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Abstract—As the threat of malicious software (malware) be-
comes urgently serious, automatic malware classifier techniques
have received increasing attention recently, where the deep
learning (DL) based visualization classifiers plays a significant
role. However, this leads to a fundamental problem whether
such classifiers can be robust enough against various potential
attacks. Even though DL shows superiority to conventional
ones in malware classifiers in terms of high efficiency and
accuracy, this paper demonstrates that such DL-based malware
classifiers are vulnerable to adversarial attacks. We propose
the first adversarial attack framework based on the gradient
descent method. By introducing perturbations on resources’ part
of PE files, DL-based malware classifiers completely fail. The
experimental results on the Malimg dataset show that a small
interference can achieve success attack rate when challenging
convolutional neural network malware classifers.

Index Terms—malware classification, adversarial attack, con-
volution neural network,

I. INTRODUCTION

Malware denotes a particular type of programs that perform
malicious tasks and illegal controls on computer systems
by breaking software processes to obtain the unauthorized
access,interrupt normal operations and steal information on
computers or mobile devices. There is a variety kinds of mal-
wares including viruses, Trojans, worms, backdoors, rootkits,
spyware, ransomware and panic software, etc. [19].

Previous work on malware classification can be broadly
classified into two categories: non-machine learning methods
and machine learning-based methods.

Non-Machine Learning Methods: In the past, malware
was detected using static or dynamic signature-based tech-
niques. Static analysis uses syntax or structural properties
of the program in order to detect malware even before the
program under inspection executes [13]. However, malware
developers use various encryption, polymorphism and ob-
fuscation techniques to overcome these detection algorithms.
In the dynamic approach, malware is executed in a virtual
environment and its behavior is analyzed in order to detect
harmful actions during or after the program execution. Al-
though dynamic analysis of malware is a promising approach,
it is still very complex and time consuming [22].The major
drawback of classical signature-based detection is that it is
not scalable and its effectiveness can be undermined with
the growing variants of malware. Therefore, another approach
which is based on intelligent machine learning algorithms is
investigated.

Machine Learning-Based Methods: In order to address the
limitations of the aforementioned methods and inspired by the
fact that variants of malware families typically share similar
behavior patterns, anti-malware organizations started to de-
velop more sophisticated classification methods based on data
mining and machine learning techniques. These techniques use
different feature extraction (i.e. data representation) methods
to build more intelligent malware detection systems [11], [24].
Nataraj et al. [22] proposed a strategy to represent a malware
as a grayscale image and then use GIST to compute texture
features. Next, the grayscale malware images are classified
using k-nearest neighbor algorithm. The major drawback of
this method is that they use shallow learning techniques which
are not very scalable with the growing number of malware
samples and also requires to engineer the feature representa-
tion by hand. In order to tackle these problems, deep learning
architectures that are robust and more general in nature are
developed. For example, Drew et al. [7] [6] introduced mal-
ware classification using modern gene sequence classification
tool. Ahmadi et al. [2] and trained a classifier based on the
XGBoost technique. A convolutional neural network is also
applied for malware classification [14], they proposed a deep
convolutional neural network (CNN) architecture for malware
classification. They first convert malware samples to grayscale
images and then train a CNN for classification.

However, both DNNs and machine learning models lack
robustness to adversarially crafted inputs known as adversarial
examples. These inputs are derived from legitimate inputs
by adding carefully chosen perturbations that force models
to output erroneous predictions. Adversarial examples were
originally proposed by Szegedy et al. [25] in 2014. Since
the discriminative model is constructed by the dataset without
adversarial examples, the classification accuracy can be in-
credibly reduced due to adversarial examples. A large number
of adversarial examples construction methods [25], [9], [23],
[5], [21] and related adversarial defence techniques [27], [18],
[18], [4], [16] were proposed.

Our contributions are as follows:

« A new method to generating adversarial examples which
can fool malware classifier was proposed.

« To evaluate our attack method, a simple CNN architecture
is proposed that can classify malware with high accuracy
on Malimg dataset.



o Adversarial training to defense again malware adversarial
attack is also investigated.

The rest of this paper is organized as follows: Section II details
the related work of malware visualization classification meth-
ods associated with the adversarial example techniques. Our
malware adversarial attack method is introduced in Section III.
We show the experimental designs and results in Section IV,
we also gives a defensive strategy against adversarial attack in
this section . Finally, we make a conclusion and provide some
future research directions in section V.

II. RELATED WORK

A. Malware Visualization

1) PE file overview: PE (Portable Executable) is Win32’s
own format [20]. Most of the executable files on Win32 are
in PE format (except VxDs and 16bit DLL files).

Why need to understand the PE file structure? To be able
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Fig. 1. The PE file structure.

to execute on a computer, the PE file content is divided into
components and has a close relationship with each other.
Understanding the PE structure will help us understand the
execution mechanism of a program, from organizing to loading
to memory, using resources,....

Moreover, when we want to modify a file, such as adding
some code, editing some components but still want the
program to execute normally. Therefore, it is necessary to
understand the PE file structure, the relationship between the
components in the file to be able to quickly change the file
and satisfy the requirements.

PE Structure can consist of multiple sections, of which at
least two sections: data and code.

Some commonly used sections are found in programs:

Executable Description

.text Contains the executable code

.rdata Holds read-only data that is globally accesible within
the program

.data Stores global data accessed throughout the program

.idata Sometimes present and stores the import function
information; if this section is not present, the import
function information is stored in .rdata section

.edata Sometimes present and stores the export function
information; if this section is not present, the export
function information is stored in .rdata section

.pdata Present only in 64-bit executatbles and stores
exception-handling information

.ISIC Stores resources needed by the executatble

.reloc Contains information for relocation of library files

TABLE T
PE COMMON SECTIONS

1) The Executable Code Section, named .text (Microsoft)
is CODE (Borland).

2) Data Sections, with names like .data, .rdata hoc .bss
(Microsoft) or DATA (Borland)

3) Resources Section, named .rsrc

4) Export Data Section, named .edata

5) Import Data Section. named .idata

6) Debug Information Section, named .debug

If we inject to .text section, the functionality of the PE file
may change. Other parts, such as resources, their changes will
not affect to the functionality of the PE file.

In Table II-A1 we see sections of a PE file for a Windows
Executable [20].

2) PE file to image: A PE file can be read as a vector of 8-
bit unsigned integers and then organized into a 2D array [22]
[1].

Each 8-bit value will be in interval [0, 255]. Therefore, from
this two-dimensional array, we can convert into gray scale
image, with O-black, 255-white color values, respectively.
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Fig. 2. PE file to image visualization.

Gray-scale Image

The width of each photo depends on the size of the PE file
and is fixed. The height of the image is calculated according
to the size of the file and the width of the image.

In the table II-A2, is the corresponding width of the image
with the corresponding file size [22].

For example, with a binary file, we can split into the following
sections: .text, .rsrc, .reloc.

The .text section contains the executable code. From the
figure 2, we can see that the first part of the .text section
contains the code whose texture is fine grained. Next, the .rsrc



TABLE II
IMAGE WIDTH FOR DIFFERENT FILE SIZE.

PE file size (KB) | Image width
10 32

10 - 30 64

30 - 60 128

60 - 100 256

100 - 200 384

200 - 500 512

500 - 1000 768

>1000 1024
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Fig. 3. Image segmentation by PE section.

section which contains all the resources of the module. These
may also include icons that an application may use. Finally,
the .reloc section is used for image storing and contains entries
for all base relocation in the image.

3) PE file injection: For PE files in general and malware file
in particular, the .text (the PE part stores compiled code) will
determine the functionalities of those files. The resource used
to store information such as icons, images, strings, languages
will not affect the function of the file. Therefore, we can
process the PE file, change the values of resource and the
functionalities of PE file are kept.

Steps to alter the resource:

o Load the data of the PE file;

o Retrieve the data which contains resources. In this data
section, we will consider two values, offset, indicating
the starting position of resource and length, indicating
the length of the data array;

o Convert the byte values of resources to O or to random
values rather than original values;

o Write data back to the PE file.

Before and after replacement, we conducted to test by
scanning PE file using an engine ( [26]). Both files are
considered malware.

B. Adversarial examples in Deep Neural Networks

Adversarial examples work for crafting subtle perturbations
on original datasets for image classification problems and are
able to fool the state-of-the-art deep neural networks (DNN)

with high probability. In general, transferability and robustness
are two key features for adversarial examples. The transfer-
ability refers to the degree to which a particular adversarial
example attack can be transferred to function as other types
of adversarial examples for different attacks. The robustness
represents the ability to withstand or overcome adversarial
example attacks. Prior work can be classified into untargeted
and targeted adversarial examples. Un-targeted adversarial
examples can cause the classifier to produce any incorrect
output without specifying a predicted category, while targeted
adversarial examples cause the classifier to produce a specific
incorrect output. In the past three years, various adversarial
example crafting methods were proposed, such as L-BFGS
[25], FGSM [9], JSMA [23], C&Ws attack [5], DeepFool
[21] as well as Generative Adversarial Network (GAN) [8].
Among them, researches have shown that FGSM [9] are the
most popular choices for generating adversarial examples [28],
[3]. We hence proposed a FGSM-based method in this paper.

C. Adversarial Malware Examples

Adversarial malware examples are used to bypass the de-
tection of malicious codes. Gross et al. [10] used adversarial
examples to interfere with the binary features of Android
malware. They aimed to attack DNN-based detection for
Android malware and retain malicious features in the Apps.
But this kind of attack is only adapted to some Android
malware samples processed by binary features. As for the end-
to-end static code detection techniques using convolutional
neural networks, F. Kreuk et al. [15] used adversarial ex-
amples to extract the feature information from binary code
and disguised malware as a benign sample by injecting a
small sequence of bytes (payload) in the binary file. This
method not only retains the original function of malware
but also achieves the purpose of deceiving global binary
malware detector. However, it is extremely sensitive to discrete
input dataset such as executable bytes. Minor modifications to
the bytes of the file may lead to significant changes in its
functionality and validity. Hu et al. [12] proposed a method
of generating sequential adversarial examples by improving
the robustness of its adversarial pertaining process, which can
be used to attack the sequential API features-based malware
in RNN detection system. The drawbacks of this method are
time-consuming and large overhead in the whole processing.
Different from the existing studies using adversarial examples
to escape the malware detection, Liu et al. [17] proposed
the method using adversarial examples to attack ML-based
visualization detectors, named ATMPA. The ATMPA uses the
gradient-based FGSM method and L-norm based C&Ws attack
method to generate adversarial examples on the converted
image dataset. Our proposed method also use adversarial
examples to attack visualization classifications, but instead of
generate adversarial examples on the converted image dataset,
our method genarate adversarial examples on PE file.
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Fig. 4. Inject the resource area of the PE file.

III. THE PROPOSED METHOD

In this section, we introduce a novel algorithm to generate
adversarial malware examples to fool malware classifier f
based on FGSM [9]. FGSM is a fast method to generate
adversarial examples [9] and selects a perturbation parameter
by differentiating this cost function with respect to the input
itself. Along the direction of the gradients sign at each pixel
point, FGSM only performs one step gradient update. The
perturbation can be expressed as:

o = e*va9($7ytrue) (1)

where € is a small scalar value that restricts the magnitude
of the perturbation and represents the distortion between
adversarial examples and original sample. sign() denotes the
sign function,V . Jp (z, Y¢rve) computes the gradient of the cost
function J around the current value x of the model parameters
. Ytrue 18 the label of z.

Then, the adversarial is computed by

f=x+0 2)

However, with malware classifier, x is a malware image
(resized image), generating adversarial example by Eq.2 due
to crack PE files.

As shown in section ..., altering byte values of resources do
not influence the function of PE files. Therefore, our approach
for generating adversarial malware examples is adding pertur-
bation to the pixels which corresponding with resource part
of PE files instead of all pixels.We assume that all malware
images are reshaped using Nearest-neighbor interpolation.
Therefore, the value of pixel (7, j) in 128x128 malware image
is equal to the value of pixel ([i * w/128],[j x h/128]) in the
original malware image with size wxh. Then, we can define
what pixels in malware images can be added perturbation.

*

Let zory and ., denote original malware image and
adversarial example of original malware image respectively,
S be set of pixels in x4 Which represent the byte values of
resources and o be perturbation x gained by Eq.1.

Algorithm 2 illustrates the pseudo-code of Adding pertur-
bation algorithm.

Algorithm 1 Adding perturbation
Input: z, 0 , Torg, S
Output: z*, z7,

1: for i =0 to 127 do
2: for j =0 to 127 do

3: Gorg = 1 * w/128]

4: Jorg = [J * h/128]

5: if (iorg, Jorg) in S then

6: z(i,7)+ =0(i,))

7 xorg(iorg,jorg)+ = U(Z)J)
8: end if

9: end for

10: end for

Moreover, there is no limitation of the maximum values we
can change to these pixels, we also modify the FSGM method
to gain a better adversarial examples. Perturbation is iterative
generated and added to x with small € for [V times. At each
iteration, the value of pixel is clipped to so that the value is
in range [0, 1].



Algorithm 2 generating Adversarial Example for Malware

image with FGSM-based method
Input: z, x4, S, €, N, J, 0, Yirue
Output: z*, z
v =z
D Torg = Torg

1
2
3: fori=0to N do

4 Uze*vmje(x*aytrue)

5. %, x;,, = AddPerturbation (z, 0, 7oy, S)
6

7

8

g

clip{z*,0,1}
clip{z},4,0,1}

. end for

Ty,4 1s then used to reconstruct adversarial malware exam-

ples as shown in section II-A3.

IV. EXPERIMENTAL
A. Experimetal setup

Experimental evaluation is conducted in terms of the effec-
tiveness. We firstly introduce the setup of the experiment. A vi-
sualization detectors based on Convolutional Neural Network
(CNN) is used as case studies to evaluate the effectiveness of
our attack methods.

1) Dataset: We have used the Malimg Dataset that had
been used in [22]. It consists of 9339 grayscale images of 25
malware families among which 70% of the total data is used
for training and 30% is used for testing. Table IV-A1 describes
the datasets. In our methods, we alter the value on resources’
part only, then in this table we also summarize the number of
PE files having resources with different size (in percentage).

2) CNN classifier: We have used CNN because it is reliable
and it can be applied to the entire image at a time and then we
can assume they are best to use for feature extraction. CNN is
a feed-forward neural network where the connectivity pattern
between neurons is inspired by the structure of an animal
visual cortex and that has proven great value in the analysis
of visual imagery. Before feeding to CNN model, all malware
images are reshaped into a size of 128 128 and pixels’ value
are standardized to range [0, 1] by divided by 255 .

Our CNN model is described in Figure IV-A2.Cross entropy
loss function that is commonly used for multi class classifi-
cation was used for this work as well as Adam optimizer for
optimization task.

CNN classifier was trained with learning rate = 0.001, batch
size = 128, and number of epochs = 20. The experiment shows
a test accuracy of 96.9% and a F1 score of 96.38%.

3) Generating adversarial examples: The effectiveness of
our generate adversarial examples methods is evaluated by
attacking CNN classifiers. We conduct five different experi-
ments:

1) Generating adversarial examples of all samples in test
set which are correctly classified.

2) Generating adversarial examples of all samples in test
set which are correctly classified and have resources in
corresponding PE files.

TABLE III
SUMMARY OF MALIMG DATASET
Family name | No. of | No. of | No. of | No. of
samples samples samples samples
with re- | with re- | with re-
sources sources sources
occupy occupy occupy
<5% from >10%
5% to
10%
1 Adialer.C 122 122
2 Agent.FYI 116
3 Allaple.A 2949
4 Allaple.L 1591
5 Alueron.gen!J 198 193
6 Autorun.K 106 106
7 C2LOP.gen!g 200 181 12 2
8 C2LOP.P 146 22 57 67
9 Dialplatform.B | 177
10 Dontovo.A 162
11 Fakerean 381 5 331
12 Instantaccess 431 431
13 | Lolyda.AAl 213
14 | Lolyda.AA2 184
15 | Lolyda.AA3 123 2
16 | Lolyda.AT 159 5
17 Malex.gen!J 136 1
18 | Obfuscator.AD | 142 142
19 | Rbot!gen 158 157
20 | Skintrim.N 80 80
21 Swizzor.gen!E | 128 99 28 1
22 | Swizzor.gen!l 132 74 42 16
23 | VB.AT 408 10 209 189
24 | Wintrim.BX 97 95 2
25 | YunerA 800 800
9339 1611 1262 608

3) Generating adversarial examples of all samples in test set
which are correctly classified and have resources occupy
< 5% in corresponding PE files.

4) Generating adversarial examples of all samples in test set
which are correctly classified and have resources occupy
from 5% to 10% in corresponding PE files.

5) Generating adversarial examples of all samples in test set
which are correctly classified and have resources occupy
> 10% in corresponding PE files.

All experiments are use € = 0.01 and N = 200. To measure
the effectiveness of the attacks using the Success Rate (SR):
the percentage of adversarial samples that successfully evaded
classifier

B. Results and Discussion

1) The effectiveness of the attack using adversarial exam-
ples: The figure 6shows the SR through each iteration of
five experiments conducted as described in section IV-A3 and
the SR of adversarial examples generated is shown in table
IV-B1.It can be seen that the highest SR is gained when PE
files have more than 10% capacity of resources.

2) Adversarial Training: Training with adversarial exam-
ples is one of the countermeasures to make neural networks
more robust [28]. Adversarial examples of all samples in
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TABLE IV
SR OF ADVERSARIAL EXAMPLES IN 5 EXPERIMENTS CONDUCTED AS
DESCRIBED IN IV-A3

Experiments of generating | Success Rate
adversarial examples

Experiment 1 8.84%
Experiment 2 24.87%
Experiment 3 4.56%
Experiment 4 19.88%
Experiment 5 87.01%
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= SR of AEs created from PE files correctly classified and having capacity of resource >10%

Fig. 6. Success rate of adversarial examples created from different sets

training set are created and classifier will be retrained with
these samples.

To evaluate defence strategy by adversarial retraining, CNN
classifier is trained with clean examples and adversarial exam-
ples created from samples in training set simultaneously. The
new model has a test accuracy of 96.06% and a F1 score
of 95.58%. Table IV-B2 compare success rate of adversarial
examples generated via original model on the new model (with
adversarial training) and the original model. The results show
that the new model blocks the transferability of adversarial
examples.

TABLE V
COMPARISON OF SR ADVERSARIAL EXAMPLES GENERATED VIA
ORIGINAL MODEL ON THE NEW MODEL (WITH ADVERSARIAL TRAINING)
AND THE ORIGINAL MODEL

Experiments of generating | SR on origi- | SR on new
adversarial examples nal model model  with
adversarial
training
Experiment 1 8.84% 3.61%
Experiment 2 24.87% 9.53%
Experiment 3 4.56% 4.77%
Experiment 4 19.88% 6.42%
Experiment 5 87.01% 28.25%

V. CONCLUSION AND FUTURE WORK

This work proposed a novel algorithm to generate adver-
sarial malware examples challenge visualized malware clas-
sifier. Our method uses the gradient-based FGSM method to
generate adversarial examples on the converted image dataset,
then these image are used to recontruct adversarial malware
examples. The tested CNN classifier is unable to determine
the malware correctly. Experimental results demonstrate that
adversarial examples of PE files with more than 10% capacity
of resources can achieve ... successful attack rate. Moreover,
experimental results of adversarial retraining shows that train-
ing with adversarial examples created by our method can
improve the robustness of malware classifier.

In future, attack transferability will be explored with other
malware classifiers.
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