
Simplified Variable Node Unit Architecture for

Nonbinary LDPC Decoder

1st Huyen Pham Thi

National Laboratory of Information Security

Ha Noi, Viet Nam

phamhuyenmta87@gmail.com

2nd Cuong Dinh The

National Laboratory of Information Security

Ha Noi, Viet Nam

cuongdt@mta.edu.vn

3rd Nghia Pham Xuan

Le Quy Don Technical University

Ha Noi, Viet Nam

nghiapx@mta.edu.vn

4th Hung Dao Tuan

National Laboratory of Information Security

Ha Noi, Viet Nam

daotuanhung@gmail.com

5th Hanho Lee

Dept. Information and Communication Engineering

Inha University

Incheon, Korea

hhlee@inha.ac.kr

Abstract—Nonbinary low-density-parity-check (NB-LDPC)
code outperforms their binary counterpart in terms of error-
correcting performance and error-floor property when the code
length is moderate. However, the drawback of NB-LDPC de-
coders is high complexity and the complexity increases consid-
erably when increasing the Galois-field order. In this paper, a
simplified basic-set trellis min-max (sBS-TMM) algorithm that
is especially efficient for high-order Galois Fields, is proposed
for the variable node processing to reduce the complexity of the
variable node unit (VNU) as well as the whole decoder. The
decoder architecture corresponding to the proposed algorithm
is designed for the (837, 726) NB-LDPC code over GF(32).
The implementation results using 90-nm CMOS technology
show that the proposed decoder architecture reduces the gate
count by 21.35% and 9.4% with almost similar error-correcting
performance, compared to the up-to-date works.

Index Terms—NB-LDPC, Basic-set, Trellis min-max, VLSI
design

I. INTRODUCTION

Nonbinary low-density parity-check (NB-LDPC) codes,

which are defined over Galois Fields GF(q) (q > 2), outper-

form their binary counterpart in terms of error-correcting per-

formance, burst error correction capability, and performance

improvement in the error-floor region when the code length is

moderate [1]. Nonetheless, the NB-LDPC decoding algorithms

require complex computations, and their architectures have

very high complexity and large memory requirements.

For practical NB-LDPC decoder implementations, subop-

timal algorithms such as extended min-sum (EMS) [2] and

the min-max [3] algorithm have been proposed to reduce

the complexity of the CNU as the main bottleneck of the

NB-LDPC decoder. Recently, the relaxed trellis min-max (R-

TMM) algorithm [4] has been proposed to improve both

the throughput and the complexity. The R-TMM algorithm

introduced the trellis representation and the minimum basis

for check node processing to remove computing the forward-

backward messages in [3]. However, the check node process-

ing is sequentially processed which requires a large number

of clock cycles. In [5], a simplified trellis min-max (STMM)

algorithm was proposed to improve the throughput of the min-

max decoders with less complexity by means of an extra

column inserted to the original trellis. In this work [5], q× dc
check node output messages are exchanged between the check

node and the variable nodes. For high-order GFs or high-

rate NB-LDPC codes, the amount of exchanged messages

increases and the memory requirement is large, which limits

the maximum throughput of the decoders and leads to a

significant increase in the decoder area.

To overcome the above drawbacks, the work in [6] pro-

posed to simplify the CNU architecture and reduce the ex-

changed messages with the almost similar error-correcting

performance. In [7], the approximated TMM algorithms are

introduced to further decrease the number of intrinsic infor-

mation at the cost of some error-correcting performance loss.

In [8], a basic-set trellis min-max (BS-TMM) algorithm, which

is especially efficient for high-order Galois Fields, has been

introduced to reduce the exchanged messages to a factor of

log2q with a negligible performance loss.

In this paper, a simplified basic-set trellis min-max (sBS-

TMM) algorithm is proposed for the variable node processing

to further reduce the decoder complexity with the almost

similar error-correcting performance, compared to the existing

decoding algorithm. The decoder architecture of a (837, 726)

NB-LDPC code over GF(32) was performed using the sBS-

TMM algorithm to demonstrate the efficiency of the proposal.

II. REVIEW OF NB-LDPC DECODING ALGORITHM

A. NB-LDPC codes

NB-LDPC codes, which are a kind of linear block code, are

defined by a sparse parity-check matrix H having M rows and

N columns. Let hmn be a nonzero element of the matrix H that

belongs to the GF(q = 2p). Let dv and dc be the variable node

degree and the check node degree of matrix H, respectively.

A regular NB-LDPC code is considered in this paper with the

fixed values of dc and dv .
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Algorithm 1 Layered Decoding Algorithm [8]

Input: Ln(a)= ln(Pr(cn = zn|channel)/Pr(cn = a|channel))
Q1,0

n (a) = Ln(a); R
0
mn(a) = 0; k = 1

1: while k ≤ Imax do

2: for l = 1 to M do

3: Rk−1,l
mn (a) = DN {z∗n, E(a), B∗}

4: Q̃k,l
mn(a) = Qk,l−1

n (hmna)−Rk−1,l
mn (a)

5: Q̃k,l
mn = mina∈GF (q)(Q̃

k,l
mn(a))

zn = argmin(Q̃k,l
mn(a))

6: Qk,l
mn(a) = Q̃k,l

mn(a)− Q̃k,l
mn

7: {z∗n, E(a), B∗} = BS-TMM {Qk,l
mn(a), zn}n∈N(m)

8: Rk,l
mn(a) = DN {z∗n, E(a), B∗}

9: Qk,l
n (h−1

mna) = Qk,l
mn(a) + Rk,l

mn(a)
10: end for

11: end while

Output: c̃n = argmin(Qk,l
n (a))

B. NB-LDPC Decoding Algorithm

Algorithm 1 presents the layered basic-set trellis min-max

(BS-TMM) decoding algorithm for the NB-LDPC codes [8].

Symbols cn and zn define the n-th reference symbol of a

received codeword and the n-th hard-decision symbol with the

highest reliability, respectively. Starting the decoding process

is implemented by obtaining the log-likelihood ratio (LLR)

vectors Ln(a) with a size of q that are the channel information.

At the first layer of the first iteration, the a posteriori

information as Qn(a) corresponding the variable node n is

equal to Ln(a). The check node to variable node (C2V)

messages Rmn(a) are equal to zero. k and l define the loop

index for k-th iteration and the layer index for l-th layer,

respectively. In addition, the decompression network (DN) in

step 3 and step 8 is implemented in the variable node processor

to generate the C2V messages Rmn(a) from outputs of the

CNU architecture. It is noted that two DNs are required in the

variable node processor. However, the proposed decoder area

is much lower than that of the conventional decoders [5], [9].

Then, the variable node to check node (V2C) messages

Q̃mn(a) are calculated from the Qn(a) messages permuted

using the nonzero element hmn of matrix H, as shown in

step 4. The normalization of V2C messages are performed

in step 5 and 6. Step 7 presents the computation of the

basic-set messages and the information used to update the

C2V messages using the BS-TMM function applied for the

check node processing. Step 9 calculates the updated messages

Qn(a), which is undergone the reverse permutation before

processing a new layer. The decoding process is repeatedly

implemented until the maximum number of iteration Imax

is reached. Finally, the output codeword c̃n(a) is the most

reliable symbol corresponding to Qn(a) message.

C. Basic-set Trellis Min-Max Algorithm

In this section, the BS-TMM algorithm [8] is illustrated as

Algorithm 2. Without loss of generality, the Galois-field GF(q)

with q = 2p including q elements such as {0, α0, α1, ..., αq−2}

Algorithm 2 Basic-Set TMM Algorithm [8]

Input: Qmn, zn = argmina∈GF (q) Qmn(a); ∀n ∈ N(m)
1: ∆Qmj(η = a⊕ zj) = Qmj(a); (0 ≤ j < dc)

2: β =
∑dc−1

j=0 zj ∈ GF (q)

3: {m1(a), Icol(a),m2(a)} = Ψ{∆Qmk(a)|
dc−1
k=0 }

4: B∗ = {m1∗l , I
∗
l , a

∗
l }1≤l≤p = Φ{m1(a), Icol(a)}1≤a<q

5: E(a) =

{

m2(a) if a = a∗l (1 ≤ l ≤ p)
m1(a) otherwise

Output:







B∗

E(a)
z∗n = zn ⊕ β

is considered in our work. For each Galois-field GF(2p), any

field element is uniquely represented by the linear addition of

p independent field elements. To take advantage of this, a set

of only p = log2q independent field elements with the smallest

LLRs, called the basic set B∗, are generated in the check node

processing. Then, construction of the ∆Q(a) is implemented

in the variable node processing based on the basic set B∗.

The first step transforms the input messages from the normal

domain Qmn(a) to the delta domain ∆Qmn(a) to ensure that

the most reliable symbols are always in the first index corre-

sponding to the GF symbol 0, and the rest of the indexes are in

order of {α0, α1, ..., αq−1}. Step 2 relates to the computation

of the syndrome β using the most reliable symbols zn from

V2C messages. In step 3, the first minimum value m1(a),
its column index m1col(a), and the second minimum value

m2(a) for each trellis row are calculated using the function

Ψ. Step 4 computes the basic set B∗ = {m1∗l , I
∗
l , a

∗
l }1≤l≤p

including 3×p values (p LLR values, p column indexes, and p

field elements), based on the minimum values m1(a) and their

column indexes Icol(a) (1 ≤ a < q). Finding the basic set B∗

is given by the Φ function in Algorithm 2. Step 5 calculates the

complement values in set E(a). The complement values for p

field elements, which belong to the basic-set B∗, are assigned

to the second minimum values m2(a). For the remaining field

elements, the ones are assigned to the minimum values m1(a).
Finally, the output of the check node processing includes three

sets B∗, E(a), and z∗n, which are used for generating the C2V

messages in the variable node processing.

III. SIMPLIFIED BASIC-SET TRELLIS MIN-MAX

DECODING ALGORITHM

A. Simplified Basic-set Trellis Min-Max Decoding Algorithm

In the variable node processing, Algorithm 3 shows the

simplified extra column construction ∆Q(a) that the ∆Q(a)
and the path information d(a) are calculated based on the basic

set B∗ as one of output sets of the check node processing. For

p field elements, which belong to the basic set B∗, the ∆Q(a)
value is the most reliable LLR m1∗l , and the path information

d(a) has one deviation at the column index I∗l with 1 ≤ l ≤ p.

From our observation, a proximate approach is proposed

for calculation of the remaining field elements. In [8], the

remaining field elements are computed on the basis of all
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Algorithm 3 Simplified Extra Column Construction ∆Q(a)

Input: B∗ = {m1∗l , I
∗
l , a

∗
l }1≤l≤p;

1: for a = 1 to q − 1 do

2: if a = a∗l (1 ≤ l ≤ p) then

3: ∆Q(a) = m1∗l ;

d(a) = {I∗l }
4: else if a = a∗1 ⊕ a∗2 ⊕ ...⊕ a∗s(2 ≤ s ≤ p) then

5: ∆Q(a) = m1∗p;

d(a) = {I∗1 ∪ I∗2 ∪ ... ∪ I∗s }
6: end if

7: end for

possible combinations of the field elements in the basic set

B∗. Their ∆Q(a) values are the maximum LLR value from

the LLR values corresponding to the combined field elements

as ∆Q(a) = max(m1∗1,m1∗2, ...,m1∗s) with (2 ≤ s ≤ p),
and their path information d(a) has more than one deviation

and a maximum of p deviations. It is remarked that there are

(q−1)−p remaining field elements, which are generated on the

basic of combinations of the p field elements in the basic set

B∗. For each remaining field element corresponding to each

combination, ∆Q(a) value is the maximum LLR value from

the LLR values of the combined field elements. Furthermore,

the number of possible combinations including the last field

element a∗p is the largest in comparison to the other field

elements in the basic set. It is clear that the LLR value m1∗p
corresponding to the last field element a∗p accounts for a larger

factor than other field elements. Therefore, in this work, an

approximate method is proposed to assign the LLR value of

the last field element m1∗p to the LLR values of the remain

field elements in the extra column ∆Q(a), as shown in Step

5 of Algorithm 3.

For example, in GF(8), the basic set B∗ consists of three

field elements such as {a∗1, a
∗
2, a

∗
3}. Other nonzero field ele-

ments are constructed as ∆Q(a∗1 ⊕ a∗2) = max(m1∗1,m1∗2) =
m1∗2; ∆Q(a∗1 ⊕ a∗3) = max(m1∗1,m1∗3) = m1∗3; ∆Q(a∗2 ⊕
a∗3) = max(m1∗2,m1∗3) = m1∗3; ∆Q(a∗1 ⊕ a∗2 ⊕ a∗3) =
max(m1∗1,m1∗2,m1∗3) = m1∗3. It is obvious that most of LLR

values of the remaining field element in the extra column are

equal to m1∗3 that is the LLR value of the last field element

in the basic set. Thus, in this work, m1∗3 value is assigned to

∆Q(a) values of the all remaining field elements.

B. Performance Analysis

To demonstrate the error-correcting performance of the sBS-

TMM decoding algorithm, Fig. 1 illustrates the frame error

rate (FER) performance for (837, 726) NB-LDPC code over

GF(32) with dv = 4 and dc = 27 under the additive white

Gaussian noise (AWGN) channel and binary phase shift keying

(BPSK) modulation. As shown in Fig. 1, the floating-point

simulation result of the sBS-TMM algorithm with 15 itera-

tions shows the almost similar error-correcting performance,

compared to the BS-TMM algorithm [8], and a performance

loss at almost 0.1 dB, compared to the two-extra-column

TMM (TEC-TMM) algorithm [6] and the STMM algorithm
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Fig. 1. FER performance of the (837, 726) NB-LDPC code over GF(32)
under the AWGN channel at 15 iterations.

Fig. 2. Top-level NB-LDPC decoder architecture based on the sBS-TMM
algorithm [8].

[5]. Because the proposed sBS-TMM algorithm discards the

computation of the ((q− 1)− p) values of the remaining field

elements in the extra column ∆Q(a), the decoder architecture

corresponding to the sBS-TMM algorithm obtains a low com-

putational complexity, a large area reduction, and a significant

improvement in throughput.

IV. REDUCED-COMPLEXITY DECODER ARCHITECTURE

Fig. 2 shows the top-level decoder architecture for the

proposed layered decoding algorithm, where one row of H

corresponding to one layer is processed in one clock cycle.

It can be seen that the decoder architecture is divided into

a variable node processor and check node processor. The

decoding process and modules such as permutation P, de-

permutation P−1, and normalization N are similar to the ones

in [8]. It is remarked that the decompression network (DN)

corresponding to Algorithm 3 is implemented in the variable

node processor to generate the C2V messages Rmn(a) from

outputs of the CNU architecture.

Fig. 3 shows the proposed C2V generator in the DN module,

which is based on the sBS-TMM algorithm for each C2V

message vector in GF(8). Since the extra-column constructor

is eliminated, the complexity of the proposed C2V generator
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Fig. 3. Proposed C2V generator based on sBS-TMM algorithm for GF(8).

TABLE I
IMPLEMENTATION RESULTS OF THE PROPOSED DECODER FOR THE (837,

726) NB-LDPC CODE OVER GF(32) IN A 90-NM CMOS PROCESS

Algorithm
RMM T-MM BS-TMM sBS-TMM

[4] [7] [8] [proposed]

Report Syn.
Post- Post-

Syn.
layout layout

Quantization 5 bits 6 bits 5 bits 5 bits

Gate count
871K 1.06M 756K 685K

(NAND)

fclk (MHz)
200 345 393 397

(Synthesis)

Iterations 8 8 8 8

Throughput
154 1071 1261 1264

(Mbps) (Layout)

Efficiency
176.8 1010.4 1668 1845

(Mbps/M gates)

is significantly reduced. For three field elements in the basic

set, the C2V messages are either the LLR values in the basic

set or the complement values E(a), which depend on the

path information. It is clear that for remaining field elements,

the C2V messages are either the LLR value of the last field

element in the basic set as m1∗3 or the complement values

E(a).

V. COMPLEXITY AND COMPARISON

In this work, the (837, 726) NB-LDPC code over GF(32)

is constructed by the submatrix (dv, dc) = (4, 27) and a CPM

of size (q − 1) × (q − 1) [10]. To illustrate the efficiency

of our proposal for NB-LDPC codes, the complete decoder

architectures were implemented for (837, 726) NB-LDPC code

over GF(32). The synthesis results of the proposed decoder

for the (837, 726) NB-LDPC code and the comparison with

previous works are presented in Table I. It can be seen that

the proposed decoder reduces the gate count by 35.38% and

achieves almost twice times higher efficiency, compared to the

work from [7]. Compared to the works with using the basic

sets of the reliable messages [4], [8], the proposed decoder

improves not only the gate count but also the throughput

because of a significant reduction of the complexity in the

VNU as well as the whole decoder architecture. Therefore,

the proposed decoder reduces the gate count by 21.35% and

9.4%, respectively. Moreover, the proposed decoder exhibits

almost 10.61% higher efficiency, compared to the work in [8].

VI. CONCLUSION

In this paper, a simplified BS-TMM algorithm is proposed

for the NB-LDPC codes to reduce the decoder complexity. The

decoder architecture corresponding to the proposed algorithm

is designed to demonstrate the efficiency of the proposal.

The implementation results show a gate count reduction of

35.38% and 21.35% with the almost similar error-correcting

performance.
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