the anion-505 

exchange membrane surface. The deposited colloidal layers reduce the ionic conductivity and 506 

negatively alter ion selectivity of membrane, hence deteriorating the desalination efficiency of 507 

the ED process. To increase the fouling resistance of anion-exchange membranes against 508 

negatively charged colloidal particles, Mulyati et al. [113] and Vaselbehagh et al. [114] 509 

incorporated high molecular mass surfactants into the anion-exchange membranes to promote 510 

their negative surface charge density, hydrophilicity, and roughness. The experimental results 511 

confirmed that the surface-modified anion-exchange membranes were not only more resistance 512 

to fouling but also more chemically and mechanically stable than the original membranes. Pre-513 

treatment of the brackish water feed using membrane filtration processes (e.g. MF and UF) is 514 

also applied to mitigate membrane fouling and simultaneously improve organic compounds 515 

removal of the brackish water ED desalination process [102]. 516 
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3.3.2.  Recent advances in the ED process 517 

Pre-treatment of brackish water has been also practised to prevent membrane scaling caused 518 

by sparingly soluble inorganic salts (i.e. CaCO3 and CaSO4) during the brackish water ED 519 

desalination process at high water recovery [115, 116]. The addition of anti-scalants to the 520 

brackish water feed can effectively prevent the deposition of CaSO4 on the membrane surface; 521 

however, it is unworkable for CaCO3. Recently, Sayadi et al. [115] experimentally assessed the 522 

efficiency of three physical membrane scaling prevention methods with CaCO3 using magnetic, 523 

ultrasonic, and pulsed electric field during the ED desalination process. These physical anti-524 

scale treatments facilitated the homogeneous formation of CaCO3 in the solution but no on the 525 

membrane surface, thus effectively preventing membrane scaling [115]. The results obtained 526 

from this lab-scale testing are promising; nevertheless, many further works are required before 527 

these anti-scale methods can be practically applied for brackish water ED desalination. 528 

A breakthrough in membrane scaling prevention in ED desalination is the introduction of 529 

the electrodialysis reversal (EDR) concept [102, 117, 118]. Indeed, EDR can be considered an 530 

enhanced anti-fouling ED process. During the EDR operation, the migration of ions and organic 531 

matter across the ED cells is regularly reversed by switching the electrode polarities and the 532 

diluate and brine channels. The foulants deposited on the membrane surfaces in the previous 533 

ED cycle are detached and released into the brine streams before being rinsed out of the ED 534 

cells. The fouled membranes are effectively self-cleaned during the EDR operation. Therefore, 535 

the EDR process is remarkedly more resistant to membrane fouling and hence offers a more 536 

cost-effective desalination means for brackish water than the ED process. Due to its reduced 537 

membrane fouling/scaling tendency, the EDR desalination process can be operated at higher 538 

water recovery than the ED process [117]. Given these considerable advantages, the EDR 539 

process is rapidly gaining its popularity. Nevertheless, as concluded in [118], there is still a gap 540 

between lab-scale testing and full-scale industrial applications, and hence more pilot-scale 541 

studies are required to scale up the EDR process. 542 

3.4.  Membrane distillation (MD) 543 

The thermally driven membrane distillation (MD) process has considerable potentials for 544 

desalination of brackish water. The MD process uses a hydrophobic, microporous membrane to 545 

separate a brackish water feed and a fresh distillate stream. Given its hydrophobic nature, the 546 

MD membrane allows only the permeation of water vapor but not liquid water. Therefore, in 547 

theory the brackish MD desalination process can achieve a 100% salt rejection to produce pure 548 

distillate [119, 120]. Moreover, the MD process is significantly less susceptible to fouling than 549 

other membrane processes (e.g. RO, FO, and ED) due to the discontinuity of liquid water across 550 
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the MD membrane [119, 120]. The low membrane fouling tendency might reduce feed water 551 

pre-treatment before the brackish water MD desalination process. More importantly, the MD 552 

process is driven by the temperature difference across the membrane, and thermal energy is the 553 

primary process energy input. Thus, low-grade heat sources such as waste heat or solar thermal 554 

energy can be explored to meet the energy demand and hence to reduce the energy costs of the 555 

brackish water MD desalination process. 556 

Non-wetting of the membrane pores is a critical condition for the MD process. The 557 

membrane pores remain dry when the hydrostatic pressure of the process streams is limited 558 

below the liquid entry pressure (LEP) [120-125]. When the LEP is exceeded, liquid water can 559 

penetrate and render the membrane pores wetted. Consequently, liquid water (i.e. hence 560 

dissolved salts and contaminants) rather than water vapor transfers through the membrane, 561 

hence leading to deterioration in the MD process salt-rejection [121-124]. Membrane pore 562 

wetting also leads to decline in the MD water flux because of the decreased active membrane 563 

surface area for water evaporation. LEP is dependent on the membrane properties and solution 564 

characteristics as expressed below [120]: 565 

L

max

2Bλ cosθ
LEP

r


       (2) 566 

where B is the geometric factor representing pore structure, L is the liquid surface tension,  567 

is the liquid-membrane contact angle representing the membrane hydrophobicity, and rmax is 568 

the maximum membrane pore radius. 569 

The most notable factor that might induce membrane wetting in MD desalination of brackish 570 

water is the varied particulate matter content. Organic compounds and surfactants in brackish 571 

water reduce the solution surface tension and might attach to the membrane and subsequently 572 

alter membrane surface hydrophobicity. Thus, they reduce the LEP value and increase the risk 573 

of membrane pore wetting. Indeed, LEP linearly decreases with the increased organic solutes 574 

concentration in the solution [120]. As a result, it is critical to remove organic compounds and 575 

surfactants from the brackish water prior to the MD process to prevent membrane pore wetting. 576 

Thermal energy efficiency is key aspect of the brackish water MD desalination process. The 577 

MD process thermal energy efficiency is evaluated using two parameters: specific thermal 578 

energy consumption (STEC) and gained output ratio (GOR). While STEC directly shows the 579 

amount of thermal energy demand (i.e. in kWh) to produce one volumetric unit (i.e. in m3) of 580 

distillate, GOR demonstrates the heat recovery efficiency of the MD process [120]. 581 
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3.4.1.  Recent advances in MD membrane materials 582 

Like in other membrane processes, in MD the membrane exerts strong effects on the process 583 

performance. The membrane properties regulate the salt removal as well as the heat and water 584 

flux through the membrane. Therefore, the MD membrane decisively influences the 585 

desalination efficiency (i.e. distillate quality and production) and the energy consumption of the 586 

MD process. 587 

Most recent advances in MD membranes are orientated toward improving their water flux 588 

and wetting resistance. For example, a large number of attempts have tried to fabricate super 589 

hydrophobic membranes to enhance the membrane wetting resistance and water flux of the MD 590 

process [126-133]. Super hydrophobic MD membranes are achieved by coating nanoparticles 591 

[127, 130, 134, 135], highly hydrophobic perfluorinated copolymers [133, 136], or microsphere 592 

[128] on the surface of the hydrophobic polymer membrane probably followed by surface 593 

modification (i.e. fluorinated modification). The experimental results demonstrate that the MD 594 

process using super hydrophobic membrane exhibited significant improvement in both water 595 

flux and membrane fouling/wetting resistance [127-130, 133, 134, 136]. For example, the MD 596 

process with the anti-wetting super hydrophobic membrane under wetting-intense conditions 597 

could noticeably increase water flux from 26.0 to 29.9 L/m2h and delay the membrane wetting 598 

occurrence from 40 to 180 minutes [129]. 599 

Another approach to improving water flux is to explore multi-layer MD membranes. Most 600 

MD systems use commercial MF membranes consisting of a hydrophobic active layer 601 

laminated on a hydrophobic support layer with relatively high thickness. Recently, the novel 602 

electrospinning method has been deployed to prepare dual hydrophobic-hydrophilic layer or 603 

three layer membranes specifically for MD [135, 137-142]. The electrospinning method allows 604 

for effective control of membrane layer thickness and pore sizes and the addition of 605 

nanoparticles to the membrane layers. The hydrophilic support layer after being wetted by the 606 

distillate helps reduce the pathway of water vapor inside the membrane pores (Fig. 7). Therefore, 607 

the electrospun multi-layer MD membranes presented noticeably enhanced water permeability 608 

and wetting resistance compared to commercially available MD membranes [137-139, 141, 609 

143]. 610 
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 611 

Fig. 7 A schematic of a cross section of a dual hydrophobic-hydrophilic MD membrane 612 

prepared using the electrospinning method (adapted from [143]). 613 

Water flux of the MD membrane can also be enhanced by enlarging the membrane pore 614 

sizes and increasing membrane porosity. In general, the MD membrane with larger pore sizes 615 

and higher porosity exhibits increased water flux and less conductive heat loss but at the 616 

expense of reduced mechanical strength and LEP [120, 133]. Given the versatile electrospinning 617 

method, MD membranes with large pore sizes and porosity and sufficient mechanical strength 618 

and wetting resistance have been obtained by reinforcing the substrate layer [144-146]. These 619 

reinforced MD membranes demonstrate great potentials for desalination applications whereby 620 

high water flux and membrane wetting resistance are required [144-146]. 621 

3.4.2.  Recent advances in the MD process 622 

There has been a consensus that MD is an emerging desalination process and it is currently 623 

not comparable to RO, FO, and ED for brackish water desalination applications. As a thermally 624 

driven process, MD requires huge amount of heating and cooling to achieve fresh water from 625 

saline waters. Thus, MD is rarely considered an ideal process for brackish water desalination. 626 

However, unlike other membrane desalination processes, MD can be coupled with low-grade 627 

heat sources such as waste heat from other industrial processes or solar thermal energy. With 628 

the availability of these low-grade heat sources, the energy cost of brackish water MD 629 

desalination can be reduced. Alternatively, MD can be combined with other membrane 630 

processes for improving the water recovery and energy efficiency of brackish water desalination 631 

[65-67]. 632 
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In practice, most recent pilot MD demonstrations for brackish water or seawater desalination 633 

are on solar-powered or waste heat-driven processes [147-155]. This might be attributed to the 634 

high process energy consumption of MD, which is currently considered one of the key hurdles 635 

for its commercialisation. Coupling MD with solar thermal energy or waste heat helps alleviate 636 

its high energy consumption and renders it more competitive for brackish water or seawater 637 

desalination. For example, Chaffed et al. [154] developed and experimentally investigated the 638 

performance of an integrated solar-driven pilot MD system for potable water production from 639 

brackish water. The investigation results confirmed the viability of the solar-driven MD for 640 

potable water production from brackish water [154]. Dow et al. [155] assessed membrane 641 

fouling propensity of a pilot MD process driven by waste heat from a gas fired power station 642 

during a three-month operation [154]. Due to the limited waste heat temperature (i.e. 40 C), 643 

the MD process exhibited a low water flux of 3 L/m2h. However, despite testing with the real 644 

power station effluent, membrane fouling was only evident at the very end of the operation, and 645 

the MD process achieved 99.9% salt rejection throughout the operation [154]. 646 

Recently, several novel approaches to enhancing the solar radiation absorption efficiency 647 

have been implemented to facilitate the solar-driven MD desalination process [147, 156]. The 648 

most notable example is the addition of nanofluids to the MD feed water stream to increase the 649 

solar radiation absorption locally at the membrane surface, thus enhancing the utilization of 650 

solar radiation and simultaneously obviating the need for the conventional solar thermal 651 

collectors [156]. The energy utilization efficiency and water flux of the MD process with added 652 

nanofluids were improved both by nearly 60% compared to those of the process without 653 

nanofluids [156]. Most importantly, the MD membrane retained 100% of nanofluids, thus 654 

producing distillate with excellent quality (i.e. with salinity <10 mg/L) [156]. These novel 655 

approaches are promising for the solar-driven MD desalination of brackish water with respects 656 

to energy consumption and hence production cost reductions. Nevertheless, further studies are 657 

required to elucidate the long-termed effectiveness of these novel heating methods. 658 

Conclusions  659 

Brackish water has become a viable source to augment fresh water supply. Membrane 660 

processes including RO, FO, ED, and MD, have been the key technology for brackish water 661 

desalination. Widely varied characteristics of brackish water present considerable challenges to 662 

brackish water membrane desalination processes. Therefore, recent advances in membrane 663 

materials and process designs of these four membrane processes largely focus on improving 664 

fouling resistance, boron rejection, water flux, and energy efficiency. New membrane materials 665 

including nanoparticle-incorporated thin-film composite polyamide, aquaporin, and super-666 
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hydrophilic or super-hydrophobic polymers demonstrate great potentials with respects to 667 

enhanced water permeability, fouling resistance, and rejection against small-molecule 668 

contaminants. Recent innovations in process designs also help facilitate the applications of the 669 

membrane processes for brackish water desalination. Pre-treatment using gravity-driven UF 670 

effectively prevents membrane fouling and in tandem reduces the energy consumption of 671 

brackish water RO desalination. The fertiliser-drawn FO process offers a cost- and energy-672 

effective treatment of brackish water for irrigation. Reversal ED has proved itself an energy-673 

efficient and fouling resistant process for brackish water desalination. Finally, solar-powered 674 

or waste heat-driven MD processes achieve quality fresh water from brackish water with 675 

markedly reduced energy costs. Recent advances in membrane materials and processes are 676 

highly promising and expected to be the game changers for brackish water desalination. 677 

However, great efforts are required to boost the scaling up of these novel membrane materials 678 

and process designs. 679 
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