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aDivision of Mechanical Engineering, Korea Maritime and Ocean University, Busan, South Korea;
bDepartment of Aerospace Technology Engineering, Le Quy Don University, Hanoi, Vietnam;
cDivision of Logistics Engineering, Korea Maritime and Ocean University, Busan, South Korea

ABSTRACT
This paper aims to analyze the dynamic stability and build the
robust controller for motorized spindle system under paramet-
ric variations, external disturbances and measurement noises.
A nonlinear model has been established for the machine tool
spindles. The phase portrait and bifurcation analyses are pro-
vided to show dynamical behaviors for spindle machining.
The spindle operations can be dynamically stables or unstable
under parameter variations and disturbances. By using the
robust control synthesis, the system designers can shape the
frequency responses of the desired model which satisfies both
transient response and robustness against various uncertain-
ties. In fact, the robust controller can effectively attenuate
exogenous disturbances and sensor noises during machining
process. Finally, the simulations results demonstrate that the
presented controller provides robust stability for the spindle
speeds, along with excellent abilities of noise as well as dis-
turbance attenuations.

KEYWORDS
Bifurcation; CNC spindle
machine; machining
process; robust controller;
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Introduction

A high speed machining system consists of several components such as
machine tool, spindle and computer numerical control (CNC) system.
Machine tools continue to make technical advances, thanks in large part to
ongoing improvements in CNC machining. The CNC machine tools are
complex dynamical systems applied to the machining process with speed
and accuracy. One of the most essential functions in high-speed machining
is the accurate guidance of the feed drives and spindles. In fact, the electric
spindle control is the heart of the machining process. The disturbances and
noises occurring during machine process should be reduced to achieve
high accuracy and operational efficiency with desired surface roughness.
The stable operations of the machine tools are essential to guarantee the
high-quality of the finished products with low production costs. High-
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performance machining system can reduce high-risk of dynamic instability
in the process. The loss of stability results in severe vibrations in the
machining process. In turn, the machine tools can be damaged, and there
will be difficulties in achieving high processing quality. Thus, machining
stability plays a major role in enhancing improving tool performance and
product quality. Nonlinear analysis of spindle speed system is essential to
characterize the system dynamical behaviors. Based on this analysis, the
robust controller is designed to keep the cutting process stable in CNC
machine operations.
Many studies have been conducted to deal with nonlinear analysis and

building the controller of spindle system to enhance the quality of precision
products. Fuzzy control is utilized to synthesize the spindle system imple-
mentation (Liang et al., 2002; Liang et al., 2003; Haber-Guerra et al., 2006).
The number of training iterations for finding the optimal parameters could
be necessary for machining accuracy (Chiang et al., 1995; Lin and Wai,
2002; Karaye, 2009). More other approaches include intelligent adaptive
control (Altintas, 1994; Liu et al., 1999), model adaptive control (Rober and
Shin, 1996), self-tuning control (Hsu and Hsieh, 1994; Lian et al., 2006)
and dynamic analysis of spindle system (Moon et al., 2006; Altintas et al.,
2008). Due to the complexity of machining process, it is very difficult to
properly identify the spindle parameters taking into account the cutting
forces. Thus, the automatic controller is necessary to ensure high robust-
ness and high-quality surface while coping with external disturbances in
the machining process. Besides, the external disturbances and noises are
not considered in the operations of existing most spindle control systems.
Although there have been significant improvements in controlling machin-
ing processes, further progress still has to be made. Especially the effects on
parameter variations and disturbances on the product quality are still to be
studied to improve the system performance. This paper describes a system-
atic approach to analyze the nonlinear stability of spindle system consider-
ing the interaction of the machine tool, the work piece and cutting forces.
In addition, the dynamic interactions of a rotating spindle-tool and a cut-
ting work piece are considered by combining their respective transfer func-
tions. The system dynamics are examined to identify the effects of the
motor torques and the speed-dependent cutting forces. A constant diameter
work piece is modeled to analyze the stability of the spindle tool structure.
The numerical investigations are carried out to optimize the spindle speed,
especially for industrial applications. The robust controller is designed for
the spindle system to monitor the spindle speed under parameter uncer-
tainties, measurement noises and external disturbances. In addition, the
control synthesis aims to ensure the robust performance of the spindle sys-
tem with low production costs and optimal energy usage. The paper is
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organized as follows. Section 2 describes the mathematical system modeling
with cutting forces interactions. Section 3 is dedicated to analyze equili-
briums point and bifurcations of the spindle speed system. Section 4
presents the spindle controller by using robust control synthesis to guaran-
tee optimal performance. Finally, the conclusions with discussions are given
in Section 5.

Dynamical model of spindle system

For the high-speed machining process, the spindle system with the DC motor
circuit is illustrated in Figure 1. Generally, the spindle system is rotated by
adjusting the armature voltage of DC motor. The control synthesis considers
not only the spindle dynamics, but also deals with the dynamic interactions
between the spindle motions and the cutting forces. The nominal model of the
spindle system can be described in (1). In addition, the rotational dynamics
(Addasi, 2013) are described in (2–5).

TmTe
d2x
dt2

þ Tm
dx
dt

þ x ¼ kdU�k0dUm (1)

U ¼ Raia þ La
dia
dt

þ E (2)

Jm
dx
dt

¼ Me �Mt (3)

Me ¼ Cmia (4)

E ¼ Cex (5)

where: U is the applied voltage ðVÞ; Ra is the armature resistance ðXÞ; ia is
armature current ðAÞ; La is the armature inductor ðHÞ; E is motor back
electromotive force ðVÞ; x is motor angular velocity (rad/s); Me and Mt are
the motor and load torque, respectively; and Jm dx

dt is the torque acting
on load inertia Jm (kg m2).

Figure 1. Schematic diagram of spindle drive system with cutting model.
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By substituting (4) into (3), the current ia can be further written as

ia ¼ Jm
Cm

dx
dt

þ Mt

Cm
(6)

The applied voltage U can be determined by substituting (6) into (2) as follows;

LaJm
Cm

d2x
dt2

þ La
Cm

dMt

dt
þ RaJm

Cm

dx
dt

þ Ra

Cm
Mt þ Cex ¼ U (7)

Then, it can be rewritten as

LaRaJm
RaCmCe

d2x
dt2

þ RaJm
CmCe

dx
dt

þ x ¼ 1
Cm

U� 1
Cm

Ra

Cm

La
Ra

dMt

dt
þMt

� �
(8)

In addition, Te ¼ La
Ra

is armature time constant ðsÞ; Tm ¼ JmRa
CeCm

is electrical
time constant ðsÞ; kd ¼ 1

Cm
; k0d ¼ Ra

CeCm
; Cm is the coefficient of ratio between

motor torque and current; Um ¼ Te
dMt
dt þMt

� �
is the voltage components

caused by disturbance load torque; Ce is the coefficient of the ratio between
dynamic force and the rotational speed of the motor.
To determine the influence of cutting force on the motor characteristics,

the moment MðtÞ is considered in the voltage equation applied to motor,

Um ¼ Te
dMt
dt þMt

� �
. This moment can be obtained by

MðtÞ ¼ RPF ¼ RP:k:r:tc

ðt
t�T

Vcddt (9)

where Rp is the diameter of the work piece (mm); r is the pressure of the
chips on the tool face tc is a depth of cut (mm); Vcd is cutting feed (mm/s);
and k is the coefficient.
Assuming that the tool velocity is constant, (9) can be given by

MðtÞ ¼ RPF ¼ RP:k:r:tc:T:Vcd ¼ kx
x

(10)

where kx ¼ Rp:k:r:tcVcd; T ¼ 1
x is rotation period ðsÞ. Substituting (10)

into (1), the complete dynamic model of the system which takes into
account the cutting forces can be written by

TmTe
d2x
dt2

þ Tm
dx
dt

þ km
1
x
� Tedx

x2dt

� �
þ x ¼ kdU (11)

where km ¼ kx:k0d.
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Nonlinear stability analysis

In order to characterize the dynamic behaviors, the spindle model can be
described in the state-space representation. The stability characteristics are
the dynamical performance with external disturbance, which accurately
describes nonlinear system behaviors similar to bifurcation of the equilib-
rium points. Physically, for steady state handling analysis, the equilibrium
points have more information than other points in any of the phase por-
traits. A small disturbance causes sensitive for unstable equilibrium points,
and then any slight offset from the equilibrium point will lead to move
away from the equilibrium solutions.
The system stability can be analyzed into two steps: firstly, phase portrait

could be utilized by analyzing the system states around the equilibrium points.
Secondly, the bifurcation analysis will be taken into account to evaluate the
effect of multi-parameter variations on the stability of a real spindle system
through the system eigenvalues.

Equilibriums and local dynamical analysis

To obtain a state-space model, the state variables are defined as follows: x1 ¼
x and x2 ¼ x_. Then, the dynamical model described in (11) is given by( x_1 ¼ x2

x_2 ¼
1

TeTm

kmTe

x21
� Tm

� �
x2� km

TeTmx1
� 1
TeTm

x1 þ kdU
TeTm

(12)

where x1 is the spindle speed and x2 is angular acceleration. The
equilibrium points are found by setting the state derivatives to zero,( x2 ¼ 0

1
TeTm

kmTe

x21
� Tm

� �
x2� km

TeTmx1
� 1
TeTm

x1 þ kdU
TeTm

¼ 0 (13)

The equilibrium points can be obtained as follows: EQ ¼ fQ1ðx11,0Þ;
Q2ðx12,0Þ; . . . ;Qnðx1n,0Þg. To determine the system stability around
equilibrium points, the spindle model can be linearized, using the Jacobian
matrix J, as follows:

J ¼
0 1�1

TeTm
þ km
TeTmx21

� 2kmx2
Tmx31

km
Tmx21

� 1
Te

2
4

3
5 (14)

The eigenvalues of Jacobian matrix are determined as follows:

k1,2 ¼
trðJÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
trðJÞ

�2
� 4detðJÞ

r
2

(15)
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Based on the actual system equilibriums, the nonlinear dynamical
analysis will be provided for the dynamic equations (12).
The spindle dynamic model is described with the nominal values

of system parameters shown in Table 1. The rotational behaviors spindle
can be depicted using the phase plane analysis. A phase portrait for the
spindle system with cutting force k ¼ 15000(N) is shown in Figure 2a. The
equilibrium points at Q1 and Q2 can be qualitatively specified as saddle and
stable focus, respectively. The vector field analysis depicts that the state
trajectories are converging to Q1, and the curves divide into the vector plane
with many branches. All trajectories originating from the upper branches
of the Q1 will tend to the point of stable focus Q2, while all trajectories
originating from the lower branches of the Q1 will be away from Q1. Using
the nominal parameter in Table 1, the system eigenvalues will be calculated
as k1 ¼ �22:8663 and k2 ¼ 96:2654 at equilibrium point Q1ð55:554; 0Þ, and
k1,2 ¼ �11:60276j17:8359 at equilibrium point Q2ð270; 0Þ.
The dynamical behaviors due to the increasing the cutting forces are

shown in Figure 2b. Still, the equilibrium point Q1ð124; 0Þ is a saddle
point, and the point Q2ð199; 0Þ is a stable focus. However, the range of
the saddle point with the force (km ¼ 25000N) larger than that of the force
(km ¼ 15000 N). In turn, the range of the stable point is smaller than the
previous one. In case of the cutting force (km ¼ 26146:89 N), the spindle
system has only one equilibrium point Qð161:696; 0Þ, with the eigenvalues
of k1 ¼ 0:0054 and k2 ¼ �6:73, which is saddle point (161.7;0) as shown
in Figure 2c. Physically, the dynamic features of the motor are changed by
the cutting forces of the spindle system. The influence of cutting process
on the spindle features depends on the motor parameters. If the cutting
area is increased, the velocity of the spindle system shall decrease.
The torque caused by cutting process shall be increased not proportionally
but rapidly. When the load torque requires larger than the motor can
provide the power, the machine will be stopped abruptly.

Bifurcation analysis

Base on the eigenvalue analysis, the stability of the system can be
determined by two steady states: asymptotically stable equilibrium and

Table 1. The spindle model parameters.
Symbol Values Unit

Ra 1.48 X
La 0.01184 H
J 0.06 KJ m2

U 220 V
Ia 22 A
km 15000 N
Ce 0.34 V s
Cm 1.08 N m A–1
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Figure 2. Phase portraits of the spindle behaviors with cutting forces: (a) km ¼ 15000(N),
(b) km ¼ 25000 (N) and (c) km ¼ 26:146 (kN).
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a saddle point. The parameters of the spindle system are presented
in Table 1. The basic parameters that affect the stability are; Rp, k,r,T,Vcd.
Noting that, the coefficient k depends on the temperature and the speed; r
depends on changes in the cutting layer size and variations in T corre-
sponds to changes in cutting speed. In this case, parameters Rp and Vcd are
considered as constants. All the parameters (Rp, k,r,T,Vcd) are interrelated
to km both indirectly and directly and the changes to km will affect the
individual parameters. Based on the parameters of the system shown
in Table 1, the bifurcation diagram of the spindle system is illustrated
in Figure 3a which is changing with the parameter supply voltage U. In
Figure 3b the bifurcation diagram which is changing with the parameter
cutting forces km is shown. Figure 3a shows the variations of the spindle
speed with supply voltage at km¼ 0; the changes in spindle speed is stable
over the supply voltage range. The rotational speed is directly proportional
to supply voltage and hence the operation is more stable. In the case of
kdU ¼ 4km, the spindle system has one equilibrium point and the system is
unstable. In the other case, the spindle system has two equilibrium points
corresponding two brand in the phase plane. Moreover, the stability of

the over brand corresponds to the correlation
�
kdU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkdUÞ2 þ 4km

q �
=2,

represented by the solid line and instability of the under brand is

represented by
�
kdU �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkdUÞ2 þ 4km

q �
=2, indicated using the dashed

line. Figure 3b shows that, changing the cutting force parameter km,

the spindle system behavior will change. In this case, the cutting force
values ranges between; 0< 4km < kdU, which results in the system having
two equilibrium points. Of the two equilibrium points, one is stable and

the other is unstable. The stable equilibrium point corresponds to
�
kdU þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkdUÞ2 þ 4km
q �

=2 indicated in a solid line in the over brand, and the

unstable equilibrium points corresponds to
�
kdU �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkdUÞ2 þ 4km

q �
=2

shown in the dashed line in the under brand. In the others case, the system
is unstable.
Both cases in Figures 3a, b, shows two cross-sections of the phase space.

The straight lines ðA�A1Þ divide the phase plane to two regions: X1, the
region of asymptotically stable equilibrium; X2, the region of the saddle node.
The equilibrium point becomes unstable when changing parameters
such as supply voltage and cutting forces. Hence, depending on the supply
voltage, cutting forces, the features of a product’s surface can be enhanced.
Thus, the best controller which can keep the stability of cutting forces
must be considered.

8 N. N. NAM ET AL.



Robust control synthesis

Obtaining uncertainty model

Even if parametric uncertainty is difficult to be quantified, the frequency
domain analysis is particularly well suited for uncertain dynamical model.
When the complex perturbations are normalized such that |D|1 � 1,
the dynamic perturbation can be represented in form of multiplicative
input uncertainty shown in Figure 4, and it can be described

Figure 3. Bifurcation diagrams of the spindle system with parameters: (a) U and (b) km.
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as following set (
Q
):Y

: GPðsÞ
�
1þWmðsÞDmðsÞ

�
;
�
jDmðjxÞj � 1

�
,8x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

|Dm|1�1

where GðsÞ and GpðsÞ represent nominal and perturbed plants, respectively;
DmðsÞ is a stable transfer function which at each frequency is less than or
equal to 1 of magnitude. A general procedure for handling parametric
uncertainty (Skogestad and Postlethwaite, 2005) describes that a set
of dynamic models can be represented as follows:

GPðsÞ ¼ AþPk
i¼1 aiAij

C þPk
i¼1 aiCij

BþPk
i¼1 aiBi

DþPk
i¼1 aiDi

" #

where the system matrices ðA, B, C, DÞ represent the nominal model,
and the parameter uncertainty is described by scalars ai 2 ð�1, 1Þ.
The perturbed plant with uncertainty has a boundary of lmðjxÞ
at each frequency. This boundary includes the possible plant GPðsÞ 2

Q
defined by,

lmðxÞ ¼ max
Gp2P

����GpðjxÞ�GðjxÞ
GðjxÞ

���� (16)

Then the weighting function WmðsÞ is chosen to cover the boundary
lmðjxÞ that satisfies as follows:

jWmðjxÞj � lm, 8x (17)

Figure 5 illustrates the frequency responses for the boundary set of lm
and corresponding weighting function Wm. It can be seen that the
weighting functions bound all the possible perturbed models, and the
original plant GpðsÞ is covered by weighting function WmðjxÞ.

Figure 4. Uncertain dynamical model with multiplicative representation.
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H‘ control synthesis

The H1 control approach has been proved its ability to deal with
the dynamical systems with disturbances and uncertainties. As shown in
Figure 6, the plant GðsÞ has been built to account all parameters affecting
the spindle system dynamics. In this formulation, the system variables
are described as follows: tracking error e, reference r, disturbance d,
sensor noise n, measurement output y. The uncertainty at system
input represented by wm and Dm, which also accounts for unmolded
high-frequency dynamics of spindle model. The weighting function wp

has added to the system output to guarantee the performance
requirement. The controller K can be obtained by using D�K iterations

Figure 6. Complete control system with generalized plant P.

Figure 5. Bode plots of uncertainty weighting function.
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that this dynamic compensator can deal with cutting force change,
measurement noise and model uncertainty while satisfices robust
performance and stability requirements.
The generalized plant P can be written as

yDm
z

���
y

2
664

3
775 ¼ P

uDm
d
r
n

���
u

2
6666664

3
7777775 (18)

where

P ¼
0 0 0 0 j Wm

WpG Wp 0 0 j WpG
––––––––––––––––– j––––––––––
�G �I I �Wn j �G

2
664

3
775 ¼

P11 j P12
–––––j–––––
P21 j P22

2
4

3
5 (19)

In order to utilize the robust control synthesis, the closed-loop transfer
matrix N connects the generalized plant P with the controller K via a lower
linear fractional transformation (LFT). Then the LFT will be calculated as

yDm
z

	 

¼ N

uDm
w

	 

where w ¼ ½ d r n �T represent the exogenous input signals. This can be
further written as

N ¼ FlðP, KÞ ¼ P11 þ P12KðI � P22KÞ�1P21 (20)

¼ �WmTi �WmKSi WmKTi �WmWnKTi

WpGðI�TiÞ WpðI�GSiÞ WpGTi �WpWnGTi

	 

(21)

where Si and Ti are described as the sensitivity and complementary
function, respectively.
According to the l-synthesis framework, the optimal controller K are

calculated as:

|N|1 ¼ max
x

r
–
�
NðjxÞ

�
<1 (22)

where the maximum singular value r–ðNðjxÞÞ is considered to measure the
magnitude of transfer function matrix N at each frequency. Then the H1
optimal controller is obtained by

min
K

|FlðP, KÞ|1
where K is a stabilizing controller.

12 N. N. NAM ET AL.



Performance and stability analysis

Consider the uncertain system with ND - structure shown in Figure 7,
where the block diagonal perturbations satisfy |D|1 � 1. To analyze the
performance and stability, the perturbed transfer function from external
input w to output z can be evaluated by an upper LFT as follows:

M ¼ FuðN,DÞ ¼ N22 þ N21DðI � N11DÞ�1N12 (23)

According to the l-control synthesis with small gain theorem, lDðNÞ
represents the structured singular value of the system matrix N with
respects to the uncertainty D. Then, the conditions for nominal performance
ðNPÞ, robust stability ðRSÞ and robust performance ðRPÞ can be summarized
as follows (Skogestad and Postlethwaite, 2005):

NS () NðinternallyÞ stable (24)

NP () r
– ðN22Þ ¼ lDp

ðN22Þ< 1, 8x and NS (25)

RS () lDðN11Þ< 1, 8x and NS (26)

RP () lDðNÞ< 1, 8x; D ¼ D 0
0 Dp

	 

, and NS (27)

where D is a block-diagonal matrix, and Dp is a full complex matrix
representing H1 performance specification.
Figure 8 illustrates the structured singular value curves for the closed-loop

systems with controller K. It is shown that NP¼ 0.143, RS¼ 0.139 and
RP¼ 0.139. Thus all stability and performance tests have been passed by
checking the requirements specified above. Figure 9 shows that the worst case
performance degradation of the weighted sensitivity function is described
as the size of uncertainty. Based on the performance analysis, the controller K
will stabilize the perturbed plant with ensuring robust performance.

Test results and discussions

The robust controller is designed to cope with parameter uncertainties,
noises and disturbances. It is noted that the cutting force km is severely

Figure 7. General configuration for control synthesis and ND - structure for control analysis.
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changing during machining. Thus, the influence cutting force will be
attenuated on motor spindle system by using robust controller. In fact, all
spindle parameters shown in Table 1 are subjected to parameter variations
during machining. For the robust control synthesis, a set of suitable weight-
ing functions should be selected to guarantee the design specifications given
by (22). From the system responses illustrated in Figure 10, it can be
observed that there are small performance differences between the three
spindle models: minimum model, nominal model and maximum model.
All the responses are fast enough with rising times less than 2 s, and
there exists no overshoot with the nominal model and minimum model.

Figure 9. Performance degradation against magnitude of uncertainty.

Figure 8. Structured singular value plot with robust controller.
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Even the overshoot of the maximum model is approximately 7%. Also,
the control activity shows that increasing the control signal will increase
the velocity and decreasing the control signal will reduce the velocity.
The angular acceleration of spindle system is shown in Figure 11,

where the spindle speed has direct effects on acceleration.
In the actual machining process, the measured outputs are always

contaminated by sensor noises. The distorted signals by noises often occur
in high-frequency ranges. The controller should effectively eliminate the
distorted noises to ensure robust system performance. As illustrated
in Figure 12, it can be observed that 93% of noises in the spindle system

Figure 10. Transient responses for the spindle speed with robust controller.

Figure 11. Transient responses for the spindle acceleration with robust controller.
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successfully removed. This means that the robust controller can provide
safe machining operations for the spindle system under large distortions
caused by noises.
In addition, the major emphasis is on the ability of the disturbance

attenuation of the robust control system, while the ability to follow
reference signals is the primary concern. Figure 13 shows that the cutting
forces with tool vibrations and temperature effects are all lumped into exogen-
ous disturbance vector d to the spindle system. The cutting process causes tool
vibrations and machine chattering that degrade part surface quality and even-
tually damage machine tools. One of approaches is to design the powerful

Figure 12. Time-domain system responses due to sensor noises with robust controller.

Figure 13. Time-domain system responses due to disturbances with robust controller.
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controller to handle external disturbances. In addition to the reference inputs,
the assumed disturbances have been applied to real machining processes.
Specifically, the disturbance in angular velocity from 50 rad/s by a magnitude
of 10 rad/s to 40 rad/s occurred over a response time of 7 s. Also, increasing
the disturbance will automatically increase the signal control and vice versa.
Constant disturbance results in constant signal control. This consequently
results in a robust and powerful controller that can minimize disturbance and
maintain stable operation for the spindle system. Figure 13 depicts that at least
95% of disturbance is effectively eliminated in transient state and the disturb-
ance is completely removed in steady-state. It is also worth noting that the
motion fluctuations occur in a very short time. Hence, the spindle system is
under control and stable even against large disturbance.
Given the nominal values of the model parameters in Table 1, the con-

trolled system can effectively cope with those parameter changes by decreasing
influence of the cutting force on the properties of the spindle system, resulting
in good quality operation and excellent performance capabilities.

Conclusions

This paper deals with the dynamical analysis and robust control synthe-
sis for spindle machining system. For the given nonlinear model, the
vector field diagrams have been provided for qualitative information of
the spindle speed dynamics. The stability analysis with bifurcation dia-
gram is given for exploring dynamical behaviors of the spindle system.
The linearization model around equilibrium points has been obtained
for synthesizing robust controller. In general, designing spindle control
system is very a challenging problem due to its parameter uncertainty
and exogenous inputs (disturbances and sensor noises). The robust con-
troller has been successfully designed to cope with these difficulties for
guaranteeing optimal spindle operations. By using multiplicative uncer-
tainty description, the parametric uncertainty can be modeled in the
general form, which captures both high frequency unmolded dynamics
and physical parameter variations. The time-domain responses are pro-
vided by measuring rise time, peak time, maximum overshoot and set-
tling time, especially, with the rise time of less than 2 s. The
comprehensive test results show that the robust controller can attenuate
approximately 100% of external disturbances and sensor noises in the
steady-state, guaranteeing robust machining operations. Based the com-
plete analyses on dynamic behaviors, model optimization and the robust
control synthesis, this work provides remarkable contributions on plant
monitoring. Finally, the presented control approaches are considered as
essential to safe and reliable process operations of machine tools.

MACHINING SCIENCE AND TECHNOLOGY 17



Funding

This research was supported by a grant (17LRP-B079281-04) from
Transportation & Logistics Research Program funded by Ministry of Land,
Infrastructure and Transport of Korean government.

References

Addasi, E.S. (2013) Modelling and simulation of DC motor electric drive control system
with variable moment of inertia. ACEEE International Journal on Electrical and Power
Engineering, 4(1): 52–57.

Altintas, Y. (1994) Direct adaptive control of end milling process. International Journal of
Machine Tool & Manufacture, 34(4): 461–472.

Altintas, Y.; Eynian, M.; Onozuka, H. (2008) Identification of dynamic cutting force coeffi-
cients and chatter stability with process damping. CIRP Annals Manufacture Technology,
57(1): 371–374.

Chiang, S.T.; Liu, D.I.; Lee, A.C.; Chieng, W.H. (1995) Adaptive control optimization in
end milling using neural network. International Journal of Machine Tools and
Manufacture, 35(4): 637–660.

Haber-Guerra, R.; Liang, S.Y.; Alique, J.R.; Haber-Haber, R. (2006) Fuzzy control of spindle
torque in high-speed milling processes. Journal of Manufacturing Science & Engineering,
128(4): 961–969.

Hsu, P.L.; Hsieh, M.Y. (1994) Applications of self-turning control on industrial CNC
machines. International Journal of Machine Tool & Manufacture, 34(6): 859–877.

Karaye, D. (2009) Prediction and control of surface roughness in CNC lathe using artificial
neural network. Journal of Materials Processing Technology, 209(7): 3125–3137.

Lian, R.J.; Lin, B.F.; Huang, J.H. (2006) Self-organizing fuzzy control of constant cutting
force in turning. The International Journal of Advanced Manufacturing Technology,
29(5): 436–445.

Liang, M.; Yeap, T.; Hermansyah, A.; Rahmati, S. (2003) Fuzzy control of spindle torque
for industrial CNC machining. International Journal of Machine Tools and Manufacture,
43(14): 1497–1508.

Liang, M.; Yeap, T.; Rahmati, S.; Han, Z. (2002) Fuzzy control of spindle power in milling
processes. International Journal of Machine Tools and Manufacture, 42(14): 1487–1496.

Lin, F.J.; Wai, R.J. (2002) Adaptive fuzzy neural network control for induction spindle
motor drive. IEEE Transaction on Energy Conversion, 17(4): 507–513.

Liu, Y.; Zuo, L.; Wang, C. (1999) Intelligent adaptive control in milling processes.
International Journal of Computer Integrated Manufacturing, 12(5): 453–460.

Moon, J.D.; Kim, B.S.; Lee, S.H. (2006) Development of the active balancing for high speed
spindle system using influence coefficients. International Journal of Machine Tools and
Manufacture, 46(9): 978–987.

Rober, S.J.; Shin, Y.C. (1996) Control of cutting force for end milling processes using an
extended model reference adaptive control scheme. Journal of Manufacturing Science and
Engineering, 118(3): 339–347.

Skogestad, S.; Postlethwaite, I. (2005) Multivariable feedback control analysis and design,
2nd edn. John Wiley & Sons Ltd, England.

18 N. N. NAM ET AL.


	Abstract
	Introduction
	Dynamical model of spindle system
	Nonlinear stability analysis
	Equilibriums and local dynamical analysis
	Bifurcation analysis

	Robust control synthesis
	Obtaining uncertainty model

	H∞ control synthesis
	Performance and stability analysis

	Test results and discussions
	Conclusions
	Funding
	References


