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a b s t r a c t 

A 5-axis CNC machine is similar to two cooperating robots, one robot carrying the workpiece and one robot 

carrying the tool. The 5-axis CNC machines are designed in a large variety of kinematic configurations and 

structures. Comparing different 5-axis kinematic configurations plays an important role in machine selection 

and optimal machine design. In this sense, the present study proposes a new mathematical model to analyze 

and compare the kinematic performances of the 5-axis machines. First, a generalized kinematic chain of 5-axis 

machine is treated as a unified kinematic chain of two collaborative robots in order to formulate a generalized 

differential kinematics model of the machines. Second, four important properties of the kinematics model are 

proved in a generalized case so that quantitative parameters characterizing the kinematic performances of the 

machines can be evaluated effectively. Last, six typical groups of 5-axis CNC configurations are compared through 

the evaluated parameters. In addition, it has been shown that, by using the properties of the kinematics model, 

the forward and inverse kinematic equations for the rotary axes of any 5-axis machine can be formulated in an 

effective and simplified manner that could be useful for developing the postprocessors for any 5-axis machine. 
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. Introduction 

Recently, 5-axis CNC machining has been one of the most modern
nd effective material removal technologies used in manufacturing in-
ustries. The 5-axis CNC machines have been used for machining typical
omplex parts such as molds, turbine blades, automotive and aerospace
arts whose geometries are typically defined by complex surfaces. 

A 5-axis CNC machine is similar to two cooperating robots [1] , one
obot carrying the workpiece and one robot carrying the tool. Fig. 1
hows the structure and kinematic chain diagrams of a 5-axis CNC ma-
hine Maho 600e. 

A typical 5-axis mechanism consists of three prismatic joints (trans-
ational axes) X, Y and Z, and two revolute joints (rotary axes) AB, AC or
C. The three translational axes X, Y and Z represent the three orthog-
nal movements along with three axes of a machine coordinate system
a Cartersian coordinate system fixed to the machine base) whose Z axis
s always coincides with the tool axis of a machine . The rotary axes
, B and C characterize the rotations of the machine table or the ma-
hine spindle head around the axis X, Y and Z of the machine coordinate
ystem, respectively. Note that when a rotary axis whose centerline is
arallel with one of the axes X, Y and Z is called the orthogonal rotary
xis. In contrast, if the centerline of a rotary axis is inclined at an angle,
t is called the non-orthogonal rotary axis. 
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Theoretically, by taking into account the order of joints, there will be
! possible combinations of joint sequence for each type of 5-axis mech-
nism. Furthermore, each combination of joint sequence has 6 possible
onfigurations that consist of two cooperative kinematic chains. Con-
equently, the number of possible configurations of 5-axis mechanism
s 3 ×5!x6 = 2160. However, in practice, the rotary axes of a machine
re usually implemented nearest either to the workpiece or to the tool.
herefore, the number of the possible configurations of each machine
ype is reduced to six: (i) two configurations consisting of both revolute
oints on the workpiece carrying chain (e.g. XYZAB and XYZBA), (ii)
wo configurations consisting of both revolute joints on the tool carry-
ng chain, and (iii) two configurations consisting of one rotary axis on
he tool carrying chain and one rotary axis on the workpiece carrying
hain. As a consequence, the number of feasible configurations of 5-axis
echanism is recalculated as 3 ×6 ×6 = 108. 

It is clear that the 5-axis machines can be designed in a large variety
f kinematic configurations and structures. Therefore, comparison of
he machines plays an important role in selecting suitable machines for
pplications in manufacturing industries and in developing new 5-axis
NC machines. 

In recent years, some efforts have been taking place to synthesize,
nalyze and compare multi-axis CNC machines [3,1,4] . Yan and Chen
3] presented a general method to generate all possible configurations
st 2019 
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Fig. 1. The 5-axis CNC machine Maho 600e [1,2] . 
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f machining centers which have up to seven DOFs. Bohez [1] clas-
ified, in general, the 5-axis machines into four main groups and in-
estigated their advantages and disadvantages. However, these inves-
igations have not discussed about the kinematic performances of the
achines yet. Tutunea-Fatan and Bhuiya [4] compared the 5-axis CNC
achines through the nonlinearity errors. However, this study mainly

ocused on the 5-axis machine type with two orthogonal rotary axes im-
lemented on the spindle head only. Comparison of the 5-axis machines
ith respect to important kinematic characteristics such as the manipu-

ability of a machine and the flexibility of the tool-workpiece orientation
as been overlooked. Note that the manipulability of a machine and the
exibility of the tool-workpiece orientation play an important role in
omparing the performances of the 5-axis CNC machines. The manipu-
ability of a machine characterizes the tendency of changes in dexterity
haracteristics along with the variance of the motion of the axes, and
t indicates of how close the machine configuration is to the singular-
ty. The flexibility of the tool-workpiece orientation implies how and
nder which angle the tool can orient relative to the workpiece in the
orkspace of a machine. The more the manipulability and the flexibility
f the tool-workpiece orientation of a machine are, the more complex
arts the machine can machine with a high performance. A 5-axis ma-
hine of high dexterity is capable of machining complex parts consisting
umerous sculptured surfaces with reduced setup times so that it can in-
rease the productivity of a manufacturing system. 

To compare the kinematic performances of the 5-axis machines effec-
ively, a generalized differential kinematics model of the machines is of-
en required. However, most of the previous investigations on the kine-
atic modeling of 5-axis machine mainly focused on individual types of

he machines. 
Decades ago, there have been efforts working on the kinematic mod-

ling of the 5-axis machines with two orthogonal rotary axes. Xu et al.
5] analyzed the 5-axis kinematics model with the purpose of minimiz-
ng the angular acceleration of the rotary axes. Munlin et al. [6] and
unlin and Makhanov [7] focused on a kinematics model of the 5-axis
achine Maho 600e when investigating the optimization of the cutter

otations near singular points. Lee and She [8] formulated kinematic
quations for the table- tilting machines, the spindle - tilting machines
nd the table/spindle - tilting machines. Xu et al. [9] developed a kine-
atics model incorporated with the tool inclinations for the machine
ype XYZAC. Farouki et al. [10] investigated the optimal tool orienta-
ion control with the use of the inverse kinematics for the rotary axes AC
n the workpiece carrying chain, and AB on the tool carrying chain. Lav-
rnhe et al. [11] concentrated on the kinematic behavior of the Mikron
illing center (XYZAC). Wu et al. [12] and Yun et al. [13] investigated

he kinematic modeling of individual 5-axis machines with both orthog-
nal rotary axes. With the purpose of postprocessor development, Jung
t al. [14] and, Boz and Lazoglu [15] formulated the kinematic equa-
ions for the table-tilting type 5-axis machines as well. 

In recent years, there have also been some studies that focused on
he kinematic modeling of the 5-axis machines which consist of non-
rthogonal rotary axes. My [2] and, My and Bohez [16] investigated a
inematics model of the nutating table 5-axis machines DMU 50e and
MU 70e for the postprocessor development and the kinematic error
inimization. Sørby [17] and, She and Huang [18] studied the forward

nd inverse kinematic equations for the nutating table and nutating spin-
le 5-axis machines also. Liu et al. [19] formulated the kinematic equa-
ions with the purpose of identification of geometric errors of rotary
xes in 5-axis machine tools with non-orthogonal rotary axes on the ta-
le. Wang et al. [20] investigated the kinematic modeling of a 5-axis
NC machine with one orthogonal rotary axis on the table and one non-
rthogonal rotary axis on the tool chain. 

Apart from the aforementioned works, there have been attempts that
mphasized on the generalization of the kinematics model for the 5-axis
NC machines [21–25] . She and Lee [25] proposed a postprocessor for
eneral 5-axis machines, using the kinematics module, which added two
otary movements on the workpiece table and two rotary movements on
he spindle. Tutunea-Fatan and Feng [24] derived a general coordinate
ransformation matrix for all 5-axis machines with two rotary axes. The
odel was then used to verify the feasibility of the two rotary joints
ithin the kinematics chain of three main types of 5-axis CNC machines.
he and Chang [22] did further research on the basis of [23] by extend-
ng the inverse kinematics solution for translational motions in a unified
orm. Yang and Altintas [23] , and Liu et al. [21] presented a generalized
inematics model using Screw theory. Note that the kinematic equations
roposed in [25,22] were expressed in terms of seven generalized co-
rdinates since two more revolute joints were added on the kinematic



C.A. My and E.L.J. Bohez International Journal of Mechanical Sciences 163 (2019) 105117 

c  

[  

t  

5  

t  

m
 

a  

t  

m  

m  

n  

g  

i  

r  

b  

e  

t  

t  

f  

w  

m  

t  

m  

i  

a  

a  

w

2

m

 

i  

C  

e  

t  

t
 

p  

m  

t  

c  

g  

F
 

n
i  

a  

s  

m  

O  

O

 

e  

t

𝐇

w  

t  

t  

r  

r  

Fig. 2. A general kinematic diagram of the 5-axis CNC machines. 
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hain of a general 5-axis CNC mechanism; the kinematic equations in
21,23] were represented in the form of a product of exponential func-
ions. With the purpose of comparing the kinematic efficiency of the
-axis CNC machines, the use of such kinematics models to formulate
he differential kinematic equations and evaluate the kinematic perfor-
ances of a general 5-axis configuration is challenging. 

The above raised critical issues lead to the motivations of developing
 new method to evaluate and compare the kinematic performances of
he 5-axis CNC machines. In this paper, a generalized differential kine-
atics model of the 5-axis CNC machines is formulated, where a general
echanism of 5-axis CNC machines is treated as a closed loop mecha-
ism of two cooperating robot arms. Four important properties of the
eneralized kinematics model of the 5-axis CNC machines are proved
n a generalized case so that the manipulability index, the non-singular
ange of the five joint variables, the dexterity index, the condition num-
er, and the non-linear kinematic error of the machines can be evaluated
ffectively. Based on such the evaluation of the indicators, six typical
ypes of 5-axis CNC configurations are compared. It was demonstrated
hat, with the four important properties proved, the kinematics model
ormulated in this study is advantageous and effective when compared
ith the previous models. It was also shown that the comparison of the
achines is useful when selecting suitable machines for given applica-

ions, especially when analysing new conceptual designs of a 5-axis CNC
achine. In addition, by using the properties of the proposed kinemat-

cs model, the inverse kinematic equations for any 5-axis CNC machines
re derived in a simplified and generalized manner. This is very useful
nd effective when working on the kinematic performance analysis as
ell as the postprocessor development for any 5-axis CNC machines. 

. Formulation of a generalized kinematics model of the 5-axis 

achines 

In this section, the kinematic equations at position level and veloc-
ty level are formulated for a generalized kinematic chain of the 5-axis
NC machines. In particular, four important properties of the kinematic
quations are proved. These useful properties will be taken full advan-
ages when evaluating and comparing the kinematic performances of
he 5-axis CNC machines. 

Let us consider a general 5-axis mechanism that consists of three
rismatic joints (X, Y and Z) and two revolute joints (AB/AC/BC). This
echanism is a type of 5 DOFs closed-loop mechanism which is syn-

hesized with two collaborative kinematic chains. The two chains are
onstrained via a planned tool path during the machining process. A
eneral kinematic diagram of the 5-axis CNC machines is presented in
ig. 2 . 

Let 𝐪 = [ 𝑞 1 𝑞 2 𝑞 3 𝑞 4 𝑞 5 ] 𝑇 ( q i ∈ { X, Y, Z, A, B, C }) de-
ote a vector of the generalized coordinates of the system, O 0 x 0 y 0 z 0 
s a reference coordinate system, O t x t y t z t is a tool coordinate system,
nd O w x w y w z w is a workpiece coordinate system. The tool coordinate
ystem O t x t y t z t is located at the tooltip and oriented parallel with the
achine coordinate system O 0 x 0 y 0 z 0 . The workpiece coordinate system
 w x w y w z w is usually placed on the workpiece and oriented parallel with
 0 x 0 y 0 z 0 as well. 

In the viewpoint of the multibody system dynamics, the motion of
ach joint of a 5-axis CNC machine can be described by a homogeneous
ransformation matrix as follows: 

 𝑖 

(
𝑞 𝑖 
)
= 

|||||||||
[ 
𝐄 𝐭 𝑖 
0 1 

] 
, for a prismatic joint 𝑖 [ 

𝐒 𝑖 𝛕𝑖 
0 1 

] 
, for a revolute joint 𝑖 

(1) 

here E is a 3 ×3 identity matrix, and t i is a translation vector describing
he motion of a prismatic joint i . When q i = X , the vector t i can be writ-
en as 𝐭 𝑖 = [ 𝑋 + 𝑋 0 0 0 ] 𝑇 . When q i = Y or q i = Z the vector t i is
epresented as 𝐭 𝑖 = [ 0 𝑌 + 𝑌 0 0 ] 𝑇 or 𝐭 𝑖 = [ 0 0 𝑍 + 𝑍 0 ] 𝑇 ,
espectively. X 0 , Y 0 and Z 0 are the initial values of the prismatic joint
ariables (the initial position of the point O t in the coordinate system
 0 x 0 y 0 z 0 ). 𝝉 i represents the offset distance between the centerline of a

evolute joint q i ( A, B or C ) and a corresponding axis of the machine
oordinate system ( O 0 x 0 , O 0 y 0 or O 0 z 0 ). The rotation matrix S i charac-
erizing the motion of a revolute joint i can be written as follows: 

 𝑖 

(
𝑞 𝑖 = 𝐴 

)
= 

⎡ ⎢ ⎢ ⎣ 
1 0 0 
0 cos 𝐴 − sin 𝐴 

0 sin 𝐴 cos 𝐴 

⎤ ⎥ ⎥ ⎦ (2) 

 𝑖 

(
𝑞 𝑖 = 𝐵 

)
= 

⎡ ⎢ ⎢ ⎣ 
cos 𝐵 0 sin 𝐵 

0 1 0 
− sin 𝐵 0 cos 𝐵 

⎤ ⎥ ⎥ ⎦ (3) 

 𝑖 

(
𝑞 𝑖 = 𝐶 

)
= 

⎡ ⎢ ⎢ ⎣ 
cos 𝐶 − sin 𝐶 0 
sin 𝐶 cos 𝐶 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ (4) 

Note that if the centerline of a revolute joint 𝑞 
𝑖 
is inclined at an angle

(the non-orthogonal rotary axis 𝑞 
𝑖 
), and a matrix S R ( 𝛼) represents the

otation of the centerline, the matrix S i ( q i )must be additionally multi-
lied by S R ( 𝛼) and S R ( − 𝛼) in the left and right sides of S i ( q i ), respec-
ively. 

In the reference frame O 0 x 0 y 0 z 0 , the cumulative transformation ma-
rices for the tool carrying chain and for the workpiece carrying chain
re calculated as follows, respectively: 

 0 𝑡 = 𝐇 𝑛 +1 
(
𝑞 𝑛 +1 

)
𝐇 𝑛 +2 

(
𝑞 𝑛 +2 

)
... 𝐇 5 

(
𝑞 5 
)

(5) 

 0 𝑤 = 𝐇 𝑛 

(
𝑞 𝑛 
)
𝐇 𝑛 −1 

(
𝑞 𝑛 −1 

)
... 𝐇 1 

(
𝑞 1 
)

(6) 

For the cases in which the last joint q 5 is a revolute joint, the trans-
ormation matrix H 5 ( q 5 ) must be multiplied by a transformation matrix
haracterizing the distance between the tooltip and the centerline of the
oint q 5 . 

One more interesting feature of the mechanism under consideration
s that if the two kinematic chains are unified through the reference
rame O 0 x 0 y 0 z 0 , the closed loop mechanism of the two chains becomes
 serial open mechanism of a single kinematic chain. The joint sequence
f the unified mechanism is q 1 , q 2 , q 3 , q 4 and q 5 . The motion of the tool
elative to the workpiece is thus described by the following kinematic
elationship: 

 𝑤𝑡 = 

(
𝐇 0 𝑤 

)−1 𝐇 0 𝑡 
= 𝐇 

−1 
1 
(
𝑞 1 
)
.... 𝐇 

−1 
𝑛 

(
𝑞 𝑛 
)
𝐇 𝑛 +1 

(
𝑞 𝑛 +1 

)
... 𝐇 5 

(
𝑞 5 
) (7) 

Since n ∈ {0, ..., 5}, the matrix H wt can be rewritten as follows: 

 𝑤𝑡 = 𝚯1 
(
𝑞 1 
)
𝚯2 

(
𝑞 2 
)
𝚯3 

(
𝑞 3 
)
𝚯4 

(
𝑞 4 
)
𝚯5 

(
𝑞 5 
)

(8) 
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Table 1 

Constant matrix 𝚽. 

q u A B C 

𝚽
[ 
0 1 0 
0 0 1 

] [ 
1 0 0 
0 0 1 

] [ 
1 0 0 
0 1 0 

] 

𝐩
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here 

𝑖 

(
𝑞 𝑖 
)
= 

|||||||||
[ 
𝐄 𝐓 𝑖 

0 1 

] 
, for a prismatic joint 𝑖 [ 

𝐑 𝑖 𝛕𝑖 
0 1 

] 
, for a revolute joint 𝑖 

(9)

With respect to all the joints of the tool carrying chain, 

 𝑖 = 𝐭 𝑖 , for a prismatic joint 𝑖 
 𝑖 = 𝐒 𝑖 , for a revolute joint 𝑖 (10)

With respect to all the joints of the workpiece carrying chain, 

 𝑖 = − 𝐭 𝑖 , for a prismatic joint 𝑖 
 𝑖 = 𝐒 𝑇 

𝑖 
, for a revolute joint 𝑖 (11)

Eq. (11) implies that all the transformation matrices describing the
otion of the joints of the workpiece carrying chain must be inversed

ecause the unified kinematic chain starts at the workpiece and ends at
he tool. 

Finally, the kinematics model of the machine is formulated as fol-
ows: 

 𝑤𝑡 = 

[ 
𝐑 𝑤𝑡 𝐩 𝑇 
0 1 

] 
(12)

here 𝐩 𝑇 = [ 𝑥 𝑦 𝑧 ] 𝑇 is the position of the tooltip in the work-
iece coordinate system O w x w y w z w . The three direction cosines of the
ool axis vector i, j and k are the three entries of the last column of the
atrix R wt . 

Let’s denote 𝐗 = [ 𝑥 𝑦 𝑧 𝑖 𝑗 𝑘 ] 𝑇 as the tool posture,
he forward kinematic equation of the system can be written as follows:

 = 𝐟 ( 𝐪 ) (13)

In Eq. (13) , X is the so called the cutter location point (CL point)
hich is usually calculated by CAD/CAM systems when planning a tool
ath for the 5-axis CNC machining. To produce a G-codes file for con-
rolling an individual machine, the following inverse kinematic equation
ust be solved for q . 

 = 𝐟 −1 ( 𝐗 ) (14)

Note that Eqs. (13 and 14 ) are the kinematic equations at position
evel that have often used for postprocessor development for the 5-axis
achines. With the purpose of evaluating the kinematic performances of

he 5-axis machines, both the kinematic equations at position level and
he kinematic equations at velocity level are required. Unfortunately,
ith the six dependent equations in Eq. (13) , it is impossible to for-
ulate the inverse differential kinematic equations that can be used to

valuate the kinematic performances of the machines. Eq. (13) is com-
osed of five independent equations and one dependent equation, since
 

2 + j 2 + k 2 = 1. Therefore, Eq. (13) needs to be transformed into a set of
ll five independent kinematic equations. 

Let q u and q v be the joint variables of the primary revolute joint
nd the secondary revolute joint, where u < v and ( u, v ) ∈ {1, 2, 3,
, 5}. Note that the condition u < v implies that the revolute joint q u 
lways precedes the revolute joint q v in any joint orders of the unified
inematic chain. For all configurations of the unified kinematic chain,
he joint q u is always closer to the wotkpiece than the joint q v , and it is
alled the primary revolute joint. The joint q v is the secondary revolute
oint. 

Let 

 𝑇 = 

[
𝑋 𝑌 𝑍 

]𝑇 
, 

nd 

 𝑅 = 

[
𝑞 𝑢 𝑞 𝑣 

]𝑇 
e the vectors of the three prismatic joint variables and the two revolute
oint variables, respectively. 
Let 

 𝑅 = 

[
𝜙 𝜑 

]𝑇 
enote the orientation of the tool axis. 

The parameters 𝜑 and 𝜙 are the two independent direction cosines
elected from three dependent direction cosines ( i,j and k ) of the tool
xis vector. The parameters 𝜑 and 𝜙 must be selected so that both of
hem are expressed in terms of both the variables q u and q v . 

 𝑅 = 𝚽
[
𝑖 𝑗 𝑘 

]𝑇 
, (15)

here 𝚽 is a constant matrix in Table 1 . 
For example, when the primary revolute joint q u is the A-axis, and

he secondary revolute joint q v is the B-axis, 𝜑 = k = cos q u cos q v , and
= j = − sin q u cos q v . 

Rewriting Eq. (13) in a form of five independent equations yields 

 = 𝐠 ( 𝐪 ) , (16)

here 

 = 

[
𝐩 𝑇 𝐩 𝑅 

]𝑇 
, (17)

nd 

 = 

[
𝐪 𝑇 𝐪 𝑅 

]𝑇 
. (18)

Thus, the differential kinematic equation for the 5-axis machines can
e written as follows: 

̇
 = 𝐉 ̇𝐪 , (19)

here J 5 ×5 is the Jacobian matrix. 

 = 

[ 𝜕 𝐩 𝑇 
𝜕 𝐪 𝑇 

𝜕 𝐩 𝑇 
𝜕 𝐪 𝑅 

𝜕 𝐩 𝑅 
𝜕 𝐪 𝑇 

𝜕 𝐩 𝑅 
𝜕 𝐪 𝑅 

] 

= 

[ 
𝐉 𝑇𝑇 𝐉 𝑇𝑅 
𝐉 𝑅𝑇 𝐉 𝑅𝑅 

] (20) 

Eq. (19) is the differential kinematic equation that relates the joint
elocities, the tool velocity and the Jacobian matrix which characterize
he structure of the machines. 

It is worth noting that all the 5-axis mechanisms have some impor-
ant common features as follows. 

The first feature is that the three translational axes X, Y and Z are
rthogonal each other, which are aligned with three axes of the machine
oordinate system O 0 x 0 y 0 z 0 . Particularly, in this study, the defined co-
rdinate systems O t x t y t z t and O w x w y w z w are always parallel with the
achine coordinate system O 0 x 0 y 0 z 0 . 

The second one is that the tool axis vector always points in the di-
ection of the axis O t z t of the tool coordinate system O t x t y t z t . 

The third one is that the rotary axes A, B and C imply the rotations
f the machine table or the machine spindle head around the axes O 0 x 0 ,
 0 y 0 and O 0 z 0 of the machine coordinate system O 0 x 0 y 0 z 0 , respectively.

With respect to the three features above mentioned, some important
roperties of the kinematics model of the general machine can be proved
hat are very useful when working on the modeling and analysis of the
achine kinematic performances. 

roperty 1. For all configurations of 5-axis CNC machine, the forward
inematic equations for the two rotary axes can be formulated directly
ith the two rotation matrices, regardless of where the primary and the

econdary rotary joints are in the generalized kinematic chain of the
-axis CNC machines. 
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Fig. 3. Seven sequences of the joint variables. 
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In other words, the tool orientation vector p R can be calculated with
q. (21) , and the direction cosines i, j and k are calculated with Eq. (22) .
oth the calculations are independent of the three prismatic joints vari-
bles X, Y and Z. 

 𝑅 = 𝚽𝐑 𝑢 𝐑 𝑣 𝚪 (21) 

𝑖 𝑗 𝑘 
]𝑇 = 𝐑 𝑢 𝐑 𝑣 𝚪 (22) 

here R u and R v are the two rotation matrices describing the motion of
he primary revolute joint ( q u ) and the secondary revolute joint ( q v ),
ccordingly. 𝚪 = [ 0 0 1 ] 𝑇 . 

The use of this property will reduce the computational complexity
hen formulating and analyzing the Jacobian matrix J , the manipulabil-

ty index, the dexterity index, and the conditioning index for the 5-axis
NC machines that will be presented in the next section. 

roof. Based on the rules of the block matrix multiplication, the follow-
ng block matrix multiplications can be obtained: 
 

𝐄 𝐓 𝑖 −1 
0 1 

] [ 
𝐄 𝐓 𝑖 

0 1 

] 
= 

[ 
𝐄 𝐓 𝑇 

0 1 

] 
(23) 

 

𝐑 𝑖 𝛕𝑖 
0 1 

] [ 
𝐄 𝐓 𝑖 +1 
0 1 

] 
= 

[ 
𝐑 𝑖 𝐑 𝑖 𝐓 𝑖 +1 + 𝛕𝑖 
0 1 

] 
(24) 

 

𝐄 𝐓 𝑖 −1 
0 1 

] [ 
𝐑 𝑖 𝛕𝑖 
0 1 

] 
= 

[ 
𝐑 𝑖 𝐓 𝑖 −1 + 𝛕𝑖 
0 1 

] 
(25) 

It can be seen from Eq. (23) that multiplying two translational trans-
ormation matrices results in a transformation matrix in the same form
f the multiplied matrices. Eqs. (24 and 25 ) show that multiplying
 translational transformation matrix with a rotational transformation
atrix, in a different order, the rotation block matrix R i in the rotational

ransformation matrix is not transformed. Consequently, Eq. (12) can be
ewritten as follows: 

 𝑤𝑡 = 

[ 
𝐑 𝑢 𝐓 𝑅𝑢 

0 1 

] [ 
𝐑 𝑣 𝐓 𝑅𝑣 

0 1 

] 
= 

[ 
𝐑 𝑢 𝐑 𝑣 𝐑 𝑢 𝐓 𝑅𝑣 + 𝐓 𝑅𝑢 

0 1 

] 
= 

[ 
𝐑 𝑢 𝐑 𝑣 𝐩 𝑇 
0 1 

] (26) 

In Eq. (26) T Ru and T Rv are the vectors yielded by the multiplications
f a rotational transformation matrix with the translational transforma-
ion matrices, respectively. 

Since the tool axis vector points in the axis z t of the coordinate system
 t x t y t z t , its direction cosines i, j and k are the three entries of the last

ow of the rotation matrix R u R v . Therefore, 

𝑖 𝑗 𝑘 
]𝑇 = 𝐑 𝑢 𝐑 𝑣 𝚪 (27) 

Substituting Eq. (27) into Eq. (15) yields Eq. (21) and completes the
roof. 

It is also important to note that, p R calculated with Eq. (21) is
 function of only 𝐪 𝑅 = [ 𝑞 𝑢 𝑞 𝑣 ] 𝑇 , and it is independent of 𝐪 𝑇 =
 𝑋 𝑌 𝑍 ] 𝑇 . As a consequence of Property 1 , 

 𝑅𝑇 = 

𝜕 𝐩 𝑅 
𝜕 𝐪 𝑇 

= 𝟎 (28)

Eq. (28) is an important consequence of Property 1 that is very useful
hen calculating the Jacobian determinant presented later on. 

roperty 2. The determinant of the Jacobian matrix J of the generalized
-axis kinematics model can be directly calculated by using only the
inematics sub-model of the two rotary axes. In other words, 

 𝑒𝑡 ( 𝐉 ) = 𝐷 𝑒𝑡 
(
𝐉 𝑅𝑅 

)
. (29)
w  
To evaluate the kinematic performances of a 5-axis machine, the Ja-
obian determinant is often needed. However, formulation of the Jaco-
ian determinant in a generalized case is challenging, since the matrix
 has a dimension of 5 ×5, and the determinant is a function of all five
oint variables. Hence, this property is important which makes it possi-
le to formulate the Jacobian determinant for the machines. By using
roperty 2 , Det ( J 5 ×5 )can be formulated as the determinant of a matrix
ith a dimension of 2 ×2 only. 

roof. As discussed in the Proof of Property 1 , it is clearly seen that all
he transformation matrices 𝚯i ( q i )in Eq. (8) are expressed as particular
lock matrices. Hence, multiplying two or three successive translational
ransformation matrices, in different orders, yields a matrix in the same
orm of the multiplied matrices. However, multiplication of a transla-
ional transformation matrix with a rotational transformation matrix is
ot commutative. Thus, the result of the matrix chain multiplication in
q. (8) depends on where the two rotational transformation matrices are
n the matrix chain. Theoretically, there exist seven different sequences
f the joint variables ( Fig. 3 ) that correspond to seven different results
f the matrix chain multiplication. 

The family of the 5-axis machines with both rotary axes on the table
s represented by the sequence of the joint variables S1. The sequence S3
epresents the group of 5-axis machines with the primary rotary axis on
he table, and the secondary one on the spindle head. The sequence S5
enotes the 5-axis machines with both rotary axes on the tool chain. The
equence S2 represents for all the cases in which the rotational trans-
ormation matrix 𝚯v ( q v ) is in between two translational transformation
atrices, meanwhile the matrix 𝚯u ( q u ) is the first matrix of the matrix

hain. Similarly, as for the sequence S6, both the matrices 𝚯u ( q u ) and

v ( q v ) are in between a couple of translational transformation matrices;
he sequence S7 implies that 𝚯u ( q u ) and 𝚯v ( q v ) are adjacent, but both
he matrices are in the middle of the matrix chain. 

With the seven chains of the transformation matrices, the seven re-
ults of the matrix chain multiplication can be archived accordingly,
here the tooltip position 𝐩 𝑇 = [ 𝑥 𝑦 𝑧 ] 𝑇 is expressed as follows:
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1 . 𝐩 𝑇 = 𝐑 𝑢 𝐑 𝑣 𝐪 𝑇 + 𝐑 𝑢 𝛕𝑣 + 𝛕𝑢 
2 . 𝐩 𝑇 = 𝐑 𝑢 𝐑 𝑣 𝐪 𝑇 − 𝐑 𝑢 𝐑 𝑣 

(
𝐓 2 + 𝐓 3 

)
+ 𝐑 𝑢 

(
𝐓 2 + 𝐓 3 

)
+ 𝐑 𝑢 𝛕𝑣 + 𝛕𝑢 

3 . 𝐩 𝑇 = 𝐑 𝑢 𝐪 𝑇 + 𝐑 𝑢 𝛕𝑣 + 𝛕𝑢 + 𝐑 𝑢 𝐑 𝑣 𝛕𝑡 
4 . 𝐩 𝑇 = 𝐑 𝑢 𝐪 𝑇 + 

(
𝐄 − 𝐑 𝑢 

)(
𝐓 1 + 𝐓 2 

)
+ 𝐑 𝑢 𝛕𝑣 + 𝛕𝑢 + 𝐑 𝑢 𝐑 𝑣 𝛕𝑡 

5 . 𝐩 𝑇 = 𝐪 𝑇 + 𝐑 𝑢 𝛕𝑣 + 𝛕𝑢 + 𝐑 𝑢 𝐑 𝑣 𝛕𝑡 
6 . 𝐩 𝑇 = 𝐑 𝑢 𝐑 𝑣 𝐪 𝑇 − 𝐑 𝑢 𝐑 𝑣 

(
𝐓 1 + 𝐓 3 

)
+ 𝐑 𝑢 𝐓 3 + 𝐑 𝑢 𝛕𝑣 + 𝛕𝑢 + 𝐓 1 

7 . 𝐩 𝑇 = 𝐑 𝑢 𝐑 𝑣 𝐪 𝑇 + 

(
𝐄 − 𝐑 𝑢 𝐑 𝑣 

)(
𝐓 1 + 𝐓 2 

)
+ 𝐑 𝑢 𝛕𝑣 + 𝛕𝑢 

(30)

It is clear that, except from the Jacobian determinant of the first term
f all the expressions (S1-S7), the Jacobian determinant of all the other
erms equal to zero because the Jacobian matrix of a constant vector is
 zero matrix, and the determinant of a Jacobian matrix containing one
ero-column equals to zero. 

Consequently, for the expressions S1, S2, S6 and S7, the Jacobian J TT 

an be calculated with Eq. (31) . For S3 and S4, J TT is calculated with
q. (32) , and for S5, J TT is calculated with Eq. (33) . 

 𝑇𝑇 = 

𝜕 𝐩 𝑇 
𝜕 𝐪 𝑇 

= 

𝜕 ( 𝐑 𝑢 𝐑 𝑣 𝐪 𝑇 ) 
𝜕 𝐪 𝑇 

= 𝐑 𝑢 𝐑 𝑣 

(31)

 𝑇𝑇 = 

𝜕 𝐩 𝑇 
𝜕 𝐪 𝑇 

= 

𝜕 ( 𝐑 𝑢 𝐪 𝑇 ) 
𝜕 𝐪 𝑇 

= 𝐑 𝑢 

(32)

 𝑇𝑇 = 

𝜕 𝐩 𝑇 
𝜕 𝐪 𝑇 

= 

𝜕 ( 𝐪 𝑇 ) 
𝜕 𝐪 𝑇 

= 𝐄 

(33)

Note that Det ( R u ) = Det ( R v ) = Det ( E ) = 1. Hence, for all the cases 

𝑒𝑡 
(
𝐉 𝑇𝑇 

)
= 1 (34)

On the other hand, the determinant of the block matrix J can be
alculated as follows: 

 𝑒𝑡 ( 𝐉 ) = 𝐷 𝑒𝑡 
(
𝐉 𝑇𝑇 𝐉 𝑅𝑅 − 𝐉 𝑇𝑅 𝐉 𝑅𝑇 

)
(35)

Substituting Eqs. (28) and (34) into Eq. (35) yields Eq. (29) and com-
letes the proof. 

roperty 3. The Jacobian determinant Det ( J ), a function f J ( q )of a
ulti-variables vector q , can be transformed and expressed in terms of

nly one joint variable q v . In other words, 

𝑒𝑡 ( 𝐉 ) = 𝑓 𝐽 
(
𝑞 𝑣 
)
. (36)

Property 3 is important when solving Det ( J ( q )) = 0 for q . 

roof. It is worth to note that 𝐑 

′
𝑢 
= 𝐑 𝑢 𝚲𝑢 , and 𝐑 

′
𝑣 
= 𝐑 𝑣 𝚲𝑣 , where

u and 𝚲v are constant matrices which can be looked up in the following
able 2 . 

Based on Eq. (21) , the Jaocobian matrix 𝐉 𝑅𝑅 = [ 𝜕 𝐩 𝑅 
𝜕 𝐪 𝑅 

] 2×2 can be for-

ulated as a block matrix multiplication as follows: 

 𝑅𝑅 = 

[
𝚽𝐑 𝑢 

]
2×3 

[
𝚲𝑢 𝐑 𝑣 𝚪 𝐑 𝑣 𝚲𝑣 𝚪

]
3×2 (37)

Since 𝚽𝚽T = E 2 ×2 , 

 𝑅𝑅 = 

[
𝚽𝐑 𝑢 𝚽𝑇 

]
2×2 

[
𝚽𝚲𝑢 𝐑 𝑣 𝚪 𝚽𝐑 𝑣 𝚲𝑣 𝚪

]
2×2 

= 𝐇 𝑢 𝐊 𝑣 

(38)

Note that 𝐇 𝑢 = 𝚽𝐑 𝑢 𝚽𝑇 = [ cos 𝑞 𝑢 ∓ sin 𝑞 𝑢 
± sin 𝑞 𝑢 cos 𝑞 𝑢 

] is an orthogonal matrix

ormulated with respect to q only. Therefore, Det ( H ) = 1. 
u u 

Table 2 

Constant matrices 𝚲u and 𝚲v . 

q i A B C 

𝚲i 

⎡ ⎢ ⎢ ⎣ 
0 0 0 
0 0 −1 
0 1 0 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
0 0 1 
0 1 0 
−1 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
0 −1 0 
1 0 0 
0 0 0 

⎤ ⎥ ⎥ ⎦ 

m  

q  

i  

t
o  

i  

o  

t  

t

𝐊 𝑣 = [ 𝚽𝚲𝑢 𝐑 𝑣 𝚪 𝚽𝐑 𝑣 𝚲𝑣 𝚪 ] is a matrix formulated with respect
o R v ( q v ) only. Therefore, the determinant Det ( K v ) is a function of only
ne variable q v , Det ( K v ) = f J ( q v ) . 

Finally, Eq. (29) can be transformed as follows: 

 𝑒𝑡 ( 𝐉 ) = 𝐷 𝑒𝑡 
(
𝐇 𝑢 

)
𝐷 𝑒𝑡 

(
𝐊 𝑣 

)
= 𝑓 𝐽 

(
𝑞 𝑣 
) (39) 

Eq. (39) completes the proof. 

roperty 4. For all 5-axis mechanisms, the condition number of the
acobian matrix, 𝜅( J ), does not depends on the primary revolute joint
ariable q u . Particularly, the condition number for all the machines with
oth rotary axes implemented on the tool carrying chain (the spindle –
ilting machines) depends on only one joint variable q v . 

With the purpose of comparing the kinematic performances of dif-
erent 5-axis CNC machines, the condition number 𝜅( J ) must be taken
nto account. Generally, 𝜅( J ) depends on the variation of all five joint
ariables of a machine. Hence, comparing 𝜅( J ) of all different 5-axis ma-
hines is challenging. Therefore, the use of this important property will
akes possible the evaluation and comparison of the condition numbers

or the machines. 

roof. Due to the fact that if the matrix J can be factorized into two
atrices, where the first matrix is an orthogonal matrix, and the second

ne is a matrix independent of q u , the eigenvalues of the second matrix
ill be the singular values of J ( 𝜎1 ÷𝜎5 ), and the condition number
( J ) = 𝜎max / 𝜎min is thus independent of q u . 

Revisiting Eq. (30) , for the expressions S1, S2, S3, S4, S6 and S7, the
lock matrix J can be derived and factorized with Eq. (40) . For S5, J
an be factorized with Eq. (41) . 

 = 

[ 
𝐑 𝑢 𝟎 
𝟎 𝐇 𝑢 

] [ 
𝐑 𝑣 𝐋 𝑣 

𝟎 𝐊 𝑣 

] 
(40)

 = 

[ 
𝐄 𝟎 
𝟎 𝐑 𝑢 

] [ 
𝐄 

(
𝐑 𝑢 𝐌 𝑣 − 𝐄 𝐌 𝑣 

)
𝐍 

−1 
𝑣 

𝟎 𝐄 

] [ 
𝐄 𝐌 𝑣 

𝟎 𝐍 

𝑣 

] 
(41)

The block L v in Eq. (40) is calculated as follows: 

1 . 𝐋 𝑣 = 

[
𝚲𝑢 𝐑 𝑣 𝐪 𝑇 + 𝚲𝑢 𝛕𝑣 𝐑 𝑣 𝚲𝑣 𝐪 𝑇 

]
2 . 𝐋 𝑣 = 

[ 
𝚲𝑢 𝐑 𝑣 𝐪 𝑇 − 𝚲𝑢 𝐑 𝑣 

(
𝐓 2 + 𝐓 3 

)
+ 𝚲𝑢 

(
𝐓 2 + 𝐓 3 

)
+ 𝚲𝑢 𝛕𝑣 𝐑 𝑣 𝚲𝑣 𝐪 𝑇 − 𝐑 𝑣 𝚲𝑣 

(
𝐓 2 + 𝐓 3 

) ] 
3 . 𝐋 𝑣 = 

[
𝚲𝑢 𝐪 𝑇 + 𝚲𝑢 𝛕𝑣 + 𝚲𝑢 𝐑 𝑣 𝛕𝑡 𝐑 𝑣 𝚲𝑣 𝛕𝑡 

]
4 . 𝐋 𝑣 = 

[
𝚲𝑢 𝐪 𝑇 + 𝚲𝑢 

(
𝐓 1 + 𝐓 2 

)
+ 𝚲𝑢 𝛕𝑣 + 𝚲𝑢 𝐑 𝑣 𝛕𝑡 𝐑 𝑣 𝚲𝑣 𝛕𝑡 

]
6 . 𝐋 𝑣 = 

[ 
𝚲𝑢 𝐑 𝑣 𝐪 𝑇 − 𝚲𝑢 𝐑 𝑣 

(
𝐓 1 + 𝐓 3 

)
+ 𝚲𝑢 𝐓 3 

+ 𝚲𝑢 𝛕𝑣 𝐑 𝑣 𝚲𝑣 𝐪 𝑇 − 𝐑 𝑣 𝚲𝑣 
(
𝐓 1 + 𝐓 3 

) ] 
7 . 𝐋 𝑣 = 

[ 
𝚲𝑢 𝐑 𝑣 𝐪 𝑇 − 𝚲𝑢 𝐑 𝑣 

(
𝐓 1 + 𝐓 2 

)
+ 𝚲𝑢 𝛕𝑣 𝐑 𝑣 𝚲𝑣 𝐪 𝑇 − 𝐑 𝑣 𝚲𝑣 

(
𝐓 1 + 𝐓 2 

) ] 
(42) 

The blocks M v and N v in Eq. (41) are calculated as follows: 

 𝑣 = 

[
𝚲𝑢 𝐑 𝑣 𝛕𝑡 𝐑 𝑣 𝚲𝑣 𝛕𝑡 

]
(43)

 𝑣 = 

[
𝚲𝑢 𝐑 𝑣 𝚪 𝐑 𝑣 𝚲𝑣 𝚪

]
(44)

It is clearly seen that, in the matrix multiplication Eq. (40) , the first
atrix is an orthogonal matrix, and the last matrix is independent of
 u . Since 𝜅( J )is calculated with only the eigenvalues of the last matrix,
t is independent of q u as well. The Eqs. (41), (43) and (44) show that
he last matrix in the matrix multiplication Eq. (41) is dependent on q v 
nly, not dependent on q u , X, Y and Z . Moreover, because the first matrix
s an orthogonal matrix, and the second one is a triangular matrix with
nes on the main diagonal, the singular values of J is only affected by
he last matrix. Therefore 𝜅( J ) is dependent on q v only. This completes
he proof. 
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. Comparison of the kinematic performances of the 5-axis CNC 

achines 

In this section, all the proved properties of the kinematics model are
ade full use to evaluate and compare the kinematic performances of

he six main types of 5-axis CNC machines. 
The first machine type (Type I) includes all the machines whose both

otary axes are implemented on the workpiece carrying chain, and the
xes are orthogonal [1,5,8,11,22,23] . 

Type II consists of the machines with both the rotary axes on the
orkpiece carrying chain. One rotary axis is orthogonal and the other
ne is a non-orthogonal rotary axis [1,2,6,7,16–19] . 
Type III is a set of the 5-axis CNC machines consisting of both rotary
xes implemented on the tool carrying chain, and both the axes are
rthogonal [4,8,10,22–24] . 

Type IV is a family of the machines with the two rotary axes on the
ool carrying chain, but only one rotary axis is orthogonal [4,22,18] . 

Type V covers all machines consisting of one rotary axis on the tool
arrying chain and one rotary axis on the workpiece carrying chain.
oth the axes are orthogonal [1,8,10,22,23] . 

Type VI includes the machines with one rotary axis on the tool
arrying chain and one rotary axis on the workpiece carrying chain.
owever, the rotary axis on the tool carrying chain is non-orthogonal

18,20,22,23] . 
Fig. 4. The six machine types [8,18] . 
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The six types of the machines are shown in Fig. 4 . 
To evaluate the kinematic performances of a machine, the manipula-

ility index, the dexterity index, the condition number, the non-singular
ange of the joint variables and the non-linear kinematic error are eval-
ated as common indicators to compare the machines. 

.1. Manipulability index 

In order to quantify the kinematic efficiency of an industrial robot,
he tendency of changes in dexterity characteristics along with the vari-
nce of the revolute joint variables is of importance and should be anal-
sed. In particular, the kinematic manipulability index, 𝜔 = 

√
𝐷𝑒𝑡 ( 𝐉 𝐉 𝑇 )

lays an essential role in the kinematical performance analysis since it
ndicates of how close the machine configuration is to the singularity.
n this study, the manipulability index is evaluated for all the types of
-axis CNC machines. 

By using Property 2 , the manipulability index 𝜔 for a 5-axis CNC
achine can be formulated as follows: 

 = 

√ 

𝐷𝑒𝑡 
(
𝐉 𝐉 𝑇 

)
= 𝐷𝑒𝑡 

(
𝐉 𝑅𝑅 

) (45)

Recalling Eq. (37) , the manipulability index is formulated as follows:

 = 𝐷𝑒𝑡 

([
𝚽𝐑 𝑢 

]
2×3 

[
𝚲𝑢 𝐑 𝑣 𝚪 𝐑 𝑣 𝚲𝑣 𝚪

]
3×2 

)
(46)

It is shown that 𝜔 can be calculated directly with only rotation ma-
rices R u and R v of a given machine, regardless of other joint variables
, Y and Z. Therefore, the manipulability index 𝜔 of different machines
an be evaluated in an effective and simplified manner. 

Fig. 5 shows the manipulability index of three different machines.
he first machine is a machine Type IV with the orthogonal rotary axis
 t and non-orthogonal rotary axis B t on the tool chain ( C t B t - nutating
achine). The second machine is a machine Type I (Spinner U5-620)
hich has both orthogonal rotary axes on the table ( B w C w - orthogo-
al). The third one is a machine Type II (DMU 50E) whose the axis B w 

s non-orthogonal ( B w C w - nutating). The inclination angle of the non-
rthogonal rotary axis is 45°. 

In this manner, for all the six machine types, the maximum value
f the manipulability index 𝜔 max can be calculated and compared effec-
ively. The comparison is presented in Section 3.6 . 
Fig. 5. The index 𝜔 of the nutating head configuration ( C t B t - nutating), the mac
.2. Non-singular range of joint variables 

In order to provide more insightful information on the manipu-
ability of a machine, the non-singular range of the joint variables
 = [ 𝑞 1 𝑞 2 𝑞 3 𝑞 4 𝑞 5 ] 𝑇 needs to be taken into account. In a
on-singular region of the joint variables, a machine operates under the
esirable dexterity condition, without singularities. In other words, the
arger the non-singularity range of the joint variables is, the more flexi-
le the tool of a machine can be oriented, and the kinematic efficiency
f the machine is increased. 

In this study, we define Π as the non-singular range of the joint vari-
bles of a 5-axis CNC machine. Actually, Πis the solution of the following
nequality. 

𝑒𝑡 ( 𝐉 ) > 0 (47)

In the general case, evaluation of Πis challenging since Eq. (47) is
 multi-variables inequality. Fortunately, by applying Property 3 , the
nequality is dependent on only one joint variable q v . Therefore, Π of
 given 5-axis CNC machine can be obtained by solving the following
nequality for q v . 

 𝐽 

(
𝑞 𝑣 
)
> 0 (48)

For instance, the non-singular range of the joint variables Π of the
achine Spinner U5-620 (Type I) are − 𝜋2 < Π < 0 and 0 < Π < 

𝜋

2 . 
Thus, for all the machine types, the indicator Π can be evaluated and

ompared effectively. The comparison is detailed in Section 3.6 . 

.3. Dexterity index 

The dexterity index is a measure of a 5-axis machine to achieve dif-
erent orientations for each point within the workspace. Similar to a
obot manipulator, the orientation of the tool of a 5-axis machine can
e described by a rotation matrix using parameters such as Euler an-
les, Roll-Pitch-Yaw angles, etc. It can be observed that, when a 5-axis
achine operates, the orientation of the tool axis is archived by the ro-

ation of the two rotary axes. For this reason, a tilt angle 𝛼 and a roll
ngle 𝛽 should be considered to characterize the tool orientation rela-
ive to the workpiece since the tilt angle 𝛼 can be calculated easily with
espect to the displacement of the second rotary joint only. The angle 𝛽
s determined with the direction cosines of the tool axis in the workpiece
oordinate system. Fig. 6 shows the tilt and roll angles in all three cases:
hine Spinner U5-620 ( B w C w ), and the machine DMU 50E ( B w C w - nutating). 
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Fig. 6. The tilt angle 𝛼 and roll 𝛽angle of a tool axis. 

Table 3 

The formulations of 𝛼 and 𝛽. 

q u 𝛼 𝛽

A arccos ( 𝑖 ) arctan2( j, k ) 

B arccos ( 𝑗) arctan2( k, i ) 

C arccos ( 𝑘 ) arctan2( i, j ) 
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 u = A, q u = B and q u = C . Table 3 presents the formulation of 𝛼 and 𝛽 for
he three general cases correspondingly. 

It is clearly seen that, for a 5-axis machine, the larger the range of 𝛼
nd 𝛽 is, the more flexible the tool orientation relative to the workpiece
an be obtained. The more the flexibility of the tool orientation of a ma-
hine is, the more complex the parts can be machined with the machine.
he smaller range of 𝛼 and 𝛽 decreases the orientation capability of a
achine. 

The angles 𝛼 and 𝛽 can vary within the range of (0÷2 𝜋). Thus the
exterity index can be defined as follows: 

 = 

1 
2 

( 

Δ𝛼
2 𝜋

+ 

Δ𝛽
2 𝜋

) 

, (49)

here Δ𝛼 = 𝛼max − 𝛼min and Δ𝛽 = 𝛽max − 𝛽min are the possible range of
ariation of the angles 𝛼 and 𝛽 for each point of the workspace. 

The dexterity index D can vary within the range of (0÷1). If the
exterity index is equal to unity we will say that the manipulator has
ull dexterity at a particular point or an area. For example, the dexterity
ndex D of the machine Spinner U620 (Type I) is 0.75 since the possible
ange of the tilt angle Δ𝛼 = 𝜋and the range Δ𝛽 = 2 𝜋. However, for the
achine DMU 50e (Type II), the dexterity index D is 1 since the ma-

hine has the same possible range of roll angle, but a lager range of tilt
ngle Δ𝛼 = 2 𝜋. 

.4. Condition number 

The condition number 𝜅( J ) ∈ [1, +∞)is an important index which is
ften used to describe first the accuracy/dexterity of a manipulator and,
econd, the closeness of a pose to a singularity. The condition number
pproaches to infinity when a machine operates near a singularity. The
ondition number is a local property for any 5-axis CNC machine as it
epends on Jacobian matrix J which is a structural property. Since the
ondition number characterizes a norm of the Jacobian matrix, it is a
easure of the relative amplification of the computed cutter position-

ng error 𝛿p , upon a linear transformation, Eq. (50) , with respect the
ystematic positioning errors 𝛿q . 

𝐩 = 𝐉 𝛿𝐪 (50)
= 𝐉 𝑇 𝐅 (51) 

As can be seen from Eq. (51) , the Jacobian matrix relates the input
orces/torques 𝝉 and output forces/torques F of a 5-axis machine. Thus,
he so called mechanical advantage of a machine can be investigated
hrough the condition number as well. 

When performing an identical machining task, which machines hav-
ng a larger value of the condition number 𝜅( J ) will have a larger po-
itioning error 𝛿p at the tooltip and require more input forces/torques
. In this sense, the condition number should be minimized in order
o maintain a suitable positioning accuracy and the mechanical advan-
age. When the condition number equals an optimal value of one, the
anipulator is described as isotropic. Isotropic configurations have a
umber of advantages, including good servo accuracy, noise rejection,
nd singularity avoidance. At any point in the non-singular range of the
oint variables, the lower the condition number is, the better operating
ondition of a 5-axis machine is reached. 

As for the 5-axis CNC machines, evaluating and comparing the condi-
ion number 𝜅( J ) is a challenging task since J is a Jacobian matrix of five
oint variables. Nevertheless, by taking full advantages of Property 4 ,
he condition number for the 5-axis machines can be formulated and
valuated effectively. 

According to Property 4 , the condition number can be calculated
ith the largest and smallest eigenvalues of the last matrix of the matrix
ultiplications Eqs. (41) and (40) for the machines Type III and IV, and

or other machine types, respectively. 
For the machines Type III and IV, the computed condition numbers

xhibits a periodic behavior shown in Fig. 7 , which does not depend on
he displacements of the machine axes X, Y, Z and q u . It depends on q v 
nly. Note that the machines with different constant distance L t from
he tooltip to the pivot point of the rotary axis q v will have different
ondition number curves as shown in Fig. 6 also. As the value of 𝜅( J ) is
ependent on only q v , for any point (X,Y,Z) in the domain of the linear
oint variables, the condition number of all machines Type III and IV
oes not change. 

Figs. 8 and 9 show the curves of the condition number of a machine
ype I and Type II respectively. The shape of the curves is similar to that
f the previous ones in Fig. 7 . One important thing is that the value of
( J ) is rapidly increased when X, Y and Z are increased ( Figs. 7 and 8 ).
hen the machine operates near the zero point ( X = Y = Z = 0) in the

oint space, the value of 𝜅( J ) is minimized. 
In comparison with the machines Type III and IV, the condition num-

er of the other machine types is much larger. Moreover, the condition
umber of the machines Type III and IV does not change within the
hole domain of linear axes X, Y and Z. For other machines, when the
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Fig. 7. The condition number 𝜅( J ) for a machine Type III. 

Fig. 8. The condition number 𝜅( J ) for a machine Type I (Spinner U620). 

Fig. 9. The condition number 𝜅( J ) for a machine Type II (DMU 50e). 
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utter operates father and farther from the zero point, the condition
umber is larger and larger. 

.5. Non-linear kinematic tool path error 

When CL data are generated by a CAM system it is assumed that the
ool path between two successive CL points is a straight line relative
o the workpiece. However, due to the rotary axes of the machine, the
ctual tool path between two blocks in the NC program will be non-
inear relative to the workpiece, reducing the accuracy of the tool path.
f the deviation between the straight line and the actual tool path is
reater than the allowable limitation, more cutter contact points need
o be inserted in between the two points. The deviation due to the non-
inear kinematic behavior of a machine is called the non-linear kine-
atic error of the tool path. To reduce the non-linear kinematic er-

or in 5-axis freeform surface machining, a number of blocks G01 is
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Fig. 10. The non-linear kinematic errors of three 5-axis CNC machines cutting a common straight line between two CL points. 
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dditionally interpolated so that the number of the commands of a NC
le is usually greater than the number of CL points generated by a CAM
ystem. The non-linear kinematic error is a structural and local prop-
rty of an individual 5-axis machine. Five-axis machines with different
rchitectures have different non-linear kinematic error levels while cut-
ing a similar path. Therefore, the non-linear kinematic error is also an
mportant measure of a 5-axis CNC machine that needs to be analysed. 

Let’s consider X 1 and X 2 as two successive CL points represented
n the workpiece space O w x w y w z w . To machine a desired straight
ine X d = (1 − t ) X 1 + t X 2 (0 ≤ t ≤ 1), the displacements of the five axes
f a machine are calculated with Eq. (14) as follows: 

 1 = 𝐟 −1 
(
𝐗 1 

)
(52) 

 2 = 𝐟 −1 
(
𝐗 2 

)
(53) 

In the joint space, the displacement of the joints is interpolated in
he parametric domain 0 ≤ t ≤ 1 as follows: 

 ( 𝑡 ) = ( 1 − 𝑡 ) 𝐪 1 − 𝑡 𝐪 2 (54)

The actual machined path X a is calculated with the kinematic equa-
ion: 

 𝑎 ( 𝑡 ) = 𝐟 ( 𝐪 ( 𝑡 ) ) (55)

Thus, the non-linear error E nonlinear is calculated as follows: 

 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 ( 𝑡 ) = 

‖‖𝐗 𝑎 ( 𝑡 ) − 𝐗 𝑑 ( 𝑡 ) ‖‖ (56) 

Fig. 10 shows the non-linear kinematic errors E nonlinear when a
achine Type I (Spinner U620), a machine Type III and a ma-

hine Type II (DMU 50e) cut a similar tool path starting from 𝐗 1 =
 60 . 0 50 . 0 108 . 8 −0 . 3106 0 . 0661 0 . 9482 ] 𝑇 to 𝐗 2 = 

 63 . 0 50 . 0 110 . 4 −0 . 2843 0 . 0627 0 . 9567 ] 𝑇 . The max-
mum value 𝐸 

max 
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 

is 0.0194 mm, 0.0000388 mm and 0.0197 mm
espectively for the three machines. It can be seen that, the non-linear
inematic error 𝐸 

max 
𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 

of the machines with both the rotary axes on
he table (Type I and II) is much larger than that of the machines with
he rotary axes on the tool chain (Type III and IV). 

To investigate the variation of the non-linear kinematic error along
ith the variation of the five joint variables, the Taylor series expansion
f the function p ( Eq. (16) ) is formulated in a vicinity of a point q in the
omain of joint variables as follows: 

𝐩 = 

𝜕𝐠 
𝜕𝐪 

Δ𝐪 + ... (57)

𝐩 ≃ 𝐉 Δ𝐪 (58)
Obviously, the non-linear kinematic error E nonlinear = ‖Δp ‖ is ampli-
ed by the norm of the Jacobian matrix J which is characterized by the
ondition number of J as well. 

As shown in Property 4 and discussed in Section 3.4 , for the machines
ith two rotary axes on the tool chain (Type III and IV), the condition
umber of J does not change along with the prismatic joint variables
, Y and Z. Therefore, the non-linear kinematic error E nonlinear of these
achines depends on only one variable q v , and does not change in the
hole domain of the linear axes X, Y and Z. In contrast, for other ma-

hines, e. g the machines Type I and II, the condition number of J is
apidly increased when the values of X, Y and Z are increased. Hence,
he error E nonlinear is increased when the machines operate with increas-
ng values of X, Y and Z. 

Fig. 11 shows the non-linear kinematic error curves for the machine
pinner U620 (Type I) and DMU 50e (Type II) cutting two different
traight lines. For the first line, the values of the joint variables are cal-
ulated as X = − 0.1679, Y = − 0.1455 and Z = 0.1687 which are closer to
he zero point (near the center point of the table). For the second line,
he calculated values X = − 80.3403, Y = − 61.3940 and Z = 87.8774
re far from the zero point in the joint space. It is shown that when
he machines cut farther and farther from the zero point, the non-linear
inematic error is larger and larger. 

.6. Comparison of the 5-axis CNC machines 

Through the evaluation of the manipulability index 𝜔 , the non-
ingular range of joint variables Π, and the dexterity index D, the con-
ition number 𝜅( J ), and the non-linear kinematic error E nonlinear , the
inematic performances of the 5-axis CNC machines can be directly com-
ared. Table 4 shows a quantitative comparison of the six machine types.

It is clearly seen that, the machines Type II, Type IV and Type VI
ave the largest non-singular range of the joint variables Π as compared
ith other machines. The machines Type I and Type II have the largest
exterity index D. The value of D for the machines Type III and V is
ery limited. The maximum value of the manipulability index 𝜔 max of
he machines Type II is lower than that of other machines. The condi-
ion number of the machines Type III and IV is very small and does not
hange in the joint space. However, the condition number of the ma-
hines Type I and II is rapidly increased when the displacement of the
inear axes is increased. 

With the highest manipulability index 𝜔 max = 0.66, the machines
ype IV has a maximum manipulability as compared with other
achines. This implies that, for these machines, the tendency of

hanges in dexterity characteristics along with the variance of the
evolute joint variables is maximized. With the lowest manipulability
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Fig. 11. The non-linear kinematic errors of the machines Type I and II cutting two different straight lines. 

Table 4 

A comparison of the six machine types. 

Indicators 𝜔 max Π D 𝜅( J ) E nonlinear 

Two rotary axes on the table Type I (Orthogonal rotary axes) 0.5 0 < |Π| < 𝜋
2 

0.75 Large Large and varying 

Type II (Non-orthogonal rotary axes) 0.33 0 < | Π| < 𝜋 1.0 Large Large and varying 

Two rotary axes on the spindle Type III (Orthogonal rotary axes) 0.5 0 < |Π| < 𝜋
2 

0.5 Small Small and unvarying 

Type IV (Non-orthogonal rotary axes) 0.66 0 < | Π| < 𝜋 1.0 Small Small and unvarying 

One rotary axis on the spindle, and 

one rotary axis on the spindle 

Type V (Orthogonal rotary axes) 0.5 0 < |Π| < 𝜋
2 

0.5 Medium Medium and varying 

Type VI (Non-orthogonal rotary axes) 0.33 0 < | Π| < 𝜋 0.75 Medium Medium and varying 

i  

e
 

(  

t  

n  

w  

g  

a  

t
 

i  

t  

t  

N  

u  

c  

t  

S  

m  

f
 

c  

m  

o  

t  

p  

t  

m  

c  

t  

b  

s  

r  

s  

g  

c
 

h  

a  

a  

i  

i  

n  

i  

a  

i  

I  

d  

c  

w  

t  

m  

n  

i  

o  

b  

t  

p  

e
 

t  

m  

t  

t  

t  
ndex 𝜔 max = 0.33, the tool of the machines Type II and VI have the low-
st manipulability when manipulating the workpiece. 

It has shown that the machines with a non-orthogonal rotary axis
Type II, IV and VI) have the largest value of the non-singular range of
he joint variables 0 < | Π| < 𝜋. Note that the 5-axis machines with a large
on-singular range of the revolute joint variables are generally desirable
hen machining complex parts. This is because in the non-singular re-
ion of the joint variables, the manipulability index 𝜔 is large enough to
void singularities, and within this region, the machine operates under
he desirable dexterity condition. 

The machines Type III and V have the lowest value of the dexter-
ty index D = 0.5 that means that orientation ability of the tool relative
o the workpiece is limited. For these machines, changing the orienta-
ion of the tool axis is less dexterous as compared with other machines.
ote that, the machines Type V have a rotary table which can rotate
nlimitedly, so that they have a better tool orientation capability when
ompared with the machines Type III. With the largest value of the dex-
erity index D , the machines Type II and IV are the most dexterous ones.
ince one rotary axis on the machine table can rotate unlimitedly, the
achines Type II and I are excellent when machining sculptured sur-

aces with high curvature. 
Based on the evaluation of the condition number 𝜅( J ) for the ma-

hines, it has shown that the machines Type I and II have the poorest
echanical advantage since their condition index is very large. More-

ver, the value of the condition number is dramatically increased when
he machines of these types operate farther and farther from the zero
oint of the linear axes X, Y and Z. This implies that the machines of
hese types have a larger positioning error at the tooltip and require
ore driving torques/forces (more power consumption) than other ma-

hine types when cutting an identical tool path. Based on this criterion,
he machines Type III and IV are the best, because their condition num-
er is small and unvarying along with the linear axes. With a small and
table deviation of the tool tip relative to the ideal tool path due to the
otary axes errors and any geometrical deviations caused in the joint
pace, the advantages of these machine types additionally include the
ood servo control accuracy, noise rejection capability, and stable ma-
hining accuracy. 

With respect to the evaluation of the non-linear kinematic error, it
as also shown that the magnitude of the non-linear kinematic error of
 5-axis CNC machine is considerable, and it significantly decreases the
ccuracy of machined parts. When a 5-axis machine operates in a vicin-
ty of the zero point of the linear axes, the non-linear kinematic error
s trivial and inconsiderable. However, when the machines cut an area
ear to a singular point, the non-linear kinematic error is dramatically
ncreased, since at that points the Jacobian matrix is nearly degener-
ted, and the condition number of the Jacobian matrix approaches to
nfinity. As compared with other machines, the machines Type III and
V have a very small and stable non-linear kinematic error for the whole
omain of the linear axes. This is a very important advantage of the ma-
hines, especially for the case that a very large workpiece is machined
ith a very large number of NC blocks. With respect to this criterion,

he machines Type I and II suffer from a critical disadvantage. For these
achines, the non-linear kinematic error is not only large but also sig-
ificantly increased when the absolute value of the machine coordinates
ncreased. To machine an identical large surface (an identical number
f CL points generated by a CAM system), a much larger number of NC
locks is required for the machines Type I and II, in comparison with
he machines Type III and IV. This is because much more interpolated
oints must be inserted in between the CL points to keep the machining
rror within a permitted tolerance. 

In summary, each machine type has both advantages and disadvan-
ages. The machines Type I and II have some main advantages over other
achines such as the higher manipulability, the higher dexterity and

he larger non-singular range of the machine coordinates. Especially,
he machines Type II have the highest dexterity index. It is clear that
hese machine configurations with two rotary axes on the table tend to
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ove more flexibly than those having the two rotational axes on the
pindle head. These machines can operate with a larger range of the
ilt angle, roll angle and joint variables without singularity. However,
hey also have several disadvantages such as the large and unstable non-
inear kinematic error, the low level of the mechanical advantage, the
igh level of the positioning error amplification, the large number of
C blocks in a NC program. These machines, especially the machines
ype II, are strongly recommended to machine parts consisting of com-
lex sculptured surfaces of high curvature, and complex parts with small
olume. Nevertheless, owing to the structural advantage, the machines
ype II is capable of machining larger workpieces. Note that the non-

inear kinematic error of these machines are large and increased along
ith the increase of the movements X, Y and Z. Therefore, when ma-

hining surfaces with high accuracy requirement, it is necessary to im-
lement the tool path linearization procedure to interpolate and insert
ntermediate NC blocks in the NC programs. In addition, the position-
ng error of the cutter needs to be checked frequently since the effect of
he positioning errors of the five joint displacements on the volumetric
ositioning error at the tool tip is a noticeable concern. 

The machines Type III and IV have important advantages. The first
ne is that the non-linear kinematic error of these machines is very small
nd unvarying along with the entire domain of the linear axes that en-
ures the accuracy of the machining process. The second advantage is
hat they consume less power, since less driving torques/forces are re-
uired (small condition number 𝜅( J )) when compared with other ma-
hine types. The third advantage of these machines is that the ampli-
cation of the positioning errors of the five displacements is small and
nchanged for the whole domain of the linear displacements. There-
ore, the positioning error at the tooltip due to the positioning er-
ors of the five individual motions of a machine Type III and IV is
ower than that of other machines. In addition, for these machine types,
he higher control resolution in the tasks pace can be archived. All
ypes of large workpieces comprised of surfaces with not very high
urvature should be recommended to be machined with these ma-
hine types. However, the orientation of the tool of these machines
elative to the workpiece is not so flexible. Moreover, the design and
mplementation of two rotary axes on the tool chain with a nutat-
ng spindle head for a 5-axis CNC machine could be very complex.
he stiffness of an inclined spindle head is also a critical issue for the
achines. 

Note that the machines Type V and VI which incorporate one rotary
xis on the tool carrying chain and another one rotary axis on the work-
iece carrying chain are, however, combining most of the disadvantages
f both previous types of machines and are often used for the produc-
ion of smaller workpieces. The application range of this machine type
s about the same as with machines with two rotation axes implemented

n the table. 

Table 5 

The kinematic equations for the two rotary axes of 5-axis CNC

q u q v Forward kinematics 

A B 

𝑖 = sin 𝐵 
𝑗 = − sin 𝐴 cos 𝐵 
𝑘 = cos 𝐴 cos 𝐵 

B A 

𝑖 = sin 𝐵 cos 𝐴 
𝑗 = − sin 𝐴 
𝑘 = cos 𝐴 cos 𝐵 

C A 

𝑖 = sin 𝐶 sin 𝐴 
𝑗 = − cos 𝐶 sin 𝐴 
𝑘 = cos 𝐴 

B 

𝑖 = cos 𝐶 sin 𝐵 
𝑗 = sin 𝐶 sin 𝐵 
𝑘 = cos 𝐵 

B (inclined at 𝛼) 

𝑖 = − sin 𝛼 cos 𝐶 sin 𝐵 + sin 𝛼 cos 𝛼 sin 𝐶( 1 
𝑗 = sin 𝛼 sin 𝐶 sin 𝐵 + sin 𝛼 cos 𝛼 cos 𝐶( 1 −
𝑘 = cos 2 𝛼( 1 − cos 𝐵 ) + cos 𝐵 
. Discussions and conclusion 

Owing to the particular architecture of the 5-axis CNC machines, the
eneric kinematics model of the machines has four special properties, as
ompared with other CNC machine types and industrial robots. In this
aper, these properties have proved in a generalized case so as to make
ossible the formulation, evaluation and comparison of the kinematic
erformances of different 5-axis machines. It was shown that the com-
arison of the machines plays an important role in selecting suitable
achines for specific applications, and in synthesizing optimal 5-axis
echanisms for new machine designs. 

It has also shown that, the four properties of the generic kinematics
odel proved in this study are useful not only for the purpose of com-
aring the machines, but also for other important purposes. The use of
roperties 1 and 2 is very helpful for modeling the kinematic tool path
rror around singularities of the 5-axis CNC machines that was presented
n [2] . By applying the properties, the singular points of any 5-axis CNC
achine can be effectively identified and analysed with Det ( J RR ) = 0, in-

tead of Det ( J ) = 0. Moreover, since Det ( J RR ) is a function of merely one
ariable q v , the computational complexity of the algorithm constructed
or minimizing the kinematic tool path error in [2] is significantly re-
uced. 

Another important application of the formulated kinematics model
nd its properties is that the inverse kinematic equations for the two
otary axes of 5-axis machines, which are necessary for the postprocessor
evelopment can be established in an effective and generalized manner.

Table 5 presents all possible combinations of the primary and sec-
ndary rotary axes q u and q v . Note that for the cases q u = A or q u = B ,
he combinations CA and CB are not practical because the movement of
he axis C coincides with the rotation of the spindle. The forward kine-
atic equations for the two rotary axes can be immediately formulated
ith Eq. (27) . Thus, the inverse kinematic equations in a closed form is

ffectively calculated accordingly. The kinematic equations for all the
achines are presented in Table 5 . It is clear that these kinematic equa-

ions are explicitly expressed in a closed form. Therefore, the method
roposed in this study for formulating the kinematic equations for the
wo rotary axes is more effective and advantageous, when compared
ith other methods [19,23–25] . When developing an individual post-
rocessor for a given 5-axis CNC machine, the user just looks up the
nverse kinematic equations for the two rotary axes in the last column
f Table 5 . 

Note that, the following notes should be carefully considered when
ooking up the inverse kinematic equations in Table 5 . 

a) The coordinate systems O t x t y t z t ,O w x w y w z w and O 0 x 0 y 0 z 0 must be
parallel, and their corresponding axes must point in the same di-
rection. 
 machines. 

Inverse kinematics 

𝐴 = arctan 2( − 𝑗, 𝑘 ) 
𝐵 = arcsin ( 𝑖 ) 

𝐵 = arctan 2( 𝑖, 𝑘 ) 
𝐴 = arcsin ( − 𝑗 ) 

𝐶 = arctan 2( − 𝑖, 𝑗 ) 
𝐴 = arccos ( 𝑘 ) 

𝐶 = arctan 2( 𝑗, 𝑖 ) 
𝐵 = arccos ( 𝑘 ) 

− cos 𝐵 ) 
 cos 𝐵 ) 

𝐵 = arccos ( ( 𝑘 − cos 2 𝛼)∕ sin 2 𝛼) 

𝐶 = arctan 2( 𝑗 sin 𝛼 sin 𝐵 + 𝑖 sin 𝛼 cos 𝛼( 1 − cos 𝐵 ) , 
− 𝑖 sin 𝛼 sin 𝐵 + 𝑗 sin 𝛼 cos 𝛼( 1 − cos 𝐵 ) 

) 
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b) If the positive direction of a rotary axis of the machine under con-
sideration does not comply with the Right-hand rule, the sign of the
corresponding joint variable in Table 5 must be changed. For exam-
ple, with the machine DMU 50e presented in [17] , the sign of the
variables must be changed as B = − B and C = − C when looking for
the kinematic equations in the last row of Table 5 . 

In conclusion, a new differential kinematics model of the 5-axis CNC
achines was successfully formulated in this paper. In particular, four

mportant properties of the kinematics model have been proved in a
eneralized case, so that the kinematic performances of the 5-axis CNC
achines can be evaluated effectively. It was shown that, the gener-

lized kinematics model and its properties presented in this study are
dvantageous and useful for several purposes such as the comparison of
he kinematic performances of the 5-axis CNC machines, the minimiza-
ion of the tool path error around singularities, and the development of
-axis postprocessors. 

The evaluation and comparison of the kinematic performances of
he six basic types of 5-axis machines have revealed that the machines
Type I and II) with both rotary axes on the table have some main ad-
antages over other machines such as the higher manipulability, the
igher dexterity and the larger non-singular range of the machine co-
rdinates. Especially, the machines Type II have the highest dexterity.
ence, these machines tend to move more flexibly than those having

he two rotational axes on the spindle head. These machines can oper-
te with a larger range of the tilt angle, roll angle and joint variables
ithout singularity. However, they also have critical disadvantages such
s the large and unstable non-linear kinematic error, the low level of the
echanical advantage, the high level of the positioning error amplifica-

ion, and the large number of NC blocks in a NC program. In contrast,
he machines with two rotary axes on the spindle head (Type III and IV)
ossess a lower flexibility when orientating the tool axis relative to the
orkpiece. However, these machines have some special advantages. The
rst advantage is that the non-linear kinematic error is very small and
nchanged along with the entire domain of the linear axes that ensures
he accuracy of the machining process. The second advantage is that
he machines consume less energy, since less driving torques/forces are
equired, as compared with other machine types. The third advantage
s that the positioning error at the tooltip due to the amplification of the
ositioning errors of the five axes of a machine is smaller than that of
ther machines. For these machine types, the higher control resolution
n the workspace can be archived as well. 

Finally, it was shown that the comparison of the machines is use-
ul when selecting suitable machines for given applications, especially
hen analysing new conceptual designs of a 5-axis CNC machine. 

Experimental investigation on the non-linear kinematic tool path er-
or of all typical types of 5-axis CNC machines will be the future work
f this research. 
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