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We systematically investigate the optical analogs of quantum relativistic Jackiw-Rebbi states in binary
waveguide arrays in the presence of the Kerr nonlinearity with both self-focusing and self-defocusing cases. The
localized profiles of these nonlinear Jackiw-Rebbi states can be calculated exactly by using the shooting method.
We show that these nonlinear Jackiw-Rebbi states have a very interesting feature which is totally different from
all other well-known nonlinear localized structures, including optical solitons. Namely, the profiles of nonlinear
Jackiw-Rebbi states with higher peak amplitudes can totally envelope those with lower peak amplitudes. We
demonstrate that media with the positive nonlinear coefficient can support stable Jackiw-Rebbi states for a
wide range of peak amplitudes, whereas media with the negative nonlinear coefficient are only able to support
Jackiw-Rebbi states with low peak amplitudes. A general rule for the detuning of nonlinear Jackiw-Rebbi states
in binary waveguide arrays is found.
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I. INTRODUCTION

Waveguide arrays (WAs) are unique systems possessing
many fundamental discrete photonic phenomena, for instance,
discrete diffraction [1,2] and discrete solitons [1,3,4]. Re-
cently, it was shown that some important nonlinear phenom-
ena usually associated with fiber optics, such as the emission
of resonant radiation from solitons and soliton self-wave-
number shift can also occur in WAs [5,6], and the supercon-
tinuum in both frequency and wave-number domains can be
generated in WAs as well [7].

Waveguide arrays are also well known for being intensively
used in simulating fundamental effects in nonrelativistic quan-
tum mechanics; for instance, photonic Bloch oscillations
[1,8,9] and Zener tunneling [10]. On the other hand, binary
waveguide arrays (BWAs)—a special class of WAs consisting
of two different alternating types of waveguides—present a
promising photonic system to investigate fundamental rela-
tivistic quantum mechanics phenomena emerging from the
Dirac equation, e.g., Zitterbewegung [11], Klein paradox [12],
and Dirac solitons in the nonlinear regime in both one-
dimensional cases [13–16], two-dimensional cases [17], and
even in curved spacetime [18].

Recently, it has been shown in Ref. [19] that, at the inter-
face of two BWAs having opposite signs of the so-called Dirac
mass, one can create the optical analogs of special states, well
known in quantum field theory as Jackiw-Rebbi (JR) states
[20]. The interaction between Dirac solitons and JR states in
BWAs has been studied in Ref. [21]. The JR states led to the
prediction of the fundamental charge fractionalization phe-
nomenon which plays a central role in the fractional quantum
Hall effect [22]. One of the most amazing features of the JR
states is the topological nature of their zero-energy solution
which has been interpreted as a precursor to topological
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insulators [23]. Topological photonics has a great potential
in the development of extremely robust optical circuits [24].
Quite recently, the JR states in interfaced BWAs have been
shown, as expected, to be also extremely robust under the
influence of strong disturbances such as the turning on or
off of the nonlinearity, the linear transverse potential, and
the oblique incidence [25]. The photonic topological defect
states on the edge of just a BWA were experimentally found
in Ref. [26]. The topological defect mode at the interface
between two periodic dimer chains has also been investigated
in Ref. [27]. So far, some schemes have been proposed
to realize the JR states, for instance, by using an atomic
Fermi-Dirac gas loaded in a periodic optical lattice [28], or
by using so-called heavy solitons in a fermionic superfluid
[29]. A photonic implementation of the JR model in a slow-
light polaritonic setup has been proposed in Ref. [30]. The
topological JR states on a dislocation in a two-dimensional
photonic crystal have been investigated both theoretically and
experimentally in Ref. [31]. Quite recently, the photonic JR
states in all-dielectric structures controlled by bi-anisotropy
have also been observed both numerically and experimentally
in Ref. [32].

The above-mentioned JR states in interfaced BWAs ana-
lyzed in Ref. [19] have been investigated in the linear regime
where their exact analytical solutions have been provided.
However, the exact solutions for JRs in BWAs in the nonlinear
regime have not been found. Actually, in Ref. [19] we have
just shown the existence of nonlinear JR states by launching
the linear solutions of JR states (multiplied by some arbitrary
factors) into BWAs with Kerr nonlinearity, and then letting
the beam self-adjust its profiles during propagation. This
way only can help us to prove the existence of nonlinear
JR states at the end of the beam propagation in BWAs, but
all the other important properties of nonlinear JR states in
BWAs are completely unexplored. In this paper we use the
so-called shooting method to calculate the exact profiles of
JR states in BWAs in the regime of Kerr nonlinearity with
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FIG. 1. Localized JR states of the first type in interfaced BWAs
with Kerr nonlinearity. (a) The scheme of two adjacent BWAs.
(b) The value distribution of the array (−1)nσ . (c) Amplitude profiles
bn and |bn| when γ = 1. (d) Propagation of the nonlinear JR state
in the (n, z) plane with input condition taken from the dashed red
curve in panel (c). (e) Amplitude profile bn and |bn| when γ = −1.
(f) Propagation of the nonlinear JR state in the (n, z) plane with input
condition taken from panel (e). Parameters: σ1 = −1; σ2 = 1; κ = 1.

both self-focusing and self-defocusing nonlinearity, and then
systematically investigate their properties.

II. GOVERNING EQUATIONS AND LINEAR SOLUTIONS
OF JACKIW-REBBI STATES

In this section, let us briefly introduce the governing equa-
tions in interfaced BWAs and the exact linear solutions of
JR states which have already been obtained in Ref. [19].
Some results of these linear JR solutions will be necessary
for further discussion of nonlinear JR states.

Light propagation in a discrete, periodic binary array
of Kerr nonlinear waveguides can be described in the
continuous-wave regime by the following dimensionless
coupled-mode equations (CMEs) [33,34]:

i
dan

dz
+ κ[an+1 + an−1] − (−1)nσan + γ |an|2an = 0, (1)

where an is the electric-field amplitude in the nth waveguide,
z is the longitudinal spatial coordinate, 2σ and κ are the
propagation mismatch and the coupling coefficient between
two adjacent waveguides of the array, respectively, and γ

is the nonlinear coefficient of waveguides which is positive
for self-focusing but negative for self-defocusing media. To
observe JR states one needs to use two BWAs placed adjacent
to each other as illustrated in Fig. 1(a). We want to emphasize

that σ takes the constant value σ1 and σ2 for the left BWA
(n < 0) and right BWA (n � 0), respectively.

After setting �1(n) = (−1)na2n and �2(n) = i(−1)na2n−1,
and following the standard approach developed in
Refs. [11,35] we can introduce the continuous transverse
coordinate ξ ↔ n and the two-component spinor
�(ξ, z) = (�1, �2)T which satisfies the one-dimensional
(1D) nonlinear Dirac equation [13]:

i∂z� = −iκσ̂x∂ξ� + σ σ̂z� − γ G, (2)

where the nonlinear terms G ≡ (|�1|2�1, |�2|2�2)T , and σ̂x

and σ̂z are the usual Pauli matrices. In quantum field theory
the parameter σ in the Dirac equation is often called the mass
of the Dirac field (or Dirac mass), and this mass parameter can
be both positive and negative.

In the linear case (i.e., when γ = 0), if σ1 < 0 and σ2 > 0,
then the exact continuous JR solutions of Eq. (2) have already
been derived in Ref. [19] as follows:

�(ξ ) =
√

|σ1σ2|
κ (|σ1| + |σ2|)

(
1
i

)
e−|σ (ξ )ξ |/κ . (3)

Solution (3) is the exact one for the continuous Eq. (2) in the
linear case, but it is an approximate solution to the discrete
Eqs. (1). Obviously, this approximation will become better if
the beam width gets larger.

If |σ1| = |σ2| = σ0, as shown in Ref. [19], one can easily
get following exact localized solutions for the discrete Eqs. (1)
without nonlinearity (γ = 0) for the following two cases:

If −σ1 = σ2 = σ0 > 0, one gets the following JR state of
the first type [19]:

an = bneiδ1z, (4)

where the detuning δ1 ≡ κ − (σ 2
0 + κ2)1/2, bn is real and

independent of the variable z, b2n−1 = b2n. For n � 0 one
has the following relationship: b2n/b2n+1 = α ≡ −[σ0/κ +
(1 + σ 2

0 /κ2)1/2], whereas for n < 0 one has: b2n+1/b2n = α.
Note that, for generating a JR state of the first type, the central
region of the two interfaced BWAs (at waveguides n = −1
and 0) must have a positive value for (−1)nσ [see Fig. 1(b)
for more details].

However, if σ1 = −σ2 = σ0 > 0, one has the following JR
state of the second type [19]:

an = bneiδ2z, (5)

where the detuning δ2 ≡ κ + (σ 2
0 + κ2)1/2, bn is again real

and independent of the variable z, b2n−1 = b2n. For n � 0 one
has b2n/b2n+1 = −α, whereas for n < 0 one has b2n+1/b2n =
−α. Note that, for generating a JR state of the second type,
the central region of the two interfaced BWAs (at waveguides
n = −1 and 0) must have a negative value for (−1)nσ .

III. LOCALIZED JACKIW-REBBI STATES
WITH KERR NONLINEARITY

Now it is time for us to look for the nonlinear JR solutions
in the presence of the Kerr nonlinearity. Specifically, we solve
the nonlinear discrete Eqs. (1). To do that we will find the
nonlinear JR solutions in the following form:

an = bneiδz, (6)
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where the amplitude bn is real and independent of the variable
z as in solutions (4) and (5). However, the detuning δ is the
eigenvalue of each nonlinear JR state and must be found
further. Of course, in the linear limit (i.e., when γ = 0) the
detuning δ will get the constant value of either δ1 or δ2

depending on whether one has the JR state of the first or
second type, respectively. After inserting the ansatz (6) into
the coupled-mode Eqs. (1), we get the following system of
algebraic equations:

−δbn = −κ[bn+1 + bn−1] + (−1)nσbn − γ |bn|2bn. (7)

In Fig. 1 we show the nonlinear JR state of the first type
for the case of the Kerr nonlinearity. The illustrative scheme
of two BWAs with opposite propagation mismatches located
adjacent to each other is presented in Fig. 1(a). The array
(−1)nσ at the interface between the two BWAs is plotted
in Fig. 1(b). Due to the symmetry of the system as shown
in Figs. 1(a) and 1(b), we can find nonlinear solutions to
Eqs. (7) with the following property: bn = b−(n+1), i.e., b0 =
b−1, b1 = b−2, and so on. With this property, if the peak
amplitude of the JR state at the central (i.e., b0 and b−1) is set,
then all other values of bn can be calculated straightforwardly
from Eqs. (7). However, we are only interested in finding the
localized nonlinear JR solutions where the tails vanish when
n → ±∞. To do that, we just need to refine the detuning
δ until the conditions bn → 0 is held true when |n| is large
enough. Therefore, the eigenvalue of the detuning δ of the
localized nonlinear JR states will be a function of their peak
amplitude. With this simple and efficient “shooting” method,
we are able to numerically find exact solutions of all kinds of
JR states (including linear ones whose exact solutions have
been found earlier as shown in Sec. II) by shooting from the
JR center to the tails. A similar shooting method has also
been successfully exploited to numerically find the dissipative
Bragg solitons in active nonlinear fibers in Ref. [36] with
the only big difference being that the shooting therein was
conducted from one tail of the soliton to the other.

In Fig. 1(c) we plot the amplitude profiles of the localized
JR states of the first type in the case of self-focusing nonlinear-
ity (γ = 1). The dashed red curve and the solid blue curve in
Fig. 1(c) represent, respectively, the amplitude profile bn and
|bn| of a JR state with peak amplitude b0 = b−1 = 0.5, and
the eigenvalue of the detuning is found to be δ � 0.5475δ1.
Meanwhile, the dotted green curve in Fig. 1(c) represents the
amplitude profile of another JR state with peak amplitude
b0 = b−1 = 0.8, and the eigenvalue of the detuning is found
to be δ � −0.166δ1. To verify these solutions we use them as
initial conditions for solving Eqs. (1) along the propagation
distance z. The propagation of the nonlinear localized JR
state in the (n, z) plane with input condition taken from the
dashed red curve in Fig. 1(c) is demonstrated in Fig. 1(d).
As clearly shown in Fig. 1(d), the profile of this nonlinear JR
state is perfectly conserved during propagation. This JR state
is perfectly stable, robust, and can propagate as long as we
want without any distortion of its shape.

In Fig. 1(e) we show the amplitude profile bn and |bn|
of the localized JR state of the first type in the case of
self-defocusing nonlinearity (γ = −1) with peak amplitude
b0 = b−1 = 0.5, and the eigenvalue of the detuning is found to
be δ � 1.4537δ1. The propagation of the nonlinear localized
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FIG. 2. Localized JR states of the second type in interfaced
BWAs with Kerr nonlinearity. (a) Amplitude profile bn when γ = 1:
the solid blue curve represents the JR state with peak amplitude
b0 = b−1 = 0.3, whereas the dashed red curve represents the JR
state with peak amplitude b0 = b−1 = 0.2. (b) Propagation of the
nonlinear JR state in the (n, z) plane with input condition taken
from the solid blue curve in panel (a). (c) Same as panel (a), but
for γ = −1. (d) Propagation of the nonlinear JR state in the (n, z)
plane with input condition taken from the solid blue curve in panel
(c). Parameters: σ1 = 1; σ2 = −1; κ = 1.

JR state in the (n, z) plane with input condition taken from
Fig. 1(e) is demonstrated in Fig. 1(f). In this case, the nonlin-
ear JR state with self-defocusing nonlinearity is also perfectly
stable. To obtain results in Fig. 1 we use parameters as
follows: σ1 = −1; σ2 = 1; κ = 1; total number of waveguides
N = 61; the nonlinear coefficient γ = 1 in Figs. 1(c) and 1(d),
but γ = −1 in Figs. 1(e) and 1(f).

To estimate real physical parameters of the calculated JR
states, below we use typical parameters in waveguide arrays
made of AlGaAs [37], where the coupling coefficient and
nonlinear coefficient in physical units are K = 1240 m−1 and

 = 6.5 m−1 W−1, respectively. In this case, the power scale
will be P0 = K/
 = 190.8 W, thus the peak power of the
JR state shown in Fig. 1(d) will be around 47 W, and the
length scale in the propagation direction will be z0 = 1/K =
0.8 mm.

In Figs. 2(a) and 2(b) we show the nonlinear localized JR
states of the second type with self-focusing nonlinearity, i.e.,
when γ = 1. The amplitude profiles bn of the JR states with
γ = 1 in Fig. 2(a) are calculated by using the shooting method
described above in solving Eqs. (7) where the solid blue curve
is the JR state with peak amplitude b0 = b−1 = 0.3, and the
eigenvalue detuning is found to be δ � 1.0285δ2. Meanwhile,
the dashed red curve in Fig. 2(a) is the JR state with peak
amplitude b0 = b−1 = 0.2, and the eigenvalue detuning is
found to be δ � 1.0125δ2. The solid blue curve is used as
initial conditions for solving Eqs. (1) and the evolution of
|an(z)| of this nonlinear localized JR state in the (n, z) plane
is demonstrated in Fig. 2(b).

Similarly, in Figs. 2(c) and 2(d) we show the nonlinear
localized JR states of the second type with self-defocusing
nonlinearity, i.e., when γ = −1. Specifically, the solid blue
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curve in Fig. 2(c) is the amplitude profiles bn of the JR
state with peak amplitude b0 = b−1 = 0.3, and the eigenvalue
detuning is found to be δ � 0.9726δ2; whereas the dashed
red curve therein plots the JR state with peak amplitude b0 =
b−1 = 0.2, and the eigenvalue detuning is found to be δ �
0.9877δ2. Figure 2(d) shows the propagation of the nonlinear
localized JR state |an(z)| in the (n, z) plane with the input
condition taken from the solid blue curve in Fig. 2(c). All
parameters used for obtaining results in Fig. 2 are as follows:
σ1 = 1; σ2 = −1; κ = 1; total number of waveguides N = 61;
the nonlinear coefficient γ = 1 in Figs. 2(a) and 2(b), but
γ = −1 in Figs. 2(c) and 2(d).

Now we can see that one of common features of the
nonlinear JR state profiles of both the first and second types
in the regime of Kerr nonlinearity with self-focusing (γ = 1)
is that |bn| (and as a result |an|) monotonically decreases
from the JR center to each of its two tails as shown in both
Figs. 1(c) and 2(a). As a result, the nonlinear JR states profiles
in Figs. 1(c) and 2(a) have just one peak at the center. On the
contrary, for JR states of both the first and second types in the
regime of Kerr nonlinearity with self-defocusing (γ = −1),
the JR state profiles of |bn| are not monotonic functions from
the JR center to each of its two tails, i.e., they have many peaks
in Figs. 1(e) and 2(c). As a result of this, if two nonlinear
JR states of the same type have the same peak amplitude,
then the JR state with self-focusing nonlinearity is more
transversally localized than the JR state with self-defocusing
nonlinearity. This tendency is especially more visible with JR
states of the second type. Indeed, Fig. 2 clearly shows that,
when comparing JR states with the same peak amplitude,
the JR states with self-focusing nonlinearity demonstrated
in Figs. 2(a) and 2(b) are more localized in the transverse
direction than the JR states with self-defocusing nonlinearity
presented in Figs. 2(c) and 2(d). This difference of nonlinear
JR states between positive and negative γ is important and
will decrease the possibility of generating JR states with high
peak amplitudes in the regime with negative γ . We will return
to this point in Sec. IV.

It is worth mentioning that, for linear JR states we always
have b2n−1 = b2n (see Ref. [19] for more details). As a result,
the profile of the linear JR state shown in Fig. 1(c) in Ref. [19]
has many horizontal steps. The difference between |b2n−1| and
|b2n| of nonlinear JR states will be greater and greater if we
increase their peak amplitudes |b0|, and lesser and lesser if
we decrease |b0|. So, obviously, the profiles of nonlinear JR
states will be more and more similar to those of linear JR
states if we decrease their peak amplitudes |b0|. This fact is
also important and is related to the property of the nonlinear-
JR-state detunings, as will be discussed further.

While analyzing Figs. 1(c), 2(a), and 2(c) one can see a dis-
tinguishing feature of nonlinear-JR-state profiles (represented
by |bn|) which is totally different from all other well-known
localized nonlinear structures such as solitons emerging from
the nonlinear Schrödinger equation (i.e., temporal solitons in
a single optical fiber, spatial solitons in an optical waveg-
uide [38]), Bragg solitons, discrete solitons in a conventional
waveguide array (see Ref. [4] for more details), and even
discrete Dirac solitons in the BWA found in Ref. [13]. This
distinguishing feature of nonlinear JR states in interfaced
BWAs is the fact that the profiles with higher peak amplitudes
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FIG. 3. (a) Relative detuning δ/δ1 of nonlinear JR states of the
first type as a function of the peak amplitude b0. (b) Relative detuning
δ/δ2 of nonlinear JR states of the second type as a function of
the peak amplitude b0. All important parameters of each curve are
indicated explicitly therein and also in the text.

can totally envelope the profiles with lower peak amplitudes.
Indeed, in Fig. 1(c) the blue solid curve with a lower peak
amplitude is completely enveloped by the dotted green curve
with a higher peak amplitude. Similarly, in Figs. 2(a) and
2(c) the dashed red curves with lower peak amplitudes are
totally enveloped by the solid blue curves with higher peak
amplitudes. This situation cannot happen with all other well-
known nonlinear localized structures just mentioned above,
including optical solitons. This distinguishing feature of non-
linear JR states is universal for all kinds of JR states with Kerr
nonlinearity investigated in this paper, including JR states of
the first type with negative γ in Fig. 1.

IV. DETUNINGS OF LOCALIZED JACKIW-REBBI STATES
WITH KERR NONLINEARITY

In this section we investigate the eigenvalue detuning δ of
nonlinear JR states in detail. In Fig. 3(a) we plot the relative
detuning δ/δ1 of nonlinear JR states of the first type as a
function of the peak amplitude b0 for some sets of parameters.
Specifically, the red curve with diamond markers is obtained
when γ = 1, σ1 = −1, σ2 = 1, whereas the green curve with
round markers is obtained when we just change the sign of the
nonlinear coefficient γ , i.e., when γ = −1, σ1 = −1, σ2 = 1.
These two curves are almost symmetrical with respect to the
black horizontal axis representing the detuning δ = δ1 of the
linear JR states of the first type. To check the symmetry
of these two curves, in Fig. 3(a) we also plot the dashed
red curve which is the mirror image of the red curve with
diamond markers with respect to the black horizontal axis. As
clearly shown in Fig. 3(a), the dashed red curve and the green
curve with round markers practically coincide with each other,
especially for small values of |b0|. The only big difference
between them is the fact that the curve with self-focusing
nonlinearity (the red one with diamond markers) can develop
further to the right, whereas the curve with self-defocusing
nonlinearity (the green one with round markers) stops at
the maximum value of the peak amplitude b0 � 0.8. This
difference is related to the degree of transverse localization
of nonlinear JR states discussed above. As already pointed
out in Sec. III, when we fix the peak amplitude and all other
parameters of nonlinear JR states except for the sign of the
nonlinear coefficient γ , then the profile of the nonlinear JR
states with negative γ will be less localized in the transverse
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direction than the one of the nonlinear JR states with positive
γ . On the other hand, as also already mentioned above in
Sec. III, when the peak amplitude |b0| of JR states increases,
their transverse dimension also gets larger. Note that here we
do not use the term beam width because it is hard to define
exactly this quantity for unsmooth profiles of JR states. As a
result, when the peak amplitude |b0| increases, the nonlinear
JR states will be less localized in the transverse direction,
especially in the case of self-defocusing nonlinearity. This
leads to the situation, when b0 is high enough [b0 > 0.8 in
Fig. 3(a)], that one can still obtain the localized solution for
JR states with positive γ , but it is impossible to achieve it
with negative γ .

In Fig. 3(a) we also show the dependence of the relative
detuning δ/δ1 of nonlinear JR states of the first type on the
peak amplitude b0 for another value σ1 = −0.6. The solid
blue curve in Fig. 3(a) is the case when γ = 1, σ1 = −0.6,
σ2 = 0.6; and its mirror image with respect to the black
horizontal axis is the dashed blue curve. Meanwhile, the red
curve with round markers is the case when we only change
the sign of the nonlinear coefficient, i.e., when γ = −1, σ1 =
−0.6, σ2 = 0.6. We can see that all important properties of
the relative detuning curve δ/δ1 in the case with σ1 = −1
analyzed above are reproduced again in the case with σ1 =
−0.6. Another feature of all curves plotted in Fig. 3(a) is the
fact that they all begin from the origin at the point where
b0 = 0 and δ/δ1 = 1. This is understandable because, when
the peak amplitude b0 is small, nonlinear JR states will have
properties which are more similar to those of linear JR states,
and δ is closer to the detuning value δ1 of the linear JR states
of the first type.

In Fig. 3(b) we plot the relative detuning δ/δ2 of nonlin-
ear JR states of the second type as a function of the peak
amplitude b0 for some sets of parameters indicated therein.
To be more specific, the red curve with diamond markers
represents the case when γ = 1, σ1 = 1, σ2 = −1, whereas
the blue solid curve (which practically coincides with the
red curve with diamond markers) is the case when γ = 1,
σ1 = 0.6, σ2 = −0.6. The mirror images of these two curves
(with respect to the black horizontal line representing the
detuning δ = δ2 of the linear JR states of the second type)
are also plotted as the dashed blue curve and the dashed red
curve. Note that the dashed blue curve almost totally hides
the dashed red curve, so the latter one can only be seen by
enlarging Fig. 3(b) in the electronic version of this paper. The
green curve with round markers and the red curve with round
markers in Fig. 3(b) show the relative detuning curve in the
case of self-defocusing nonlinearity when γ = −1, σ1 = 1,
σ2 = −1; and γ = −1, σ1 = 0.6, σ2 = −0.6, respectively.

While comparing Fig. 3(a) with Fig. 3(b), one can see
that all qualitative properties of the relative detuning curves
discussed above in the case of JR states of the first type are
reproduced again in the case of JR states of the second type.
However, the relative detuning curves for JR states of the
second type shown in Fig. 3(b) are practically independent of
the value of σ1 (as long as it is positive in order to obtain the JR
states of the second type), whereas they are more sensitive to
the value of σ1 in the case of JR states of the first type shown
in Fig. 3(a) (which must be negative, of course, in order to
obtain the JR states of the first type). Another difference is

that with negative γ one can only generate JR states of the
second type with rather low peak amplitudes b0 in Fig. 3(b).
Meanwhile, one can get JR states of the first type with higher
peak amplitudes b0 for negative γ in Fig. 3(a). We suppose
that this is because JR states of the second type with negative
γ are much less localized in the transverse direction than
all other types of nonlinear JR states. Therefore, it is more
difficult to generate the localized nonlinear JR states of the
second type with high peak amplitudes when γ = −1.

As mentioned above, the relative detuning of nonlinear JR
states have an important feature: the two curves representing
the relative detunings of nonlinear JR states for two opposite
values γ = 1 and γ = −1 while fixing all other parameters
are almost symmetrical with respect to the black horizontal
axis in Fig. 3 (which represents the detuning of the linear JR
states). This important feature of nonlinear JR states can be
proved quite straightforwardly in a general way as follows:
Suppose that δl is the detuning parameter of linear JR states,
i.e., δl = δ1 or δ2 for linear JR states of the first or second
type, respectively. Suppose also that δ is the detuning of the
nonlinear JR states at the peak amplitude b0 in the case of γ .
Now we switch the sign of γ so that γ → −γ . By doing that
the detuning of the nonlinear JR states will be transformed
δ → δ

′
, and the amplitude will be changed bn → cn. In order

to have the situation when the curve representing δ/δl is
almost the mirror image of the curve representing δ′/δl with
respect to the black horizontal line in Fig. 3, one must have the
following relationship: δ/δl � 2 − δ

′
/δl . As a result, one has

δ′ � 2δl − δ. So, for the case of −γ , Eqs. (7) will now have
the following form:

−(2δl − δ)cn � −κ[cn+1 + cn−1] + (−1)nσcn + γ |cn|2cn.

(8)
Now we add Eqs. (7) to (8) and get the following equations:

δ(cn − bn) − 2δl cn

� −κ[(cn+1 + bn+1) + (cn−1 + bn−1)]

+ (−1)nσ (cn + bn) + γ (|cn|2cn − |bn|2bn). (9)

Now it is easy to see that, if we fix the peak amplitudes so
that b0 = c0 and suppose that the condition cn � bn is held
true (which is practically satisfied if the peak amplitudes are
small, i.e., when we operate in the regime close to the linear
case), then from Eqs. (9) we have:

−δl cn � −κ[cn+1 + cn−1] + (−1)nσcn. (10)

The latter equations are automatically satisfied in the regime
close to the linear case because the parameter δl in Eqs. (10)
is the detuning of the linear JR states as set above [see also
Eqs. (7) in the linear regime when γ = 0]. So, we have proved
that, when changing the sign of the nonlinear coefficient γ

and fixing all other parameters one will obtain two curves
representing relative detunings of nonlinear JR states which
are almost symmetrical with respect to the horizontal axis rep-
resenting the detuning of the linear JR states. This tendency is
held true very well when we operate in the regime close to the
linear one, i.e., when the peak amplitude |b0| of the nonlinear
JR states is small. On the contrary, this tendency will perform
worst and worst if |b0| becomes larger, because in that case
the condition bn � cn cannot be satisfied while fixing the peak
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amplitudes b0 = c0. This important feature for the relative
detuning of nonlinear JR states is universal. It is applicable not
only for JR states in the regime of Kerr nonlinearity, but also
for other types of nonlinearity, and even for other nonlinear
states based on BWAs which will be presented elsewhere.

V. CONCLUSIONS

In this work we have systematically investigated the op-
tical analogs of quantum relativistic Jackiw-Rebbi states in
interfaced binary waveguide arrays in the regime of the Kerr
nonlinearity with both self-focusing and self-defocusing me-
dia. By using the shooting method we can numerically obtain
the profiles of these nonlinear JR states which have a distin-
guishing feature that all other well-known localized nonlinear
structures (including solitons) do not possess; namely, we can
increase both their peak amplitude and transverse dimension
at the same time. We have found out that JR states with self-
focusing nonlinearity can exist in a wide range of their peak

amplitudes, whereas those with self-defocusing nonlinearity
can only exist in the low-peak amplitude regime. We have
also systematically studied the detunings of these nonlinear JR
states as functions of their peak amplitudes and demonstrated
that, by changing the sign of the nonlinear coefficient while
fixing all other parameters, one can obtain two curves for
the relative detunings of nonlinear JR states which are almost
symmetrical with respect to the axis representing the detuning
of the corresponding linear JR states. This general rule is
applicable not only for JR states with Kerr nonlinearity, but
also for other types of nonlinearity, and even for other kinds
of nonlinear localized states in binary waveguide arrays.
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