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A B S T R A C T

Applications are dealing with processing the large data size, especially in satellite multi-spectral imagery
analysis. In fact, many reasons related to security respect, big data or limited bandwidth, the datasets cann’t
be centrally clustered by the FCM algorithm or its variants, so the collaborative clustering algorithms are
efficiently used. The clustering algorithms have been applied to analyze the surface of the earth, specifically a
variety of multispectral satellite image (MSI) classification. In this paper, a novel collaborative fuzzy clustering
based framework is proposed, in particular, which is Multiple kernel Collaborative Fuzzy C-means Clustering
with weighted super-pixel granulation technique (SMKCFCM algorithms) for satellite image classification.
There are two phases consisting of (1) MSI are preprocessed by grouping of the similar pixels into super-
pixels granules and then (2) the super-pixels granules are clustered using the collaborative fuzzy clustering
with multiple kernels and the their weights. The granule’s weight is determined based on its size. It means
that amount of the considered objects reduces from a large amount of pixels to only a few hundred super-
pixels. In the final step, the performance is improved by the collaborative clustering algorithm on multiple
sites of image data. This method is combined with multiple kernels that implicitly convert the original feature
space into a higher dimensional space via a non-linear map. This transformation leads to greatly increases
the linear separability of the non-spherical and complex input patterns. Experiments were performed on the
multi-spectral satellite image datasets and the validity indices were summarized with comparison between the
SMKCFCM algorithm and some algorithms in the family of collaborative fuzzy clustering.

1. Introduction

Patterns that offer high level of similarity within objects in a dataset
can be discovered through clustering techniques. These clustering tech-
niques have been used successfully in various applications during their
long development in data mining and machine learning. There are var-
ious algorithms using unsupervised learning techniques. In particular,
Fuzzy C-Means (FCM) and its variants (Bezdek et al., 1984; Dang et al.,
0000) are predominant examples of algorithms using the clustering
techniques.

The FCM-based collaborative clustering or collaborative fuzzy clus-
tering (CFC) developed by Pedrycz (2002, 2007, 2008) is used to
determine patterns among separate datasets. Collaborative data cluster-
ing has two important traits. First, the data in each data site cannot be
shared. Second, the discovered patterns can only be shared and it gives
high level details than the initial data. According to Pedrycz (2002,
2008), the clustering solution from a data site can immensely impact
the findings at a different data site.
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Consequently, Coletta et al. (2012) improved on Pedrycz’s method
to enhance the specifications for pairs of data sites and the number of
clusters in individual data sites. A work by Mitra et al. (2006) proposed
a collaborative clustering algorithm by taking the combination of rough
sets and fuzzy sets.

Yu et al. (2007) and Yu and Yu (2009) concentrated on Horizon-
tal CFC with different spatial attributes or the information provided
by the prototypes instead of membership matrixes. He also extended
algorithms by labeling targets by levels or entropy, then he used these
labels while collaborating, which is called semisupervised collaborative
clustering.

When datasets illustrated by numerous views (Jiang et al., 2014),
each view with individual characterization is clustered then final clus-
tering result is compounded from multiple view clustering by CFCM in
order to get benefit of all view clustering.

Using a distributed P2P network, a novel collaborative clustering
was introduced by Zhou et al. (2014). The idea was to make an
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extensive search for an effective cluster at individual data sites and then
exchanging information only with the neighboring data sites. Prasad
et al. (2014) introduced the preprocessing phase before running the col-
laborative phase to avoid some of the deficiency of Pedrycz’s method.

Ren and Malik (2003) introduced the idea of super-pixel. It is de-
fined as a group of connected pixels with identical colors or gray levels.
The common method in image segmentation is working with pixels but
Ren et al. uses super-pixels. Super-pixel segmentation divide an image
into hundreds of non-overlapping super-pixels. This type of super-pixel-
based image segmentation has gained many achievements in computer
vision, which is a convenient way in finding features thereby minimiz-
ing complication of image processing problems. Generating super-pixels
could be achieved by graph-based method or clustering-based and they
are the common approaches to do that. It could be wise to use super-
pixels in building graph that results in a more regular lattice (Shi
and Malik, 2000), while if focusing on image boundaries, the suitable
method may be the graph-based method (Felzenszwalb and Hutten-
locher, 2004). The accuracy of classification by linking the spatial
information can be greatly improved by super-pixel segmentation.

Homogeneous Super-pixels proposed by Perbet and Maki (2011)
aims at applying a Markov-based clustering algorithm that was devel-
oped on the graph-based method to compute super-pixels by applying
stochastic flow circulation where the nodes correspond to the original
pixels. In addition, Liu et al. (2011) proposed a new method called
entropy rate super-pixel whose idea is to map image to a graph where
the vertex connotes the pixels and edging weights denote the pairwise
similarity. This super-pixel segmentation chooses a subset of edges in
the resulting graph in which the number of the connected sub-graphs
equals the number of super-pixels. Achanta et al. (2012) introduced
a clustering based method for super-pixel segmentation called SLIC
algorithm.

With the complexity of 𝑂(𝑁𝑙𝑜𝑔𝑁), Vincent and Soille (1991) was
relatively fast but the amount of super-pixels or their compactness
cannot be controlled. The resulting super-pixels take high irregulation
in both size and shape, and also do not demonstrate good boundary
adhesion. Veksler et al. (2010) introduced another kind of super-pixel
called constant intensity super-pixels by introducing some constraint
into the objective function. Weikersdorfer et al. (2012) proposed the
depth-adaptive super-pixels method for the depth images which is used
to reduce the complexity of the segmentation task. Besides, linear
spectral clustering (Li and Chen, 2015) was introduced by Li et al.
in which used kernel functions to transform the image pixels to the
weighted super pixels in the kernel space. Next, they uniformly sample
the seed pixels in the whole image.

The proposed method by den Bergh et al. (2012) starts from an
initial super-pixel partitioning. By revising the boundaries relatively
to the objective function defined on super-pixel boundaries and color
histogram, the super-pixels are clarified. Papon et al. (2013) proposed
the algorithm by using voxel kinships to generate super-pixels which
are fully relevant with the spatial relationship in the three-dimensional-
spaced scenery. Strategy saliency-based super-pixel (Xu et al., 2014),
another type of super-pixels, attains super-pixels through an incorporat-
ing strategy on the basis of the salient values of sub-images. Generating
super-pixel via the graph matching was developed by Xie et al. (2014)
called the Co-super-pixel method. Co-super-pixel achieves super-pixels
in a pair of images containing the same or similar objects. It firstly
develops super-pixel for each image, after that, these super-pixels are
brought together.

Data complexity has increased since the past few years, this poses a
great challenge for clustering. The type of features, data size, temporal
aspects, and the data diversity are various aspects entailed in the data
complexity. Habitually, clustering algorithms and theories have been
very well invented for the linear case. However finding clustering
solutions for real world data often requires nonlinear methods and
a positive definite kernel that can sometimes have the best of both
cases (Hofmann et al., 2008; Shawe-Taylor and Cristianini, 2004).

Kernel-based clustering (Girolami, 2002; Xiang et al., 2014; Yang and
Tsai, 2008) is one of the many approaches to solve this problems that
the datasets are reconstructed into a higher feature space, thereby
enlarging the feasibility of having linear separable patterns and con-
sequently shortening the associated data prototypes. Other research
areas focused on the accomplishment of kernel methods (Graves and
Pedrycz, 2010) or what we could gain from the kernel versions of
FCM algorithm (Pal and Sarkar, 2014). Anand et al. (2014) introduced
semi-supervised kernel mean shift clustering.

Many kernels (Chen et al., 2012; Huang et al., 2012; Sonnenburg
et al., 2006) in replacement of a single fixed kernel boost adaptability
of kernel gathering and exhibiting that real-life learning problems often
consist of many difference data sources. Chen et al. (2012) approached
to handle unrelated pixel information with a multiple-kernel FCM
(MKFCM) using the combination kernel.

A linear combination of multiple kernels was presented in Chen
et al. (2012) with updating the weights of the individual kernel func-
tions. Mai and Ngo (2018) proposed a semi-supervised clustering
method based fuzzy c-means algorithm using multiple kernel technique
for land-cover classification. A generalized multiple-kernel FCM was
proposed by Ganesh and Palanisamy (2012) for satellite image clas-
sification. A method of interval type-2 FCM with spatial information
(IIT2-FCM) was introduced by Ngo et al. (2015) for the multi-spectral
satellite based land cover classification.

Calculation of the membership function in fuzzy clustering may
arise their hesitation degree, Chaira solved that problem by incor-
porating the intuitionistic fuzzy theory into fuzzy clustering (Chaira,
2011). He also expanded his method by combining kernel methods
to solve non-linear and non spherical clustering problems (Chaira,
2014) and applications in medical image processing. Another challenge
of clustering algorithms is parameter selection, in Kuo-Ping (2014)
Kuo-Ping Lin used the genetic (GA) algorithm to set parameters and
improve the performance of the KIFCM algorithm. Kuo et al. (2018)
also uses GA and some other evolutionary algorithms such as particle
swarm optimization and artificial bee colony algorithms to overcome
the disadvantages of the KIFCM algorithm in initialing cluster centers.

There are lots of reviews and applications of collaborative clustering
into real-world problems, and the kernel methods have widely applied
to various fuzzy clustering algorithms. However, one challenge in
enhancing the performance of collaborative clustering is the limited
study of application of kernel method into collaborative clustering.
This paper introduces a novel structure based on collaborative fuzzy
clustering for multi-spectral satellite based land cover classification.
The multiple-kernel technique is embedded into the collaborative fuzzy
clustering with intention of handling the non-spherical complicated
structure in the dataset, called Multiple kernel collaborative fuzzy
clustering (MKCFCM). Besides, super-pixel technique is useful in group-
ing the individual pixels into the super-pixel granulation to lessen
the complexity. Ideally, the larger the super-pixel granules are, the
more stable the final clustering results are. Hence, the weights are
designated to the super-pixel granules on the basis of their size. This
algorithm is called weighted super-pixels based multiple-kernel col-
laborative fuzzy clustering (SMKCFCM). We have implemented the
framework on the land-cover classification problem of multi-spectral
satellite image datasets with three data sites capturing from the three
individual areas. Comparison is made between the proposed algorithm
and other algorithms like FCM, Collaborative FCM (CFCM), and In-
terval Type-2 FCM with spatial information (IIT2-FCM) and Multiple
Kernels based Collaborative FCM (MKCFCM) on the support of validity
indices and outcome of land-cover classification.

The remaining parts of this study are arranged in the following
form: Section 2 describes brief exploratory of super-pixel technique,
collaborative fuzzy clustering and multiple kernel method. Section 3
introduces the weighted multiple kernel collaborative fuzzy clustering
with super-pixel granulation. Section 4 shows the outcome of our ex-
periment on three data sites. Conclusion and future studies are covered
in Section 5.
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2. Preliminaries

2.1. Super-pixel

Super-pixels are used in image segmentation as a pre-processing
step instead of segmenting pixels directly; the pixels are first grouped
into ‘‘super-pixels’’ based on their similarity. These reduce the com-
putational complexity of image processing problems. There are two
major advantages when using super-pixels: estimate features on more
meaningful regions and reduce the input entities for the subsequent
algorithms.

We consider the super-pixel-based segmentation, called SLIC, which
has only one input 𝑘 of the desired number of the approximately sized
super-pixels. The segmentation is done on the basis of the clustering
process which begins with k initial centroids. The grid interval 𝑆 =
√

𝑁∕𝑘 is used to roughly generate the approximately sized super-pixels
with the total number of pixels 𝑁 (Achanta et al., 2012). The centroids
are moved to the seeding locations according to the lowest gradient
direction within the spatial window 3 × 3. The process is to escape the
concentration of an edging super-pixel and to decrease the ability of
becoming the seeding location of super-pixels containing noisy pixels.

The distance D based on color and spatial information is used to
measure the similarity between pixels:

𝐷 =
√

𝑑2𝑐 + (
𝑑𝑠
𝑆
) ∗ 𝑚2 (1)

in which, 𝑑𝑐 = ‖𝑐𝑜𝑙𝑜𝑟𝑖 − 𝑐𝑜𝑙𝑜𝑟𝑗‖ is the Euclidean distance between color
of pixel 𝑖 and color of pixel 𝑗 in color space and 𝑑𝑠 =
√

(𝑥𝑖 − 𝑥𝑗 )2 + (𝑦𝑖 − 𝑦𝑗 )2 is the Euclidean distance between pixel 𝑖 (𝑥𝑖, 𝑦𝑖)
and pixel 𝑗 (𝑥𝑗 , 𝑦𝑗 ) in the spatial space and 𝑚 is the adjusting parameter.

Algorithm 1 SLIC super-pixel segmentation (Achanta et al., 2012)
Input: the input images, 𝑘, the threshold.
Output: the resulting super-pixels
1. Initialize cluster centroids by sampling pixels at regular grid spaced by
𝑆.
2. Move cluster centroids to the locations according to the lowest gradient
direction in a 3 × 3 window.
3. For each pixel 𝑖:
4. Set 𝑙(𝑖) = −1 (denote for label).
5. Set 𝑑(𝑖)=∞ (denote for distance).
6. do
7. for each centroid 𝐶𝑘:
8. for individual pixel 𝑗 belongs to a spatial window
2𝑆 × 2𝑆 around 𝐶𝑘:
9. Calculate 𝐷: the distance from 𝐶𝑘 to pixel 𝑖.
10. if 𝐷 < 𝑑(𝑖) {
11. + Set 𝑑(𝑖) = 𝐷 (set to new distance).
12. + Set 𝑙(𝑖) = 𝑘 (set to new label).
13. }
14. Calculate new centroids.
15. Calculate residual error 𝐸.
16. while 𝐸 <=threshold.

In the formula 𝐷, parameter m is also used to weight the relative
importance between color similitude and spatial proximity. The larger
the m takes, more important the spatial proximity is and more compact
the resulting super-pixels are.

2.2. Fuzzy clustering using kernel method

The kernel based clustering method is realized the clustering prob-
lems in the new feature space. Firstly, a transformation is done on the
original data space by a nonlinear mapping into the higher dimensional
feature space. Next, the clustering problem is done in the higher dimen-
sional feature space with the kernel function can be used to calculate
the product in the input space (Graves and Pedrycz, 2010).

Two main types are mentioned about the kernel-based FCM algo-
rithm. The first type is to put the prototypes in the kernel space, called
KFCM-F. In the second one, we form the prototypes in the original
feature space, denoted KFCM-K, by calculating an inverse mapping
from the kernel space to the original feature space (Graves and Pedrycz,
2010). The objective functions of KFCM-F and KFCM-K have the same
constraints with FCM as follows

The KFCM-F objective function:

𝐽 =
𝑐
∑

𝑖=1

𝑁
∑

𝑘=1
𝑢𝑚𝑖𝑘(𝜑(𝑥𝑘) − 𝑣𝑖)

2 (2)

The KFCM-K objective function:

𝐽 =
𝑐
∑

𝑖=1

𝑁
∑

𝑘=1
𝑢𝑚𝑖𝑘(𝜑(𝑥𝑘) − 𝜑(𝑣𝑖))

2 (3)

in which 𝜑(𝑥) is a mapping from the original feature space to the kernel
space, 𝑁 is the number of patterns.

2.3. Collaborative Fuzzy clustering

Let 𝐷[𝑖𝑠], 𝑖𝑠 = 1,… , 𝐾 be 𝐾 data sites and data site 𝑖𝑠 contains 𝑛𝑖𝑠
data patterns determined in the same feature space 𝑋. All patterns are
grouped into 𝑐 clusters at individual data sites. The clustering results
at each data sites are effected by the remain data sites, this process is
called collaborative process.

The objective function of individual data site based on the FCM
algorithm is known as:
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝑢2𝑖𝑘[𝑖𝑠]𝑑

2
𝑖𝑘, 𝑖𝑠 = 1,… , (4)

The collaboration between each data site is done through other
data sites, the intensity of the interaction is described by factor 𝛽. The
collaborative fuzzy clustering extends the objective function becoming
the form as follows.

𝐽[𝑖𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝑢2𝑖𝑘[𝑖𝑠]𝑑

2
𝑖𝑘 + 𝛽

𝐾
∑

𝑗𝑠=1

𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
(𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝑑2𝑖𝑘 (5)

There are two parts in the formula in which the first one is the FCM-
based objective function. The second part reproduces the influence
of structural knowledge from other sites. Among parameters, 𝑢̃[𝑖𝑠|𝑗𝑠]
reflects the influence of the data site 𝑖𝑠 to the data site 𝑗𝑠, called the
induced matrix and calculated by the following formula:

𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠] =
1

∑𝑐
𝑗=1

(

|𝑥𝑘[𝑖𝑠]−𝑣𝑖[𝑗𝑠]|
|𝑥𝑘[𝑖𝑠]−𝑣𝑗 [𝑗𝑠]|

)2
(6)

The collaborative fuzzy clustering is considered as the optimization
problem with constraints as follows:

1. Min J[𝑖𝑠]
2. s.t. u[𝑖𝑠] ∈ 𝑈

where u is a set of membership matrices described as follows:

u =

{

𝑢𝑖𝑘[𝑖𝑠] ∈ [0, 1]|
𝑐
∑

𝑖=1
𝑢𝑖𝑘[𝑖𝑠] = 1∀𝑘, 𝑖&0 <

𝑛𝑖𝑠
∑

𝑘=1
𝑢𝑖𝑘[𝑖𝑠] < 𝑛𝑖𝑠

}

(7)

The objective function (5) is resolved by using the Lagrange method
to find the matrix u and v as follows:

𝑢𝑟𝑠[𝑖𝑠] =
1

∑𝑐
𝑗=1 𝑑2𝑟𝑠∕𝑑

2
𝑗𝑠

⎡

⎢

⎢

⎣

1 −
𝑐
∑

𝑗=1

𝛽
∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝑢̃𝑗𝑠[𝑖𝑠|𝑗𝑠]

(1 + 𝛽(𝐾 − 1))

⎤

⎥

⎥

⎦

+
𝛽
∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝑢̃𝑟𝑠[𝑖𝑠|𝑗𝑠]

(1 + 𝛽(𝐾 − 1))
(8)

𝑣𝑟𝑡[𝑖𝑠] =

∑𝑛𝑖𝑠
𝑘=1 𝑢

2
𝑟𝑘[𝑖𝑠]𝑥𝑘𝑡 + 𝛽

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑘=1(𝑢𝑟𝑘[𝑖𝑠] − 𝑢̃𝑟𝑘[𝑖𝑠|𝑗𝑠])

2𝑥𝑘𝑡
∑𝑛𝑖𝑠
𝑘=1 𝑢

2
𝑟𝑘[𝑖𝑠] + 𝛽

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑘=1(𝑢𝑟𝑘[𝑖𝑠] − 𝑢̃𝑟𝑘[𝑖𝑠|𝑗𝑠])

2
(9)

for 𝑟 = 1,… , 𝑐; 𝑠 = 1,… , 𝑛𝑖𝑠 and 𝑡 = 1,… ,𝑀 (the number of attributes);
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The coefficient 𝛽[𝑖𝑠|𝑗𝑠] represents the collaborative level between
the data site 𝑖𝑠 and 𝑗𝑠, the greater 𝛽 is, the more effective the collab-
orative level is and vice versa. When the data sites have the similar
structure, the collaborative level will be greater i.e 𝛽 takes a higher
value. The value of 𝛽 can be estimated by experts or computed on the
basis of the structural similarity between the data sites. In collaborative
model, the prototypes 𝑣[𝑗𝑠] were sent from data site 𝑗𝑠 to data site 𝑖𝑠
and the induced objective function can computed:

𝐽 [𝑖𝑠|𝑗𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝑢̃ 2
𝑖𝑘 [𝑖𝑠|𝑗𝑠]|𝑥𝑘 − 𝑣𝑖[𝑗𝑠]|

2 (10)

The coefficient 𝛽[𝑖𝑠|𝑗𝑠] denoted the interactive level between two
sites 𝑖𝑠 and 𝑗𝑠 is computed as follows:

𝛽[𝑖𝑠|𝑗𝑠] = min
{

1,
𝐽 [𝑖𝑠]
𝐽 [𝑖𝑠|𝑗𝑠]

}

(11)

So, the membership degree and cluster centroid matrix is calculated
in the following equation:

𝑢𝑟𝑠[𝑖𝑠] =
1

∑𝑐
𝑗=1 𝑑2𝑟𝑠∕𝑑

2
𝑗𝑠

[

1 −
𝑐
∑

𝑗=1

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢̃𝑗𝑠[𝑖𝑠|𝑗𝑠]
(1 + 𝛽[𝑖𝑠|𝑗𝑠](𝐾 − 1))

]

+
𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢̃𝑟𝑠[𝑖𝑠|𝑗𝑠]
(1 + 𝛽[𝑖𝑠|𝑗𝑠](𝐾 − 1))

(12)

𝑣𝑟𝑡[𝑖𝑠] =

∑𝑛𝑖𝑠
𝑘=1 𝑢

2
𝑟𝑘[𝑖𝑠]𝑥𝑘𝑡 +

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑘=1 𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑟𝑘[𝑖𝑠] − 𝑢̃𝑟𝑘[𝑖𝑠|𝑗𝑠])

2𝑥𝑘𝑡
∑𝑛𝑖𝑠
𝑘=1 𝑢

2
𝑟𝑘[𝑖𝑠] +

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑘=1 𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑟𝑘[𝑖𝑠] − 𝑢̃𝑟𝑘[𝑖𝑠|𝑗𝑠])

2

(13)

3. Collaborative Fuzzy C-means clustering with weighted super-
pixels granulation and multiple kernels

3.1. Super-pixel granulation

Granular Computing (GrC) is considered as effectively computing
method based on forming granules from intervals, classes or clus-
ters to model a computational diagram for resolving complex prob-
lems (Pedrycz, 2001). In satellite imagery, granules can be treated as
an area of pixels that have similar features. This coincides with the
idea of creating super pixels where we can consider a super pixel as
a granule. A granule is represented as a image super pixel, and the
distance between granules is defined by the centers of super pixels. We
use the SLIC algorithm to generate super-pixel granules from satellite
images. Because the super-pixels are often of the different size, so the
super-pixel based classification often produces the results limited than
the pixel based classification. The larger super-pixels normally tend
to attract the small super-pixels toward themselves, so the effect of
individual super-pixels on the resulting clusters is different. To solve
this, we propose the usage of the weight 𝜑 for individual super-pixel,
the weight 𝜑 could be calculated based on the number of pixels in the
super-pixels, could be as follows:

𝜑𝑘 =
𝑛𝑘
𝑛𝑖𝑠

(14)

where 0 < 𝜑𝑘 < 1 be weight of the 𝑘th super-pixel, 𝑛𝑘 be the number
of pixels of the 𝑘th super-pixel, 𝑛𝑖𝑠 be the total of pixels of the image
at the data site 𝑖𝑠.

3.2. Collaborative Fuzzy C-means clustering with weighted super-pixels
granulation and multiple kernels

We cluster the super pixels instead of pixels, each super pixel have
the weight 𝜑 so the objective function at the data site 𝑖𝑠 by using the
standard FCM algorithm is described as follows

𝐽[𝑖𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝑑

2
𝑖𝑘 𝑖𝑠 = 1,… , 𝐾 (15)

Which is modified into the following function in collaborative clus-
tering:

𝐽[𝑖𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝑑

2
𝑖𝑘 + 𝛽

𝐾
∑

𝑗𝑠=1

𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
(𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝑑2𝑖𝑘 (16)

Kernel methods are used to originate nonlinear relationships among
data by using the maps to transform the features into the kernel spaces.
Let 𝜙 =

{

𝜙1, 𝜙2,… , 𝜙𝑀
}

be a set of 𝑀 maps. Each map 𝜙𝑘 decodes
the pattern 𝑥 into a vector 𝜙𝑘(𝑥) in its 𝑀-dimensional feature space.
Consider {𝑃1, 𝑃2, . . . , 𝑃𝑀} is a set of Mercer kernels associating to these
implicit maps, respectively.

𝑃𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝜙𝑘(𝑥𝑖)𝑇𝜙𝑘(𝑥𝑗 ) (17)

We consider a resulting kernel satisfied Mercer’s condition by using
non-negative combination of the feature maps, 𝜙′, which is defined as
follows:

𝜙′(𝑥) =
𝑀
∑

𝑘=1
𝜔𝑘𝜙𝑘(𝑥) (18)

Let it is easy to form a set of the independent maps, 𝜓 = {𝜓1, 𝜓2,
. . . , 𝜓𝑀}, from the original maps 𝜙 as:

𝜓1(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜙1(𝑥)
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

, 𝜓2(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

0
𝜙2(𝑥)
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

,… , 𝜓𝑀 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
⋮

𝜙𝑀 (𝑥)

⎤

⎥

⎥

⎥

⎥

⎦

(19)

Constructing new maps by this way guarantees that there is the
same dimensionality in the feature spaces of these maps and can form
the linear combination well. In addition, a new set of orthogonal bases
is defined since.
𝜓𝑘(𝑥𝑖)𝑇𝜓𝑘(𝑥𝑗 ) = 𝑃𝑘(𝑥𝑖, 𝑥𝑗 )
𝜓𝑘(𝑥𝑖)𝑇𝜓𝑘′ (𝑥𝑗 ) = 0|𝑘 ≠ 𝑘′

(20)

As the crossing terms from implicit maps may be obstructed by
such orthogonal bases, the inner product in the same map may be well
appraised by the kernel functions. Accordingly, we revise the objective
function as follows:

𝐽[𝑖𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠](𝜓(𝑥𝑘) − 𝑣𝑖[𝑖𝑠])

2 +
𝑛𝑖𝑠
∑

𝑘=1

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
𝑐
∑

𝑖=1
(𝑢𝑖𝑘[𝑖𝑠]

− 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])2(𝜓(𝑥𝑘) − 𝑣𝑖[𝑖𝑠])
2 (21)

𝜓(𝑥) = 𝜔1𝜓1(𝑥) + 𝜔2𝜓2(𝑥) +⋯ + 𝜔𝑀𝜓𝑀 (𝑥) (22)

Subject to 𝜔1 + 𝜔2 + ⋯ + 𝜔𝑀 = 1, 𝜔𝑘 ≥ 0,∀𝑘; ∑𝑐
𝑗=1 𝑢𝑗𝑠[𝑖𝑠] = 1,∀𝑠;

𝑢𝑗𝑠[𝑖𝑠] ≥ 0,∀𝑠, 𝑗.
Where 𝑣𝑖 is the centroid 𝑖th defined in the implicit feature space,

(𝜔1, 𝜔2,… , 𝜔𝑀 ) is a weight vector for composed multiple kernel. The
distance 𝑑𝑖𝑘 concerns the 𝑘th pattern and the 𝑖th centroid in 𝐷[𝑖𝑠]:
𝑑2𝑖𝑘 = (𝜓(𝑥𝑘) − 𝑣𝑖)2.

The partition matrix satisfying the following conditions:

u =

{

𝑢𝑖𝑘 ∈ [0, 1]|
𝑐
∑

𝑖=1
𝑢𝑖𝑘[𝑖𝑠] = 1,∀𝑘&0 <

𝑛𝑖𝑠
∑

𝑘=1
𝑢𝑖𝑘[𝑖𝑠] < 𝑛𝑖𝑠,∀𝑖

}

(23)

The distance 𝑑𝑖𝑘[𝑖𝑠|𝑗𝑠] defines the distance between the 𝑘th pattern
in D[𝑖𝑠] and the 𝑖th prototype in D[𝑗𝑠].

We state the following theorem to determine the components of the
objective function.

Theorem 1. The objective function 𝐽[𝑖𝑠] in (21) attain the local minima
when 𝑈 = [𝑢𝑖𝑘]𝑐𝑛𝑖𝑠 satisfy the following relationship

𝑢𝑖𝑘[𝑖𝑠] =

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠]

(𝜑𝑠 +
∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠])
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+ 1
∑𝑐
𝑗=1

𝑑2𝑖𝑘
𝑑2𝑗𝑘

⎡

⎢

⎢

⎣

1 −
𝑐
∑

𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢̃𝑗𝑘[𝑖𝑠|𝑗𝑠]

(𝜑𝑠 +
∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠])

⎤

⎥

⎥

⎦

(24)

where the distance between object 𝑘 and cluster 𝑖 is calculate as

𝑑2𝑖𝑘 =
𝑀
∑

𝑡=1
𝛼𝑖𝑘𝑡𝜔

2
𝑡 (25)

In which: Eq. (26) is given in Box I

𝜔𝑡 =

1
∑𝑀
𝑡=1

1
∑𝑛𝑖𝑠
𝑘=1

∑𝑐
𝑖=1 𝜑𝑘𝑢

2
𝑖𝑘 [𝑖𝑠 ]𝛼𝑖𝑘𝑡+

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠 |𝑗𝑠]
∑𝑐
𝑖=1 (𝑢𝑖𝑘 [𝑖𝑠 ]−𝑢̃𝑖𝑘 [𝑖𝑠 |𝑗𝑠 ])2𝛼𝑖𝑘𝑡

∑𝑛𝑖𝑠
𝑘=1

∑𝑐
𝑖=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝛼𝑖𝑘𝑡 +

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
∑𝑐
𝑖=1 (𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝛼𝑖𝑘𝑡
(27)

for 𝑠 = 1,… , 𝑛𝑖𝑠 and 𝑟 = 1,… , 𝑐.

The proof of Theorem 3.1 is included in Appendix.

3.3. SMKCFCM algorithm

The algorithm of the multiple kernel collaborative fuzzy cluster-
ing with weighted super-pixels granulation (SMKCFCM) is described
in Algorithm 2. The substance of collaborative clustering is to col-
laboratively discover the structures in individual data sites through
exchanging prototypes between data sites. Two main phases are men-
tioned in collaborative fuzzy clustering: generating super-pixels and
clustering data in each site by the clustering algorithm known as
FCM, and implementation of re-clustering based on the collaboration
of exchanging the data clustering results coming from phase 1.

Firstly, the SLIC algorithm is used to create super-pixels from the
input data. Then, the FCM-typed algorithm is locally carried out for
the individual sites. In the collaborative phase, the prototypes at the
individual site are communicated to all the remaining sites. Then,
the membership matrix and the prototype at the individual site are
optimized after each iteration until the terminal criterion has been
satisfied.

Algorithm 2 SMKCFCM Algorithm
Input: 𝐾: the number of sites, 𝑛𝑖𝑠: the number of patterns in site 𝑖𝑠, 𝑐[𝑖𝑠]:
the number of clusters in data site 𝑖𝑠, 𝑀 : the number of attributes, 𝑋[𝑖𝑠]:
patterns in the site 𝑖𝑠.
Output: u: membership matrix and 𝜔: feature weights.
1. Phase 1: forming super-pixel using SLIC algorithm and locally
FCM-type clustering
2. Calculating Super-pixel granules by using Algorithm 1 for each data site.
3. Locally clustering by using FCM for each data site based on Super-pixels
granules.
4. Phase 2: Collaborative clustering with weighted super-pixels gran-
ulation and multiple kernels
5. Repeat
6. Communicate partition matrices and prototypes between data sites.
7. For each data site 𝐷[𝑖𝑠].
8. Calculate induced matrices using (6).
9. do
10. Calculate matrix 𝛼 by the formula (26).
11. Calculate weight of attributes 𝜔 using (27).
12. Updating partition matrix u using (24) and (25).
13. while max ‖

‖

u[𝑖𝑠](𝑘) − u[𝑖𝑠](𝑘−1)‖‖ > 𝜀.
14. End for
15. Until max ‖

‖

v[𝑖𝑠](𝑘) − v[𝑖𝑠](𝑘−1)‖‖ < 𝜀𝑣.

4. Experimental studies

In this section, we carry out some experiments on real data to eval-
uate the performance of SMKCFCM. The collaborative fuzzy clustering
with multiple kernel (MKCFCM) algorithm (Dang et al., 2016), IIT2-
FCM (Ngo et al., 2015) algorithm, CFCM (Pedrycz, 2008) algorithm,

Fig. 1. Band 3 (left) and band 4 of Thanh Hoa city area.

KFCM (Bezdek et al., 1984) algorithm and Kernel Intuitionistic Fuzzy
Clustering (KIFCM) (Chaira, 2014) algorithm are used to compare
and analyze by following clustering validity indices: Fuzzy Silhouette
Criterion, Sum of Squared Error (Dang et al., 0000), the Dunn’s separa-
tion index (D-I), the Separation index (S-I) and Classification Entropy
index (CE-I) (Wang and Zhang, 2007) and Davies–Bouldin’s Index (DB-
I), Bezdek’s partition coefficient (PC-I) (Davies and Bouldin, 1979),
Xie–Beni Index (XB-I) (Xie and Beni, 1991), Chen–Linkens Index (CL-
I) (Chen and Linkens, 2004) and Generalized C Index (GC-I) (Bezdek
et al., 2016). The better algorithms exhibit smaller values of S-I, CE-I,
DB-I, SSE, XB-I and GC-I; the larger value of D-I, PC-I, FS and CL-
I. To form multiple kernels for MKCFCM and SMKCFCM, we used
three kernel functions consisting of Gaussian kernel 𝑃1 (for both KFCM
and KIFCM), Polynomial kernel 𝑃2 and Hyperbolic Tangent (Sigmoid)
Kernel 𝑃3, set parameter 𝛿2 = 4 in 𝑃1; parameters 𝑐 = 20, 𝑝 = 2 in 𝑃2;
and parameters 𝛼 = 0.3, 𝛽 = 10 in 𝑃3 in the following form:

𝑃1(𝑥, 𝑦) = exp
(

‖𝑥 − 𝑦‖2

2𝛿2

)

, 𝛿 ∈ R+

𝑃2(𝑥, 𝑦) = (𝑥𝑦 + 𝑐)𝑝, 𝑐 ∈ R+, 𝑝 ∈ N+

𝑃3(𝑥, 𝑦) = 𝑡𝑎𝑛ℎ(𝛼𝑥𝑦 + 𝛽), 𝛼, 𝛽 ∈ R+

The parameters of IIT2-FCM was chosen the same with Ngo et al.
(2015) as: mask size is 5 × 5, 𝑚1=1.8; 𝑚2 = 3.5; all algorithm have
maximize loop number = 100 and epsilon = 0.00001.

The experiment concerns data coming from satellite images with 3
data sites:

Data site 1: Thanh Hoa city (Vietnam) was captured in 2007
(20◦29′27.81′′N, 106◦32′21.65′′E to 21◦27′15.41′′N, 104◦35′23.54′′

E). The image consists of 54,894 pixels with the resolution of
30 m × 30 m, i.e. the area is 49.405 km2 (see Fig. 1).

Data site 2: Thai Nguyen city (Vietnam) was captured in 2010
(11018′29.13′′N, 108018′10.57′′E to 11◦58′29.63′′N, 107◦01′44.93′′E)
with the area of 6822.165 km2. The image consists of 193,039 pixels
and the area is 173.735 km2 (see Fig. 2).

Data site 3: Quy Hop region(Nghe An province, Vietnam) cap-
tured in 2010 (19◦06′36.68′′N, 105◦42′0.12′′E to 19◦34′33.50′′N,
104◦38′13.71′′E) consists of 1,047,825 pixels and the area is 943.043
km2 (see Fig. 3).

These images are captured by Landsat satellite with 7 bands and
provided by Vietnam National Remote Sensing center (VNRS). We
considered these image datasets as three data sites and only used two
bands (band 3 and band 4) as two attributes of data patterns to realize
collaborative clustering. The datasets are clustered into six classes as
follows: Class 6: Jungles ; Class 5: Perennial tree crops ;
Class 4: Planted forests, low woods ; Class 3: Fields, grass

; Class 2: Rocks, bare soil ; Class 1: Rivers, ponds,
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𝛼𝑖𝑘𝑡 = 𝑃𝑡(𝑥𝑘, 𝑥𝑘) − 2

∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑗 [𝑖𝑠]𝑃𝑡(𝑥𝑘, 𝑥𝑗 ) +

∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2𝑃𝑡(𝑥𝑘, 𝑥𝑗 )

∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2

+

∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1 𝜑𝑗1𝜑𝑗2𝑢

2
𝑖𝑗1[𝑖𝑠]𝑢

2
𝑖𝑗2[𝑖𝑠]𝑃𝑡(𝑥𝑗1, 𝑥𝑗2) + 2

∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢2𝑖𝑗1(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])
2𝑃𝑡(𝑥𝑗1, 𝑥𝑗2)

(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

+

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑗1=1

∑𝑛𝑖𝑠
𝑗2=1 𝜑𝑗1𝜑𝑗2𝛽

2[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗1[𝑖𝑠] − 𝑢̃𝑖𝑗1[𝑖𝑠|𝑗𝑠])
2(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])

2𝑃𝑡(𝑥𝑗1, 𝑥𝑗2)
(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

(26)

Box I.

Fig. 2. Band 3 (left) and band 4 of Thai Nguyen city area.

Fig. 3. Band 3 (left) and band 4 of Quy Hop area.

lakes . The number of clusters is 6 and all algorithms initialize
randomly cluster centers; the results coming from the KIFCM, KFCM,
CFCM, IIT2-FCM, MKCFCM, and SMKCFCM are averaged over all three
data sites.

Fig. 4 demonstrates the experimental diagram in which three
datasets of Thanh Hoa, Thai Nguyen and Quy Hop are located at three
data sites. The datasets are locally processed at Phase 1 by running the
SLIC and FCM algorithms on the individual dataset. At the collaborative
phase, three outputs produced from the algorithms on the data sites are
clustered together by the SMKCFCM algorithm. The resulting clusters
at three the data sites are displayed, fused or analyzed through the
particular tasks.

Figs. 5, 7 and 9 display the clustered images obtained when running
the individual algorithms on dataset of Thanh Hoa, Thai Nguyen and
Quy Hop areas, respectively.

Table 1 shows the number of misclassified pixels in each class and
Fig. 6 presents the percentage of area of each class which are produced
by different algorithms and the surveying data provided by Vietnam

Table 1
The number of misclassified pixels producing by the algorithms on Thanh Hoa
dataset.

Class KIFCM KFCM CFCM IIT2-FCM MKCFCM SMKCFCM

Class 1 601 2 355 3 241 1277 393 43
Class 2 921 1 886 4 224 295 98 265
Class 3 691 4 120 4 911 1965 786 565
Class 4 603 3 519 1 964 982 491 97
Class 5 473 1 819 5 500 1572 98 54
Class 6 704 5 352 2 357 392 98 829
Total 3993 19 051 22 197 6482 1964 1854

National Remote Sensing center (VNRS) on Thanh Hoa dataset. The
average percentage differences of KIFCM, KFCM, CFCM, IIT2-FCM,
MKCFCM, SMKCFCM and VNRS are 1.11%, 5.78%, 6.74%, 1.97%,
0.60% and 0.56% respectively.

Table 3 shows the number of misclassified pixels in each classes and
Fig. 8 presents the percentage of area of each class which are produced
by different algorithms and the surveying data provided by VNRS on

90



T.H. Dang, D.S. Mai and L.T. Ngo Engineering Applications of Artificial Intelligence 85 (2019) 85–98

Fig. 4. Experimental Diagram.

Table 2
Validity Indices (VI) obtained for Thanh Hoa dataset.

VI KIFCM KFCM CFCM IIT2-FCM MKCFCM SMKCFCM

FS 4.3812 3.2478 3.7612 3.9871 4.6735 4.9241
SSE 92.0647 142.3514 122.8734 98.8745 88.7621 79.6247
D-I 0.7951 0.3150 0.3549 0.7875 0.7963 0.8012
DB-I 1.3283 4.0548 4.7643 1.3794 1.2623 1.2791
PC-I 0.8542 0.5127 0.6823 0.7862 0.8632 0.8924
CE-I 1.0025 3.2019 2.8961 0.9982 0.9985 0.9627
S-I 0.4163 0.7518 0.7862 0.4672 0.3672 0.2843
XB-I 0.1421 0.2694 0.2765 0.1382 0.1487 0.1305
CL-I 0.9521 0.8201 0.8970 0.9657 0.9553 0.9826
GC-I 2.7019 3.2410 2.9826 2.6769 2.8750 2.0034
Mean 1.11% 5.78% 6.74% 1.97% 0.60% 0.56%

Table 3
The number of misclassified pixels producing by the algorithms on Thai Nguyen
dataset.

Class KIFCM KFCM CFCM IIT2-FCM MKCFCM SMKCFCM

Class 1 2 575 9 974 8 198 3 199 2 199 1 031
Class 2 929 10 048 9 999 4 000 3 000 1 795
Class 3 1 853 11 163 13 600 6 600 4 600 2 598
Class 4 3 139 11 318 13 602 5 600 2 600 1 867
Class 5 3 048 8 052 9 200 6 200 3 199 1 407
Class 6 9 687 7 824 11 001 6 002 2 002 1 444
Total 21 230 58 379 65 600 31 601 17 600 10 142

Thai Nguyen dataset in which the average percentage differences of
KIFCM, KFCM, CFCM, IIT2-FCM, MKCFCM, SMKCFCM and VNRS are
1.81%, 5.04%, 5.66%, 2.73%, 1.52% and 0.88% respectively.

Table 4
Validity Indices (VI) obtained for Thai Nguyen dataset.

VI KIFCM KFCM CFCM IIT2-FCM MKCFCM SMKCFCM

FS 4.2617 3.0427 3.2985 4.2761 4.3872 4.5102
SSE 101.4680 130.5861 119.2763 106.2745 98.8736 91.2381
D-I 0.8026 0.2683 0.3894 0.7658 0.8162 0.8703
DB-I 1.4293 6.0385 4.6253 1.5621 1.3876 1.231
PC-I 0.9078 0.4162 0.7982 0.8742 0.9031 0.9128
CE-I 0.6238 3.1038 2.0983 0.7761 0.5712 0.5143
S-I 0.4208 0.8315 0.7183 0.3981 0.4128 0.3997
XB-I 0.1926 0.4653 0.3828 0.2086 0.1873 0.1735
CL-I 0.9381 0.8041 0.8659 0.9593 0.9240 0.9472
GC-I 3.0528 4.1861 4.1948 3.6828 3.1950 2.7315
Mean 1.81% 5.04% 5.66% 2.73% 1.52% 0.88%

Table 5
The number of misclassified pixels producing by the algorithms on Quy Hop dataset.

Class KIFCM KFCM CFCM IIT2-FCM MKCFCM SMKCFCM

Class 1 1 352 102 624 80 944 30 953 9 818 6 507
Class 2 15 487 99 019 95 698 35 699 19 626 12 899
Class 3 19 605 54 089 57 903 32 902 19 626 8 121
Class 4 13 276 98 936 99 439 34 442 13 737 9 221
Class 5 3 657 121 810 122 218 52 213 3 929 10 436
Class 6 14 177 80 546 55 922 5 920 4 2 934
Total 67 553 557 024 512 124 192 129 66 740 50 117

Similarly, Table 5 shows the number of misclassified pixels in each
classes and Fig. 10 demonstrates the results produced by the algorithms
on Quy Hop dataset with the average differences of KIFCM, KFCM,
CFCM, IIT2-FCM, MKCFCM, SMKCFCM and VNRS are 0.81%, 5.04%,
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Fig. 5. Classification on Thanh Hoa dataset (a) KIFCM, (b) KFCM, (c) CFCM, (d) IIT2-FCM, (e) MKCFCM, (f) SMKCFCM.

Fig. 6. The comparing chart between the classes of Thanh Hoa dataset.

5.66%, 2.73%, 1.52% and 0.80%, respectively. The vast majority, the
SMKCFCM yields the best results.

In addition, the clustering results are analyzed on the basis of
various assessment indices to evaluate performance of the considered
algorithms on the experimental datasets. The results in Tables 2, 4, 6
and the average of validity indices for all datasets in Table 7 show that

the SMKCFCM algorithm gains the better quality than the considered
algorithms like KIFCM, KFCM, CFCM, IIT2-FCM and MKCFCM in almost
indices on the experimental datasets .

The clustered images of each algorithm in Figs. 5, 7 and 9 show that
the SMKCFCM algorithm gives clearer clustering results in overlapping
regions between classes and the split line has a nonlinear shape. This

92



T.H. Dang, D.S. Mai and L.T. Ngo Engineering Applications of Artificial Intelligence 85 (2019) 85–98

Fig. 7. Classification on Thai Nguyen dataset (a) KIFCM (b) KFCM, (c) CFCM, (d) IIT2-FCM, (e) MKCFCM, (f) SMKCFCM.

Fig. 8. The comparing chart between the classes of Thai Nguyen dataset.
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Fig. 9. Classification on Quy Hop dataset (a) KIFCM (b) KFCM, (c) CFCM, (d) IIT2-FCM, (e) MKCFCM, (f) SMKCFCM.

Fig. 10. The comparing chart between the classes of Quy Hop dataset.

Table 6
Validity Indices (VI) obtained for Quy Hop dataset.

VI KIFCM KFCM CFCM IIT2-FCM MKCFCM SMKCFCM

FS 4.3915 3.4021 3.8762 4.8723 4.8692 4.9071
SSE 93.2549 195.0342 178.3985 158.7814 140.8757 121.0687
D-I 0.8203 0.1836 0.3215 0.6534 0.6873 0.7216
DB-I 1.3087 4.6573 4.2761 2.6715 1.2313 1.1035
PC-I 0.8935 0.4208 0.7652 0.8802 0.8891 0.8906
CE-I 0.5314 2.1385 1.0963 0.4516 0.2511 0.2403
S-I 0.4038 0.8964 0.7965 0.4978 0.3123 0.3017
XB-I 0.4031 0.2872 0.2375 0.1690 0.1588 0.1136
CL-I 0.9367 0.7928 0.8288 0.9469 0.9608 0.9403
GC-I 2.9680 2.529 2.2761 1.8268 1.4392 1.318
Mean 0.81% 8.86% 8.15% 3.06% 1.06% 0.80%

Table 7
Average of validity indices for Thanh Hoa, Thai Nguyen and Quy Hop datasets.

VI KIFCM KFCM CFCM IIT2-FCM MKCFCM SMKCFCM

FS 4.3448 3.1111 3.4527 4.1798 4.4826 4.6482
SSE 95.6558 134.5079 120.4753 103.8078 95.5031 87.3670
D-I 0.8060 0.2839 0.3779 0.7730 0.8096 0.8473
DB-I 1.3554 5.3773 4.6716 15012 1.3458 1.2470
PC-I 0.8846 0.4484 0.7596 0.8449 0.8898 0.9060
CE-I 0.7192 3.1365 2.3642 0.8501 0.7136 0.6638
S-I 0.4136 0.8049 0.7409 0.4211 0.3976 0.3612
XB-I 0.2459 0.4000 0.3474 0.1851 0.1744 0.1592
CL-I 0.9423 0.8094 0.8763 0.9614 0.9344 0.9590
GC-I 2.9076 3.8711 3.7907 3.3475 3.0883 2.4888
Mean 1.24% 5.29% 6.02% 2.48% 1.21% 0.75%
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Table 8
Computational time by running algorithms KIFCM, KFCM, CFCM, IIT2-FCM, MKCFCM
and SMKCFCM on the individual datasets.

Time (s) KIFCM KFCM IIT2-FCM CFCM MKCFCM SMKCFCM

Thanh Hoa 93.1825 81.6274 98.7263
326.7263 417.8723 216.0247(3161.304 km2)

Thai Nguyen 178.0279 143.5716 196.8772
(6822.165 km2)
Quy Hop 127.9623 98.0254 136.7824
(5730.4 km2)

The total 399.1187 323.2244 432.3859 326.7263 417.8723 216.0247
clustering time

result is due to the fact that the preprocessing of super pixel SLIC
algorithm involves only nearly and similar points, so the accuracy of
gathering points into super pixels is better than the general clustering
quality for full images and SMKCFCM algorithms inherit this advantage
when only super-pixel is clustered instead of clustering all the original
pixels.

Besides analyzing the indicators for validating the quality, the com-
putational time is also measured when running different algorithms
which is presented in Table 8.

The summaries in Table 8 exhibit the total clustering time of the
individual algorithms on all the three datasets or each individual
dataset, it can be seen that collaborative fuzzy clustering with super-
pixels segmentation has significantly reduced the computational time.
When clustering on all the three satellite image datasets, the proposed
algorithm takes 216.0247 s, the least value in comparison with the
other algorithms (216.0247 s, the least value in comparison with the
other algorithms taking 399.1187, 323.2244, 432.3859, 326.7263 and
417.8723 s by the KIFCM, KFCM, IIT2-FCM, CFCM and MKCFCM
algorithms, respectively). While the proposed algorithm with weighted
super-pixel obtains the equivalent accuracy or the better accuracy com-
pared with the considering algorithms. Therefore the novel framework
obtains not only the significant performance of computational time but
also the accuracy.

5. Conclusions

We have proposed the idea of the collaborative fuzzy clustering by
introducing multiple-kernel technique and the weighted super-pixels
which helped improve the clustering results running on the satellite im-
ages. The proposed methods also enable to overcome drawbacks in the
data complexity which data shape is non-spherical and cannot linearly
separate. The experiments were implemented for land cover classifica-
tion problem on multi-spectral satellite image datasets, which exhibited
that the SMKCFCM algorithm obtains the better clustering quality than
results produced from some considered clustering algorithms.

Several further studies may be concentrated on the usage of evo-
lutionary methods to optimize parameters or implementing on the
efficient platform like GPU platform could be investigated.
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Appendix. The proof of Theorem 1

To use the technique of Lagrange multipliers, we reformulate the
objective function (21) is reformulated in the form:

𝑉[𝑖𝑠] =
𝑐
∑

𝑖=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝑑

2
𝑖𝑘 +

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
𝑐
∑

𝑖=1
(𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝑑2𝑖𝑘

− 𝜆(
𝑐
∑

𝑖=1
𝑢𝑖𝑘[𝑖𝑠] − 1) (A.1)

The necessary conditions for the minimum of 𝑉 [𝑖𝑠] are expressed as
𝜕𝑉
𝜕𝑢𝑟𝑠

= 0 and 𝜕𝑉
𝜕𝑣𝑖

= 0, 𝑟 = 1,… , 𝑐; 𝑠 = 1,… , 𝑛𝑖𝑠. After calculating the
derivative corresponding to the individual elements of the membership
matrix, we reach:

𝜕𝑉[𝑖𝑠]
𝜕𝑢𝑟𝑠

= 2𝜑𝑠𝑢𝑟𝑠[𝑖𝑠]𝑑
2
𝑟𝑠 + 2

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢𝑟𝑠[𝑖𝑠]𝑑2𝑟𝑠

− 2
𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢̃𝑟𝑠[𝑖𝑠|𝑗𝑠]𝑑2𝑟𝑠 − 𝜆 = 0 (A.2)

𝑢𝑟𝑠[𝑖𝑠] =
⎡

⎢

⎢

⎣

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠
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𝛽[𝑖𝑠|𝑗𝑠])𝑑2𝑟𝑠

⎤

⎥

⎥

⎦

(A.3)

Applying the constraint in the form ∑𝑐
𝑗=1 𝑢𝑗𝑠[𝑖𝑠] = 1, we obtain:

𝑐
∑

𝑗=1

⎡

⎢
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= 1 (A.4)
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(A.5)

By plugging (A.5) into (A.3) we have:
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(A.7)

for 𝑠 = 1,… , 𝑛𝑖𝑠 and 𝑟 = 1,… , 𝑐.
To calculate the centroids of clusters we rewrite the objective

function as following:

𝐽[𝑖𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
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2 +
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2 (A.8)

𝜕𝐽[𝑖𝑠]
𝜕𝑣𝑖[𝑖𝑠]

= 0
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𝑑2𝑖𝑘 = 𝜓(𝑥𝑘)𝑇𝜓(𝑥𝑘) − 2
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𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗1[𝑖𝑠] − 𝑢̃𝑖𝑗1[𝑖𝑠|𝑗𝑠])
2𝜓(𝑥𝑗1)

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗1[𝑖𝑠] − 𝑢̃𝑖𝑗1[𝑖𝑠|𝑗𝑠])
2

⎞

⎟

⎟

⎠

𝑇

⎛

⎜

⎜

⎝

∑𝑛𝑖𝑠
𝑗2=1 𝜑𝑘𝑢

2
𝑖𝑗2[𝑖𝑠]𝜓(𝑥𝑗2) +

∑𝑛𝑖𝑠
𝑗2=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])
2𝜓(𝑥𝑗2)

∑𝑛𝑖𝑠
𝑗2=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗2=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])
2

⎞

⎟

⎟

⎠

𝑑2𝑖𝑘 = 𝜓(𝑥𝑘)𝑇𝜓(𝑥𝑘) − 2

∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑗 [𝑖𝑠]𝜓(𝑥𝑘)

𝑇𝜓(𝑥𝑗 ) +
∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2𝜓(𝑥𝑘)

𝑇𝜓(𝑥𝑗 )
∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2

+

∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1 𝜑𝑗1𝜑𝑗2𝑢

2
𝑖𝑗1[𝑖𝑠]𝑢

2
𝑖𝑗2[𝑖𝑠]𝜓(𝑥𝑗1)

𝑇𝜓(𝑥𝑗2) + 2
∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢2𝑖𝑗1(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])
2𝜓(𝑥𝑗1)

𝑇𝜓(𝑥𝑗2)
(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

+

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑗1=1

∑𝑛𝑖𝑠
𝑗2=1 𝜑𝑗1𝜑𝑗2𝛽

2[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗1[𝑖𝑠] − 𝑢̃𝑖𝑗1[𝑖𝑠|𝑗𝑠])
2(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])

2𝜓(𝑥𝑗1)
𝑇𝜓(𝑥𝑗2)

(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

Box II.

𝑑2𝑖𝑘 =
𝑀
∑

𝑡=1
𝜔2
𝑡 𝑃𝑡(𝑥𝑘, 𝑥𝑘) − 2

∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑗 [𝑖𝑠]

∑𝑀
𝑡=1 𝜔

2
𝑡 𝑃𝑡(𝑥𝑘, 𝑥𝑗 ) +

∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2 ∑𝑀

𝑡=1 𝜔
2
𝑡 𝑃𝑡(𝑥𝑘, 𝑥𝑗 )

∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2

+

∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1 𝜑𝑗1𝜑𝑗2𝑢

2
𝑖𝑗1[𝑖𝑠]𝑢

2
𝑖𝑗2[𝑖𝑠]

∑𝑀
𝑡=1 𝜔

2
𝑡 𝑃𝑡(𝑥𝑗1, 𝑥𝑗2) + 2

∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢2𝑖𝑗1(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])
2 ∑𝑀

𝑡=1 𝜔
2
𝑡 𝑃𝑡(𝑥𝑗1, 𝑥𝑗2)

(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

+

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑗1=1

∑𝑛𝑖𝑠
𝑗2=1 𝜑𝑗1𝜑𝑗2𝛽

2[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗1[𝑖𝑠] − 𝑢̃𝑖𝑗1[𝑖𝑠|𝑗𝑠])
2(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])

2 ∑𝑀
𝑡=1 𝜔

2
𝑡 𝑃𝑡(𝑥𝑗1, 𝑥𝑗2)

(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

(A.11)

Box III.

𝛼𝑖𝑘𝑡 = 𝑃𝑡(𝑥𝑘, 𝑥𝑘) − 2

∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑗 [𝑖𝑠]𝑃𝑡(𝑥𝑘, 𝑥𝑗 ) +

∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2𝑃𝑡(𝑥𝑘, 𝑥𝑗 )

∑𝑛𝑖𝑠
𝑗=1 𝜑𝑗𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2

+

∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1 𝜑𝑗1𝜑𝑗2𝑢

2
𝑖𝑗1[𝑖𝑠]𝑢

2
𝑖𝑗2[𝑖𝑠]𝑃𝑡(𝑥𝑗1, 𝑥𝑗2) + 2

∑𝑛𝑖𝑠
𝑗1=1

∑𝑁[𝑖𝑠]
𝑗2=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]𝑢2𝑖𝑗1(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])
2𝑃𝑡(𝑥𝑗1, 𝑥𝑗2)

(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

+

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

∑𝑛𝑖𝑠
𝑗1=1

∑𝑛𝑖𝑠
𝑗2=1 𝜑𝑗1𝜑𝑗2𝛽

2[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗1[𝑖𝑠] − 𝑢̃𝑖𝑗1[𝑖𝑠|𝑗𝑠])
2(𝑢𝑖𝑗2[𝑖𝑠] − 𝑢̃𝑖𝑗2[𝑖𝑠|𝑗𝑠])

2𝑃𝑡(𝑥𝑗1, 𝑥𝑗2)
(

∑𝑛𝑖𝑠
𝑗1=1 𝜑𝑗1𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑗1=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑗 [𝑖𝑠] − 𝑢̃𝑖𝑗 [𝑖𝑠|𝑗𝑠])
2
)2

(A.13)

Box IV.

𝑛𝑖𝑠
∑

𝑘=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝜓(𝑥𝑘) −

𝑛𝑖𝑠
∑

𝑘=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝑣𝑖[𝑖𝑠]

+
𝑛𝑖𝑠
∑

𝑘=1

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])
2𝜓(𝑥𝑘)

−
𝑛𝑖𝑠
∑

𝑘=1

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠][𝑖𝑠|𝑗𝑠])
2𝑣𝑖[𝑖𝑠] = 0

𝑣𝑖[𝑖𝑠] =

∑𝑛𝑖𝑠
𝑘=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝜓(𝑥𝑘) +

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])
2𝜓(𝑥𝑘)

∑𝑛𝑖𝑠
𝑘=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠] +

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠](𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])
2

(A.9)

We have the distance between the 𝑘th pattern and centroid of the
𝑖th cluster: 𝑑2𝑖𝑘 is given in Box II and Eq. (A.11) is given in Box III

𝑑2𝑖𝑘 = (𝜓(𝑥𝑘) − 𝑣𝑖)𝑇 (𝜓(𝑥𝑘) − 𝑣𝑖) = 𝜓(𝑥𝑘)𝑇𝜓(𝑥𝑘) − 2𝜓(𝑥𝑘)𝑇 𝑣𝑖 + 𝑣𝑇𝑖 𝑣𝑖 (A.10)
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Eq. (A.11) can be rewritten as follows:

𝑑2𝑖𝑘 =
𝑀
∑

𝑡=1
𝛼𝑖𝑘𝑡𝜔

2
𝑡 (A.12)

in which 𝑎𝑖𝑘𝑡 may be described in the following form: Eq. (A.13) is given
in Box IV

By using Eq. (A.12) to calculate distance between the 𝑘𝑡ℎ pattern
and centroid of the 𝑖𝑡ℎ cluster, the objective function (A.1) becomes:

𝐽[𝑖𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]

𝑀
∑

𝑡=1
𝛼𝑖𝑘𝑡𝜔

2
𝑡 +

𝑛𝑖𝑠
∑

𝑘=1

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
𝑐
∑

𝑖=1
(𝑢𝑖𝑘[𝑖𝑠]

− 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])2
𝑀
∑

𝑡=1
𝛼𝑖𝑘𝑡𝜔

2
𝑡 (A.14)

Subject to ∑𝑀
𝑡=1 𝜔𝑡 = 1, 𝜔𝑘 ≥ 0,∀𝑘; ∑𝑐

𝑗=1 𝑢𝑗𝑠[𝑖𝑠] = 1,∀𝑠; 𝑢𝑗𝑠[𝑖𝑠] ≥ 0,∀𝑠, 𝑗.
The objective function (A.14) can be resolved by using a Lagrange

multiplier as follows:

𝐽[𝑖𝑠] =
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]

𝑀
∑

𝑡=1
𝛼𝑖𝑘𝑡𝜔

2
𝑡

+
𝑛𝑖𝑠
∑

𝑘=1

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
𝑐
∑

𝑖=1
(𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2 ×

𝑀
∑

𝑡=1
𝛼𝑖𝑘𝑡𝜔

2
𝑡 − 2𝜆(

𝑀
∑

𝑡=1
𝜔𝑡 − 1) (A.15)

𝜕𝐽[𝑖𝑠]
𝜕𝜔𝑡

= 2𝜔𝑡
𝑛𝑖𝑠
∑

𝑘=1

𝑐
∑

𝑖=1
𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝛼𝑖𝑘𝑡

+ 2𝜔𝑡
𝑛𝑖𝑠
∑

𝑘=1

𝐾
∑

𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
𝑐
∑

𝑖=1
(𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝛼𝑖𝑘𝑡 − 2𝜆 = 0

𝜔𝑡 =
𝜆

∑𝑛𝑖𝑠
𝑘=1

∑𝑐
𝑖=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝛼𝑖𝑘𝑡 +

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
∑𝑐
𝑖=1 (𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝛼𝑖𝑘𝑡

(A.16)

we know that ∑𝑀
𝑡=1 𝜔𝑡 = 1.

𝑀
∑

𝑡=1

𝜆
∑𝑛𝑖𝑠
𝑘=1

∑𝑐
𝑖=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝛼𝑖𝑘𝑡 +

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
∑𝑐
𝑖=1 (𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝛼𝑖𝑘𝑡
= 1

𝜆 = 1
∑𝑀
𝑡=1

1
∑𝑛𝑖𝑠
𝑘=1

∑𝑐
𝑖=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝛼𝑖𝑘𝑡+

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
∑𝑐
𝑖=1 (𝑢𝑖𝑘[𝑖𝑠]−𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑠])

2𝛼𝑖𝑘𝑡

(A.17)

By plugging (A.17) into (A.16) we have

𝜔𝑡 =

1
∑𝑀
𝑡=1

1
∑𝑛𝑖𝑠
𝑘=1

∑𝑐
𝑖=1 𝜑𝑘𝑢

2
𝑖𝑘 [𝑖𝑠 ]𝛼𝑖𝑘𝑡+

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠 |𝑗𝑠 ]
∑𝑐
𝑖=1 (𝑢𝑖𝑘−𝑢̃𝑖𝑘 [𝑖𝑠 |𝑗𝑠 ])2𝛼𝑖𝑘𝑡

∑𝑛𝑖𝑠
𝑘=1

∑𝑐
𝑖=1 𝜑𝑘𝑢

2
𝑖𝑘[𝑖𝑠]𝛼𝑖𝑘𝑡 +

∑𝑛𝑖𝑠
𝑘=1

∑𝐾
𝑗𝑠=1,𝑗𝑠≠𝑖𝑠

𝛽[𝑖𝑠|𝑗𝑠]
∑𝑐
𝑖=1 (𝑢𝑖𝑘[𝑖𝑠] − 𝑢̃𝑖𝑘[𝑖𝑠|𝑗𝑗])

2𝛼𝑖𝑘𝑡

(A.18)

We have found the formulas (24), (25), (26) and (27) in the formula
(A.7) , (A.12), (A.13) and (A.18), i.e. Theorem 1 is proven.
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