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Abstract—This paper investigates a transfer learning appli-
cation for predicting software faults. Detecting faulty modules
in software projects is challenging due to two main issues 1)
the low quality of existing handcrafted features leads to the bad
performance of traditional learning models and 2) the shortage of
annotated data hinders applying deep neural networks. Recently,
transfer learning is a good solution to train deep neural networks
with insufficient data. Our experiments for tasks of within-
project and cross-project software fault prediction have shown
the transferable possibility among project data. As a result, the
performance of the base model is significantly improved and
achieves competitive results with the state of the art method.

Index Terms—Within-project Prediction, Cross-project Predic-
tion, Convolutional Neural Networks, Transfer Learning.

I. INTRODUCTION

Timely predicting faulty modules in projects by analyzing
source code brings many benefits to the software industry.
This saves the effort of fixing bugs and therefore reduces the
development time and software cost. A common approach for
software fault prediction (SFP) is applying machine learning
on handcrafted features called software metrics, [5]. A soft-
ware metric is to evaluate some properties of code snippets or
its specifications, e.g. the number of operators and operands.
The biggest challenge of software metrics-based approaches
is designing a set of good features with high relevance to
the causes of software faults. Recently, deep learning has
been investigated for source code analysis problems due to
the ability to automatically learn programs’ features [12].
However, deep learning requires a huge amount of data for
training the predictive models. This requirement is an obstacle
when adapting deep learning to software fault prediction
because of limited annotated data. To overcome the obstacle,
this paper utilizes transfer learning techniques to leverage the
data among different software projects.

Nowadays, deep neural networks with transfer learning
have made many breakthroughs in many domains including
computer vision and natural language processing (NLP) [4],
[14]. Automatically learning high-level features is a highlight
of deep neural networks, but the training process needs a
large amount of data to be converged. Transfer learning
leverages the data from other sources to pretrain the model,
and then fine-tune on the current problem with limited data.
The efficiency of transfer learning can be illustrated via BERT
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[4] and XLNet [14]. Due to the integration of transformers into
pretraining, the two models reached state-of-the-art perfor-
mance on a wide range of NLP problems including sentiment
analysis, document ranking, question answering, and natural
language inference.

The motivation for utilizing transfer learning for software
fault prediction problems comes from two main reasons 1)
limited data and 2) the transferable knowledge among projects.
Firstly, collecting a large number of source files with corre-
sponding faults is difficult in practice. For this reason, most
of the datasets for SFP problems are limited and imbalanced
[15]. Secondly, different projects can have common mistakes
in programming languages such as null pointer dereference,
buffer overflow, and access violations. Therefore, transfer
learning can be a good solution to overcome the obstacles
of SFP problems.

In summary, the main contributions of the paper can be
presented as follows:

« Investigating the transfer learning to deal with data short-

age in software-fault prediction.

o Proposing two scenarios to leverage software data among
projects, and experimentally proving the efficiency on two
main tasks being predicting faults in a project and among
projects.

o Applying an unsupervised learning algorithm to train
vector representations for assembly instructions.

The rest of the paper is structured as follows: Section
IT surveys studies related to software fault prediction and
transfer learning. The based model architecture and scenarios
in adapting transfer learning are specified in Section III.
Section IV presents the baselines and hyperparameter settings.
Section V discusses the experimental results and Section VI
concludes the findings.

II. RELATED WORK
A. Software fault prediction

Detecting faulty modules in projects has great significance
in software engineering industry. Given a source code, the task
is determining whether the code contains bugs (faulty) or not
(clean). Existing bugs in software components is unavoidable
due to numerous causes like incorrect design, programmers’
skills, and the deployment environment. According to practical
statistics, fixing bugs after deployment very take time, cost
money, and affect to the company reputation. Software fault
prediction systems are useful tools for the software industry.



There are two main approaches for SFP problems: (1)
applying common learning algorithms on handcrafted features
called software metrics, and (2) automatically learning pro-
gram features by deep neural networks. For the first approach,
different software metrics have been designed to estimate the
relevance of programs to bugs [7]. Other studies made new
metrics by combining the available ones [6]. Based on a set
of metrics, different machine learning algorithms are applied
to build predictive models such as k-nearest neighbors, support
vector machines, and neural networks [5]. However, the low
quality of software metrics hinder this approach from reaching
high accuracy. According to previous studies and analysis,
most of current software metrics are statistical measures and
they are not highly relevant to the causes of semantic bugs.
Recently, researchers have focused on developing deep neural
networks to learn program features automatically. In [8], au-
thors used a tree-structured network to classify programs based
on abstract syntax trees. In [10], authors applied convolutional
neural networks on assembly instruction sequences obtained
by compiling source files.

B. Within-project prediction and Cross-project prediction

Preparing data and training models for predicting software
faults can be performed by two ways namely within-project
and cross-project. Within-project is using the historical or
partial data of a project to train predictive models. In the
scenario of partial data, project modules are separated into
training and test sets, or k parts to conduct k— fold cross
validation [5]. However, the lack of data leads to the low
performance of this method. One solution is using historical
data in which the model is pretrained on previous versions of
the project to predict the bugs for the new version. The issue
is that many data samples may appear in both training and test
sets because some modules remain unchanged.

Unlikely, cross-project uses other projects to train the model
for the current project [2]. The motivation behind leveraging
data from other sources is that common semantic faults of
a programming language may appear in any project. For
example, the fault of division by zero can happen anywhere
having division. Cross-project aims to tackle the data shortage
in the case of within-project prediction. However, since the
different data distributions, the model may not generalise to
some specific bugs in the target project. Considering rounding
operators in a statement, the operators can be a fault of
arithmetic precision or clean depending the use scenario.

C. Transfer learning

Recent studies have shown that transfer learning brings deep
neural networks closer to practical applications. The key of
the success is solving the major challenge of data shortage
by reusing the model trained on other tasks. Deep learning
with pretrained models has made breakthroughs in many areas
including image, natural language, and speech processing [1].

The process of transfer learning is illustrated in the Fig. 1.
Instead of training from scratch, we first develop the model
on a source task that has numerous data and reuse the model
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Fig. 1. Learning process of transfer learning.

for the target task. Two transfer learning scenarios include 1)
fixed feature extractor and 2) fine-tuning. In the first scenario,
the final layer is removed and the remainder of the model is
used as a feature extractor for the new dataset. After having
features, we can build any classifier like softmax or support
vector machines. This scenario is suitable for new datasets
that are small and similar to the source. For large datasets, the
second scenario is commonly adopted. We continue training
the whole or some layers of the model from the pretrained.

III. DEEP TRANSFER LEARNING FOR FAULT PREDICTION

This section introduces the method to leverage data among
software projects to build classifiers. We first describe the
base model, then present two scenarios of transfer learning
for within and cross-project fault prediction.

A. Sequence-based Convolutional Neural Networks

Our research predicts faulty software modules based on
their assembly instruction sequences. Basically, the faults are
relevant to the behavior of the program in a specific case and
revealed during the execution process. For example, given C
statement x = y + 3 where the data type of x and y is
int, a fault occurs when the value of the right expression is
out of the int range. Due to having a one-to-one relationship
with machine code, assembly instructions can reveal program
behavior rather than software metrics or other representations
like abstract syntax trees (ASTs). For these reasons, assembly
instructions have been proved to be beneficial to software fault
prediction [10], [12].

To learn software faults from assembly instruction se-
quences, we use a multi-layer convolutional neural network
as shown in Fig. 2. The network includes layers of input,
embedding, convolution, pooling and fully-connected. Each
input is the assembly instruction sequence of a program
obtained by compiling the source code. We use an embedding
layer that maps a single instruction into a vector to generate
the embedding matrix N X d = z1 ® 22 & ... & xy for
the input, where, N is the max sequence length and d is
the vector dimension; z;,..,zy are real-valued vectors of
the instructions and @ is the concatenation operation. All
sequences are padded to the same length with the longest one.
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Fig. 2. A sequence-based convolutional neural network for software fault prediction.

Convolutional layers are the key layers of the network.
These layers apply a set of filters sliding over the input data
to automatically capture the local features at multi-levels of
abstraction. For example, a filter with the window size of 2
will learn the relationships of two consecutive instructions.
A convolution operation just transforms the data, and remains
the length of the input. Formally, given an input sequence with
vector representations X = {x1, 2, ..., £}, a filter outputs a
feature map with the same length C = {c;,ca, ...,cn }.

ci = fW T[iqn—1) +b) (D

where W € R"*4 p e R is the bias, and the function fis
the activation.

By adding more convolutional layers, the network can
learn more abstract features, and potentially achieve better
performance. However, deeper networks are more difficult to
train because of vanishing gradient and overfitting problems.
Thus, selecting a suitable configuration of convolutional layers
is very important.

Pooling layers are to perform dimension reduction of the
feature maps and preserve the essential information. As men-
tioned above, convolution operations remain the input shape.
Besides, embedding matrices are high-dimensional since they
are the concatenation of thousands of instruction vectors
(Table I). For these reasons, reducing the data dimension and
the network weights is needed to avoid overfitting. In this
scenario, the use of a pooling layer following a convolution
is an efficient solution in terms of computational time and
implementation.

Downsampling is done separately for each feature map.
Some popular pooling functions are max, average, and
L2 — norm. Taking maz pooling as an example, the function
will pick the largest value among considered items. The
pooling function applies the operation on sub-regions of the
feature map to spatially resize it. As illustrated in Fig. 2,
given the window size of 2, the max operation will take max
over two numbers (little region 2 x 1 of the feature map). In
summary, the pooling layer will accept the input of N x F'
and produce the output of N/S + 1 x F, where N, F, and
S are the sequence length, the number of the feature map,
and the window size, correspondingly. According to many
experiments, max operations have proved better performance
than the other ones [3].

In the model, the intermediate pooling layers with a filter
size of 2 gradually down the sequence a half. The last pooling
layer gathers all information extracted by the convolutional
layers to form a feature vector. In this case, we apply the
global max-pooling where each feature map is only pooled
into a single value.

Fully connected layers are added on the top of the model
to build the classifier from the feature vectors learned in
the convolution process. We use two fully connected layers,
in which the last layer comes with softmax activation to
convert the output values into distribution probabilities for
classification.

B. Transfer learning for within-project prediction

A highlight of deep neural networks is that they can
automatically learn high-quality features. The project mod-
ules are divided into training, validation, and test sets. After
training the network using the training and validation sets,
we remove fully connected layers and select the rest as the
feature extractor. The feature extractor then is applied to
produce feature vectors for the whole dataset. Finally, we
use the features to train support vector machines (SVMs),
and k-nearest neighbors (kNN) classifiers for predicting faulty
modules.

C. Transfer learning for cross-project prediction

The research question is whether it is possible to leverage
programs from different projects to train the classifier. In a
programming language, many software modules may have
the same issues. For example, the array index out of
range exception, where we access an item with the index
exceeding the array size may appear at any code snippet that
manipulates the array data regardless of projects. To verify
the research question, we conduct cross-project prediction by
training the network on data of other projects and use the
model as a feature extractor or fine-tune model on the current
project.

IV. EXPERIMENTS

A. Datasets

We conducted experiments on 4 datasets as in [10] namely
SUMTRAIN, FLOWO016, MNMX, and SUBINC. Each dataset
contains all code submissions to solve a problem on CodeChef



TABLE I
STATISTICS ON FOUR DATASETS ABOUT THE NUMBER OF INSTANCES AND
SEQUENCE LENGTH.

Dataset Total # # # # # Max
atase Class 0 Class 1 Class 2 Class 3 Class 4 length
FLOWO16 10,648 3,472 4,165 231 2,368 412 1,246
MNMX 8,745 5,157 3,073 189 113 213 3073
SUBINC 6,484 3,263 2,685 206 98 232 1,245
SUMTRIAN 21,187 9,132 6,948 419 2,701 1,987 2,095
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Fig. 3. Visualization of instruction embeddings trained by GLOVE.

!, After collecting, the data were preprocessed by removing
source files with syntactic errors.

A program is evaluated as one of five outcomes 0) clean
- the program can run successfully and produce the correct
result; 1) time limit exceeded - the inefficient implementation
that makes program unable to finish the job within the time
limit; 2) the wrong answer - the output does not match the
expected result; 3) run-time error - the execution flow is
interrupted due to semantic error such as index out of range
when manipulating array data, or null-pointer exception when
using a pointer; 4) syntax error - the compiler of CodeChef
can not compile the program.

Table I shows data statistics on the datasets. As can be seen,
all of the datasets are imbalanced and instruction sequences are
very long. Considering MNMX dataset, the instance numbers
of classes 0 and 1 are much bigger than those of classes 2,
3, 4. Moreover, the instruction sequence length is up to three
thousand. Each dataset is randomly split by the ratio 3:1:1 for
training, validation, and testing as in [10]. .

B. Instruction embedding

To obtain instruction vector representations, we apply an
unsupervised learning algorithm namely GLOVE [9]. GLOVE
originally is used to produce word vectors in natural languages.

Thttps://www.codechef.com/problems/(problem-name)

TABLE II
THE CONFUSION MATRIX

Actual
I -1
1 True Positives (TP) False Positives (FP)
-1 False Negatives (FN)  True Negatives (TN)

Predicted

The embedding model is trained on statistics of global word-
word co-occurrences in the corpus.

We collect assembly instructions of programs from all
projects to form the corpus and train GLOVE model. The cor-
pus has 174 instructions and the vector dimension is 30. Fig. 3
visualizes the vector representations of assembly instructions.
We observe that instructions having similar functions are
relevant on the vector space. For example, cmov1 and cmovge
are similar since they are data transfer instructions.

C. Hyper parameters

To verify the performance of transfer learning, we compare
various approaches including feature-based, and deep neural
networks on tree and assembly instruction sequence represen-
tations. The model parameters are initialized as follows:

Deep neural networks include some convolution structures
based on assembly instructions (ASCNN) [10], abstract syntax
trees (TBCNN) [8] and sibling-subtree (SibStCNN) [11], and
recursive neural networks (RvNN) [13]. These networks share
common hyperparameters including tanh activation function,
the initial learning rate of 0.1, instruction embedding dimen-
sion of 30.

k-nearest neighbors (kNN) The distance metrics for kNN
are tree edit distance (TED) for abstract syntax trees (ASTs),
Levenshtein distance (LD) for AST token sequences, and the
Euclidean distance for feature vectors extracted by the transfer
learning methods. The number of nearest neighbors & is 3.

Support Vector Machines (SVMs) Two SVM classifiers
with RBF kernel are applied on bag-of-words (BoW) that
counts the instruction occurrences, and the features extracted
from the CNN. Two parameters C' and ~ are selected as 1 and
0, respectively

D. Evaluation Measures

Two measures of accuracy and F1 are used to evaluate
the models’ performance in which F1 is preferred since the
datasets are imbalanced. Two such measures can be computed
based on the confusion matrix. Considering the case of binary
classification in which samples are grouped into one of two
classes +1 (positive) or —1 (negative). The accuracy and F1
are calculated by the formulas below:

TP+ TN

A - 2
Y = rp Y FN+ FP+ TN @

Fl—9x precz:si.on x recall 3)
precision + recall

_ TP TP
where recall = 75

‘ W an(.i precision = TP+FP"
For multiclass classification, there are some methods to

compute the F1. Since the datasets are imbalanced, weighted



TABLE III
PERFORMANCE COMPARISON AMONG APPROACHES ACCORDING TO ACCURACY AND F1. THE SUPERSCRIPT ¢ AND w INDICATE THE CASES OF CROSS
AND WITHIN PREDICTION.

Approach FLOWO016 MNMX SUBINC SUMTRIAN
Acc. F1 Acc. F1 Acc. F1 Acc. F1
SVM-BoW 60.00 58.64 77.53 75.00 67.23 65.75 64.87 63.82
kNN-LD 60.75 60.61 79.13 77.89 66.62 66.36 65.81 65.73
kNN-TED 61.69 61.56 80.73 79.55 68.31 68.03 66.97 66.83
RvNN 61.03 58.98 82.56 80.48 64.53 62.07 58.82 56.29
TBCNN 63.10 61.85 82.45 80.94 63.99 62.13 65.05 63.35
SibStCNN 62.25 61.15 82.85 81.04 67.69 65.15 65.10 63.20
ASCNN 72.11 71.36 83.53 82.18 73.79 73.08 69.07 69.04
CNN 74.13* 73.20* 80.79* 79.97* 69.24*  68.89* 66.75*  66.82*
Transfer-SVM¢ 73.71 72.63 82.85 81.28 72.47 72.00 69.89 69.22
Transfer-kNN¢ 69.15 68.14 80.50 78.81 70.39 68.89 67.93 67.16
Transfer-SVMY 75.35 74.37 83.13 81.85 72.86 72.47 70.93 70.45
Transfer-k NNV 7291 71.79 81.99 80.69 72.71 72.07 68.95 68.33

F1 should be selected. Firstly, we calculate the metrics for all
labels and then take the average weighted according to the
number of samples for each label.

V. RESULTS AND DISCUSSION

Table III presents the comparison among the different
classifiers according to accuracy and F1. Our CNN model is
compatible with assembly instruction sequence-based methods
that achieve higher performance than those of feature-based
and AST-based.

For within-project prediction, the SVM classifier improves
the base CNNs significantly on all the datasets. Specifically,
in terms of accuracy, it can improve from 74.13% to 75.35%
on FLOWO0I16, from 80.79% to 83.13% on MNMX, from
69.24% to 72.86% on SUBINC, and from 66.75% to 70.93%
on SUMTRIAN.

For cross-project prediction, the SVM classifier overcomes
the base CNN model on three datasets including MNMX,
SUBINC, and SUMTRIAN. On FLOWOL16, the performance
is slightly downgraded. Interestingly, in this case, the network
is trained totally by the data from other projects. Taking
FLOWO16 as an example, we use the data from the rest
projects to build the feature extractor for FLOWO016. Accord-
ing to the above analysis, we can confirm that software projects
share common information and leveraging data among projects
is beneficial.

It should be noted that, transfer learning can extract high-
quality features. Considering kNN classifier with different
features including LD, TED, within-project transfer, and cross-
project transfer, we can see that kNN with transfer learning
achieve higher performance than kNN with other features. This
phenomenon is also similar to the case of SVM.

VI. CONCLUSION

In this paper, we verify the efficiency of transfer learning
on two main tasks of software fault prediction. We also
adopt an unsupervised learning algorithm and observe the

quality of assembly instruction embeddings. Our experimental
results confirm that since the programs can share common
information, leveraging data among projects is beneficial to
software fault prediction.
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