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Abstract—Many-objective optimization problems (MaOPs)
cause serious difficulties for existing multi-objective evolutionary
algorithms (MOEAs). One common way to alleviate these diffi-
culties is to use objective dimensionality reduction. Most existing
objective reduction methods are time-consuming because they
require to run MOEAs to numerous generation. Pareto corner
search evolutionary algorithm (PCSEA) was proposed in [21] to
speed up objective reduction methods by only seeking corner
solutions instead of whole solutions. However, the PCSEA-based
objective reduction method in [21] needs to predefine a threshold
to select objectives which strongly depends on problems and
is not straightforward to obtain. This paper proposes a new
objective dimensionality reduction method by integrating PCSEA
and principal component analysis (PCA). Thanks to combining
advantages of PCSEA and PCA, the proposed method not only
can be efficient to eliminate redundant objectives, but also not
require to define any parameter in advanced. The experimental
results also show that the proposed method can perform objective
reduction more successfully than the PCSEA-based objective
reduction method.

Index Terms—many-objective optimization, objective dimen-
sionality reduction, feature selection, evolutionary computation

I. INTRODUCTION

In the real world, there often exist problems with more
than one objective conflicting to each other which is often
referred as multi-objective problems (MOPs) [18]. In an MOP,
different solutions are likely to have an advantage over other
objectives, so the Pareto dominance concept is commonly-
used to compare different solutions. Most common multi-
objective optimization algorithms try to approximate the ob-
jective Pareto Front space so that no further enhancement on
any objective can achieve without lossing the quality of other
objectives [15].

One of the most common approach to dealing with these
problems is to use evolutionary computation (EC) techniques
such as genetic algorithms and particle swarm optimiza-
tion [9]. EC has many advantages including the simplic-
ity of the approach, broad applicability, outperforming tra-
ditional methods on real problems, and the capability for

self-optimization [10]. Multi-objective evolutionary algorithms
(MOEAs) refer to algorithms using EC technique to evolve
solutions for MOPs. MOEAs can evolve multiple solutions
in a single run, and they can achieve better solutions than
traditional methods. For example, NSGA-II [6] is one of the
most well-know MOEAs.

MOPs with more than three objectives are usually regarded
as MaOPs. When dealing with these MaOPs, MOEAs en-
counter a number of obstacles. Firstly, with Pareto-based
MOEAs, a large portion of population becomes the non-
dominated, so it is difficult to select candidates for next gener-
ation. Moreover, the size of population increases exponentially
when approximating the entire Pareto Front. Finally, it is
difficult to envision solutions for decision makers to select
a final solution [14].

Approach to solving MaOPs can be categorised to two
groups. The first group assumes that there is not any redundant
objective in a given problem, and the methods in first group,
such as NSGA-III [5], KnEA [26], try to directly eliminate the
difficulties encountered. In contrast, the second group supposes
that there remain redundant objectives in the given problem,
and the methods in second group, such as PCA-NSGA-II [7],
L-PCA [20], try to remove the redundant objective before us-
ing MOEAs to search for Pareto Front. By removing redundant
objectives, the objective reduction approach has three main
advantages. Firstly, it can reduce the computational load of an
MaOEA, i.e. it makes less time to operate and less space to
store. Furthermore, the problem with less objectives can be
solved by other MOEAs. Finally, it can help decision makers
understand the MaOP better by pointing out the redundant
objectives [17], [20].

Objective reduction methods can be divided into structure-
based methods and correlation-based methods. The structure-
based methods try to retain the dominance relations as much
as possible when removing redundant objectives. The Exact
and Greedy algorithms in [2] and the PCSEA-based objective
dimensionality reduction in [21] are examples of the first
approach. The correlation-based methods use metrics such as



correlation or mutual information to evaluate the relation be-
tween objectives of non-dominated solutions, then objectives
that are low conflict, or non-conflict to other are removed while
others are retained [12], [19].

Both the two objective reduction approaches need an ap-
proximate nondominated solution set which is generated by
MOEAs/MaOEAs. However, these evolutionary algorithms
often target the set covering the whole true Pareto front.
Because of requiring MOEAs/MaOEAs for evolving whole
Pareto Front, most existing objective dimensionality reduction
methods require a large of calculation, especially when solving
problems having numerous objectives.

In contrast to most existing methods, Pareto corner search
evolutionary algorithm (PCSEA) in [21] only seeks for a few
key solutions which locate in the corners of Pareto front. As a
result, the complexity of the PCSEA-based objective reduction
method is much faster than others methods. However, the
PCSEA-based objective dimensionality reduction method re-
quires to define a threshold to remove redundant objectives and
keep relevant objectives. Moreover, the experimental results in
this paper show that the threshold strongly depends on each
problem, but the threshold was fixed in [21]. Therefore, this
paper proposes a new method to alleviate the limitation of the
PCSEA-based objective dimensionality reduction method by
using principal component analysis for performing objective
reduction. Results show that the proposed method can perform
objective reduction effectively and efficiently.

The rest of this paper is organized as follows. Section II
shows an overview of related work. Section III presents the
proposed algorithm. Section IV shows experimental design.
Section V presents the result and discussion. Section VI makes
conclusion and state future work.

II. RELATED WORK

A. Multi and Many-objective Optimization

MOP as defined as follows [18]:

minimize f = {f1(x), f2(x), ..., fk(x)}
subject to x ∈ Ω

(1)

where there are k (≥ 2) objective function fi : Rn → R.
The decision vectors x = (x1, x2, ..., xn)T belongs to feasible
region Ω, which is a subset of decision variable space Rn. All
of k objective functions need to be minimized simultaneously.
The image of region by Z = f(Ω), which is a subset of the
objective space Rk is called the feasible objective region. The
elements of Z are called objective vectors and denoted by f(x)
or z = (zl, z2, ..., zk)T , where zi = fi(x) for all i = 1, ..., k
are objective values.

In order to solve MOPs, there exist two main techniques
that are weighted sum technique and evolutionary computation
based technique. The weighted sum technique solves MOPs
by converting the problem into a single objective optimization
problem. After conversion, the new problem has a single
objective function, then it can be solved by using developed
theory and methods for single objective optimization [18].

The evolutionary computation-based technique solves the
MOP by using evolutionary algorithms to approximate optimal
solutions. By evolving a population of solutions, MOEAs are
able to approximate a set of optimal solutions in a single run
and can be applied to any problem that can be formulated
as a function optimization task. Plenty of MOEAs have
been proposed. Some well-known MOEAs are nondominated
sorting genetic algorithm II (NSGA-II) [6], Pareto archived
evolution strategy (PAES) [16], multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [24].

When MOPs with more than three objectives which are
considered as MaOPs. When tackling these MaOPs, MOEAs
encounter a number of difficulties. First, when applying
Pareto-dominance based MOEAs such as NSGAII [6] to solve
MaOPs, a large portion of population becomes non-dominated,
so we cannot determine which solutions are better for next
generation. When using aggregation-based or indicator-based
approaches such as IBEA [27], they still have to search simul-
taneously in an exponentially increasing number of directions.
Second, the size of population has to increase exponentially to
describe the front result [14]. Third, visualization the solution
set is difficult to help decision makers to choose the final
solution [14].

MaOEAs, which are proposed to solve MaOPs, can be
categorized into 2 classes. The first class supposes that there
is no redundant objectives in a given problem and try to
directly alleviate or eliminate the difficulties encountered. It
includes sub-classes: preference ordering relation-based, pref-
erence incorporation-based, indicator-based, decomposition-
based. MaOEAs such as reference-point based non-dominated
sorting (NSGA-III) [5], grid-based evolutionary algorithm
(GrEA) [22], and knee point driven evolutionary algorithm
(KnEA) [26] belong to the first class. In contrast to the first
class, the second one supposes that there remain redundant
objectives in the given problem, and try to find a minimum
subset of the original objectives which can generate the same
Pareto Front as whole original objectives do. This class is
presented more detail in sub-section II-B below.

B. Objective Dimensionality Reduction

Dimensionality reduction is often used to avoid the curse
of dimensionality from experimental life sciences. In general,
dimensionality reduction methods is used to reduce large
feature spaces to smaller feature spaces. There exist two
approaches in dimensionality reduction: feature extraction and
feature selection. Using feature extraction to extract a set
of features to explain data. Feature extraction formulates
the reduced features as a linear combination of the original
features. Feature selection is utilized to find the smallest subset
of the given features in order to represent the given data
best. Dimensionality reduction brings several benefits such as
reducing the storage space or time performance required.

In evolutionary multiobjective optimization, objectives are
considered as features. There also exist 2 approaches in
objective reduction: objective feature extraction and objective
feature selection. Objective feature extraction aims at creating



novel features from the original features to explain data. For
example, authors in [3], [4] formulated the essential/reduced
objective as a linear combination of the original objectives
based on the correlations of each pair of the essential objec-
tives.

Objective feature selection aims at finding the smallest sub-
set of the given objectives in order to generate the same Pareto
Front as the set of original objectives does. This approach can
be classified into 2 sub-classes: Pareto dominance structure
based and correlation based. The former is based on preserving
the dominance relations in the given non-dominated solutions.
That is, dominance structure is retained as much as possible
after removing redundant objectives [1], [2]. The latter bases
on the correlation between each of pairs of objectives. Then
it aims to keep the most conflict objectives and remove the
objectives that are low conflict, or non-conflict each other. This
sub-class measures the conflict between objectives by using the
correlation [20] or mutual information [11] of objective value
of non-dominated solutions.

C. PCA for Objective Dimensionality Reduction

Principal component analysis (PCA) is one of the well-
known dimensionality reduction technique. Based on this
technique, the authors in [20] proposed an algorithm for linear
objective reduction (L-PCA). The idea is to find the smallest
set of conflicting objectives preserving the correlation structure
in the given nondominated population, which is achieved
by removing objectives that are non-conflict or low conflict
along the significant eigenvectors of the correlation matrix.
Algorithm 1 shows framework of L-PCA algorithm.

Algorithm 1: L-PCA objective dimensionality reduc-
tion

Input: t← 0 and Ft ← {f1, f2, ..., fM}
1 begin
2 Obtain a set of non-dominated solutions

corresponding to Ft by run an MOEA/MaOEA
3 Compute a positive semi-definite matrix R(M ×M)

From R, compute the eigenvalues, eigenvectors
4 Perform the Eigenvalue Analysis to identify the set

of important objectives Fe ⊆ Ft

5 Perform the Reduced Correlation Matrix Analysis
to identify the identically correlated subset (S) in
Fe. If there no such subset, Fs ← Fe

6 Identify the most significant objective in each S, to
arrive at Fs, such that Fs ⊆ Fe ⊆ Ft

7 Computation of error
8 if Fs = Ft then
9 Stop and declare Ft as the essential objectives;

10 T ← t and compute the total error
11 else
12 t← t+ 1, Ft ← Fs, and go to Step 2
13 end
14 end

D. Pareto Corner Search Evolutionary Algorithm

Objective dimensionality reduction schemes essentially have
two major components. Those are generation of an approxima-
tion of the Pareto front using a MOEA (NSGAII in [7], [20],
ε−MOEA in [20], MOEA/D in [13], SPEA2-SDE in [23]),
and dimensionality analysis on the obtained approximation of
the Pareto front. Those components may be applied once, or
repetitively to come up with the reduced set of objectives.
However, for generating approximate Pareto Front, an MOEA
has to be run for a large number of generation. Even so,
population may still far away from Pareto front, which might
render extraction of any information regarding dimensional-
ity reduction meaningless. Moreover, MOEAs often search
for approximation to the entire Pareto front. This becomes
impossible even with a large number of solutions set for
high number of objectives. To overcome this difficulty, Pareto
Corner Search Evolutionary Algorithm (PCSEA) [21] is shown
in Algorithm 2, the search is focused on a few key solutions on
the boundaries of Pareto front. These solutions are the “corner”
solutions of the Pareto front where the boundaries intersect.
The corners may be one of cases which are in circles in Fig. 1.

Fig. 1: Different types of Pareto corner solutions (extracted from [21])

Algorithm 2: Framework for PCSEA
Input: Population size N , number of generations NG

1 begin
2 Initialize(pop1)
3 Evaluate(pop1)
4 for i← 2 to NG do
5 childpopi ← Evolve(popi−1)
6 Evaluate(childpopi)
7 S ← CornerSort (popi−1 + childpopi)
8 popi ← S(1 : N)
9 end

10 end

Working of PCSEA is similar to other evolutionary al-
gorithms such as NSGA-II [6]. While NSGA-II uses non-
dominated sorting and crowding distance-based ranking, PC-
SEA uses corner-sort ranking procedure. In corner-sort, based
on individual objective values and L2 norm all-but-one objec-
tives, the solutions are ranked and selected.

Once the corner solutions of the Pareto front are obtained
using PCSEA (in Algorithm 2), the objective dimensionality



Algorithm 3: PCSEA objective reduction algorithm
Input: original objectives FR ← {f1, f2, . . . , fM},

threshold C
Output: reduced objective set FR

1 corner solutions ← PCSEA (choose the unique

non-dominated solutions)
2 foreach m ∈ {1, . . . ,M} do

3 R←
NFR�{fm}

NFR

4 if R > C then
5 FR ← FR�{fm}
6 end
7 end

reduction is performed. The idea is Pareto dominance among
the solutions will be largely depend on the relevant objectives.
That means if one redundant or irrelevant objective is removed
then there is no (or negligible) change in the number of
non-dominated solutions. On the contrary, if one of critical
objectives is discarded, that number is changed significantly.
The PCSEA objective dimensionality reduction algorithm is
shown in Algorithm 3.

The parameter R in line 3 in Algorithm 3 is ratio between
NF and NFR�{fm}, where NF and NFR�{fm} are the number
of non-dominated solutions in F and FR� {fm}, respectively.

III. THE PROPOSED METHOD

The Pareto corner sort evolutionary algorithm (PCSEA)-
based objective reduction in [21] can efficiently remove re-
dundant objectives. However, this algorithm has a number of
limitations. The first limitation is that a threshold C (cutoff
value of R) must be provided before performing objective
reduction. Secondly, the objective dimensionality reduction
algorithm did not consider the importance of the order of
removing redundant objectives. Finally, the algorithm was
tested on DTLZ5 with only a small number of relevant
objectives (specifically 5).

The main purpose of this paper is to take the advantages and
alleviate the limitations of the PCSEA-based objective reduc-
tion method. The proposed method uses the Pareto corner sort
evolutionary algorithm (PCSEA) to generate non-dominated
solutions which are then used by principal component analysis
(PCA) to eliminate redundant objectives. Algorithm 4 show
the main steps of the proposed method. We call the algorithm
PCS-LPCA.

The algorithm has two key ideas. The first idea, the pro-
posed algorithm can take advantages of the PCSEA, which
is able to find some key solutions in the Pareto front with
lower complexity than other MOEAs/MaOEAs. The second
idea, unlike Algorithm 3, the proposed algorithm avoids using
the sensitive parameter threshold C.

The process of the proposed algorithm includes performing
PCSEA (line 2), which finds only solutions lie on “corner”
or intersection of boundaries of Pareto front corresponding re-
main objective set. Then, the unique non-dominated solutions

Algorithm 4: PCS-LPCA objective dimensionality re-
duction algorithm

Input: t ← 0;
original objective set Ft ← {f1, f2, . . . , fM}

Output: reduced objective set Fs

1 repeat
2 P ← PCSEA(Ft) // get corner solutions
3 Pu ← Unique-Nondominated(P ) // Retain the

unique nondominated solutions
4 Fs ← L-PCA(Pu)
5 if Ft = Fs then
6 stop ←true
7 else
8 t ← t+ 1;
9 Ft ← Fs;

10 stop ←false;
11 end
12 until stop;

are retained, while others are discarded (line 3). From solution
set retained and current objective set Ft, L-PCA objective
dimensionality reduction is executed. The reduction (line 4)
works as the same pseudo-code as between line 3 and line 5
in Algorithm 1 do. Fs is objective set after reduction. If
objective set after reduction Fs is same as before reduction
Ft then algorithm exits, otherwise the algorithm loops with
new current objective set (Ft ← Fs as in line 9).

IV. EXPERIMENTAL DESIGN

We do experiment with DTLZ5 problem, PCSEA for gener-
ating non-dominated solutions. Then we compare the proposed
algorithm (PCS-LPCA) with the best corresponding of PCSEA
objective dimensionality reduction.

A. Test Problem

To study, we use DTLZ5(I,M) problem [8], it is defined as:

min f1(x) = (1 + 100g(xM ))cos(θ1)cos(θ2) . . . cos(θM−2)cos(θM−1)

min f2(x) = (1 + 100g(xM ))cos(θ1)cos(θ2) . . . cos(θM−2)sin(θM−1)

min f3(x) = (1 + 100g(xM ))cos(θ1)cos(θ2) . . . sin(θM−2)

. . .
min fM−1(x) = (1 + 100g(xM ))cos(θ1)sin(θ2)

min fM (x) = (1 + 100g(xM ))sin(θ1)

where θi =
π

2
xi for i = 1, 2, ..., (I − 1)

θi =
π

4(1 + g(xM ))
(1 + 2g(xM )xi) for i = I, . . . , (M − 1)

g =
∑

xi∈xM
(xi − 0.5)2

0 ≤ xi ≤ 1 for i = 1, 2, ..., n

The total number of variables is n = M + k − 1, where
k = |xM | = 10. The first property of the problem is that the
dimensionality (I) of the Pareto-optimal front can be changed
by setting I to an integer between 2 and M . The second
one is that Pareto-optimal front is non-convex and follows
the relationship:

∑M
i=1(f∗i ) = 1. The another property is that



there are M − I first objectives correlated, while the others
and one of M − I first objective are conflict each other.
B. Parameter Setting

The experiments are performed on 28 instances of
DTLZ5(I, M) problem. I value is set 5, 10 and 15. M is set
from 10 to 100 at each step 10. The parameters for PCSEA
are set as Table I.

In objective dimensionality reduction algorithms, threshold
C is set equal from 0.55 to 0.95 at each step 0.05, and 0.975,
0.99 for PCSEA objective dimensionality reduction algorithm,
threshold θ is set equal to 0.997 for L-PCA objective dimen-
sionality reduction algorithm. We execute 30 independent runs
for each instance.

TABLE I: The parameters for PCSEA

Parameter Value Parameter Value
population size 200 SBX crossover index 10
number of generations 500 mutation probability 0.1
crossover probability 0.9 polynomial mutation 20

V. RESULTS AND DISCUSSION

A. The dependence of PCSEA reduction algorithm’s result on
threshold

In order to evaluate the affection of threshold on result
we do this experiment. In PCSEA reduction dimensionality
algorithm in Algorithm 3, there is a threshold C parameter.
The algorithm examines each objective by calculating the
value of rate R (the ratio between number of non-dominated
solutions after and before dropping that objective). If R is
greater than threshold C then that objective is remove from
objective set. We test the threshold with values: 0.55, 0.60,
0.65, 0.75, 0.80, 0.85, 0.90, 0.95, 0.975 and 0.99 for 3
instances of DTLZ5(I, M) problem. The problem with values
of I are 5, 10 and 15; values of M are 20, 40, 60. We
execute 30 runs independent for each cases. Fig. 2 shows the
percentage of success in finding relevant objective set.

As we can see from Fig. 2, if I is equal to 5, the range
of threshold C can be from 0.8 to 0.9 the success rate of

Fig. 2: The percentage of success in finding relevant objective set

finding correct redundant is up to 100 percent. When I values
are set to 10, the percentage of success in finding relevant
objectives is best at threshold C equal to 0.95 at the highest
slight smaller than 90 percent. In the list of threshold C, the
highest success is only 20 percent. That can infer that when
the number of relevant objectives increases, the threshold C
need to be set higher and seems to sensitive. Moreover, the
percentage of success in finding correct relevant objective set
becomes lower. So, we can conclude that threshold 0.8 as in
[21] is not an optimal threshold for any problems.

B. Performance of PCS-LPCA objective dimensionality reduc-
tion

This sub-section do comparison the performance of the
proposed method (PCS-LPCA) with existing method, namely
PCSEA objective dimensionality reduction. Table II shows
numbers of successes in finding correct relevant objective set
for PCSEA and PCS-LPCA objective dimensionality reduction
algorithms. The values in PCSEA objective dimensionality
reduction is chosen the best in all cases of threshold C.

To investigate whether results of the objective reduction
algorithms are significant different to each other in a statistical
sense, Wilcoxon signed-rank test is performed. The null hy-
pothesis is that the performance of the two methods are similar
with significant level at 0.05, and the alternative hypothesis
is that the performance of the two methods is significant
different. From the table, we get p-value is 3.8528E-05. It
says that the null hypothesis is rejected or we accept the
alternative hypothesis which means that the two algorithms

TABLE II: Comparison the number of successes in finding
correct relevant objective set in total 30 runs

Problem Number of successes
I M PCSEA Reduction PCS-LPCA

DTLZ5 5 10 30 30
DTLZ5 5 20 30 30
DTLZ5 5 30 30 30
DTLZ5 5 40 30 30
DTLZ5 5 50 30 30
DTLZ5 5 60 30 30
DTLZ5 5 70 27 28
DTLZ5 5 80 28 29
DTLZ5 5 90 23 27
DTLZ5 5 100 22 28
DTLZ5 10 20 21 28
DTLZ5 10 30 25 27
DTLZ5 10 40 26 28
DTLZ5 10 50 27 28
DTLZ5 10 60 23 27
DTLZ5 10 70 22 26
DTLZ5 10 80 21 25
DTLZ5 10 90 23 27
DTLZ5 10 100 25 27
DTLZ5 15 20 6 20
DTLZ5 15 30 3 19
DTLZ5 15 40 2 17
DTLZ5 15 50 1 15
DTLZ5 15 60 4 19
DTLZ5 15 70 4 15
DTLZ5 15 80 5 17
DTLZ5 15 90 3 14
DTLZ5 15 100 4 19

Total 525 690



are different with significant level at 0.05. So we have enough
basis to conclude that the PCS-LPCA is different to or better
than PCSEA objective dimensionality reduction algorithm at
level 0.05.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a method of objective dimension-
ality reduction PCS-LPCA by combination between Pareto
corner search evolutionary algorithm and linear principal com-
ponent analysis objective reduction algorithm for identifying
the relevant and redundant objectives. It is proved that the
proposed method is better than the original one. The paper
also examined the affection of threshold value for PCSEA
objective dimensionality reduction. It indicated that PCSEA
objective dimensionality reduction is very efficient for solving
redundant problem with a small number of relevant objective.
It also said that PCSEA objective dimensionality reduction
become inefficient for a larger that number.

As the result of PCSEA objective dimensionality reduction
algorithm is not entirely independent of the order in which the
objective is removed, therefore future works could investigate
the order of objective is examined for retaining or discarding.
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