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We investigate the robustness of quantum relativistic Jackiw–Rebbi states, which have been found recently
in a system consisting of two interfaced binary waveguide arrays with opposite propagation mismatches. For
comparison, we study the robustness under strong disturbance during propagation of Jackiw–Rebbi states
and quantum relativistic Dirac solitons, which have also been found earlier in binary waveguide arrays. We prove
that these Jackiw–Rebbi states are extremely robust even under strong disturbance, as opposed to Dirac
solitons. © 2019 Optical Society of America

https://doi.org/10.1364/JOSAB.36.002559

1. INTRODUCTION

Various fundamental photonic phenomena such as discrete
diffraction [1,2], discrete solitons [1,3–5], diffractive resonant
radiation [6], and supercontinuum generation in both frequency
and wavenumber domains [7,8] have been found in waveguide
arrays (WAs). These platforms have also attracted a great amount
of interest in mimicking fundamental effects in nonrelativistic
quantum mechanics such as Bloch oscillations [1,9–11] and
Zener tunneling [12]. However, in order to investigate relativistic
quantum mechanics phenomena arising from the Dirac equa-
tions, one has to use binary WAs (BWAs) instead of conven-
tional WAs. Recently, many important relativistic quantum
mechanics phenomena, such as Zitterbewegung [13], Klein para-
dox [14], and Dirac solitons (DSs) in the nonlinear regime [15],
have been found in BWAs.

The discrete gap solitons in BWAs in the classical context
have been explored much earlier [16–21]. However, only re-
cently, these discrete solitons in BWAs have been shown to
be optical analogs of DSs in a one-dimensional (1D) nonlinear
relativistic quantum Dirac equation [15]. The stability dynam-
ics of DSs and interaction between them have been investigated
in [22]. The generation and dynamics of two-dimensional DSs
in square binary waveguide lattices have been investigated in
[23]. The higher-order DSs in BWAs and its properties have
been studied in [24]. The Dirac light bullet, which maintains
its profile in both space and time domains, has been shown to
exist in BWAs in [25]. The switching effect of a DS by an
extremely weak signal in BWAs with varying propagation mis-
match has been investigated in [26], where the compression,
symmetry conservation, and symmetry breaking of DSs have
also been analyzed in details. It is worth mentioning that
nonlinear Dirac equations have been studied for a long time.
The first nonlinear model of the Dirac equation was initially

introduced by Ivanenko in 1938 for self-interacting electrons
[27]. Heisenberg also used the nonlinear Dirac equation in
an attempt to formulate a unified theory of elementary particles
in 1957 [28]. In 1970, Soler re-introduced Ivanenko’s model in
the context of extended nucleons [29,30].

Recently, it has been proved in [31] that one can create the
optical analog of special states, known in the quantum field
theory as Jackiw–Rebbi (JR) solutions [32] at the interface
of two BWAs, which are described by two Dirac equations with
so-called Dirac masses of different signs. The analytical solu-
tions for JR states in BWAs have been found in [31] in the
linear regime. Meanwhile, the solutions for JR states in
BWAs with Kerr nonlinearity have been investigated quite re-
cently in [33]. The interaction between JR states and DSs in
BWAs has been investigated in [34]. Based on the JR states,
the charge fractionalization phenomenon, which plays a central
role in the fractional quantum Hall effect [35], has been
predicted. One of the spectacular properties of the JR states
is the topological nature of its zero-energy solution, which
can be considered as a precursor to topological insulators [36].
It has been demonstrated that topological photonics can
have a great potential in the development of robust optical
circuits [37].

In this work, we study the stability and robustness of JR
states in BWAs under very strong disturbance. For comparison,
we investigate the dynamics of JR states and DSs under strong
disturbance of different types and show that the JR states are
extremely robust as compared to DSs in the same conditions.

The paper is organized as follows. In Section 2, as a starting
point, we show the pure JR states and DSs, i.e., without any
disturbance in BWAs. Then, in Section 3, we investigate the
robustness of JR states and DSs when the nonlinearity is turned
on/off. In Section 4, we explore the robustness of JR states and
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DSs when the system is under transverse linear potential.
In Section 5, we study the robustness of JR states and DSs
when these structures are launched obliquely into the system
at the input. Finally, in Section 6, we summarize our results
and finish with concluding remarks.

2. JACKIW–REBBI STATES AND DIRAC
SOLITONS WITHOUT DISTURBANCE

In this section, as a starting point, we show the dynamics of
pure JR states and DSs, i.e., when they propagate in an ideal
condition without any disturbance. These results have already
been obtained earlier for DSs in [15] and quite recently for JR
states in [31].

Light propagation in BWAs with Kerr nonlinearity can be
described, in the continuous-wave regime, by the following
dimensionless coupled-mode equations (CMEs) [15,31,34]:

i
dan�z�
dz

� κ�an�1�z�� an−1�z�� − �−1�nσan � γjanj2an�z� � 0,

(1)

where an is the electric field amplitude in the nth waveguide,
z is the longitudinal spatial coordinate, 2σ and κ are the propa-
gation mismatch and the coupling coefficient between two
adjacent waveguides of the array, respectively, and γ is the
nonlinear coefficient of waveguides, which is positive for
self-focusing but negative for self-defocusing media.

After setting Ψ1�n� � �−1�na2n and Ψ2�n� � i�−1�na2n−1
and following the standard approach [13], we can introduce
the continuous transverse coordinate ξ↔n and the two-
component spinor Ψ�ξ, z� � �Ψ1,Ψ2�T , which satisfies the
1D nonlinear Dirac equation [15]:

i∂zΨ � −iκσ̂x∂ξΨ� σσ̂zΨ − γG, (2)

where the nonlinear terms G ≡ �jΨ1j2Ψ1, jΨ2j2Ψ2�T ; σ̂x and
σ̂z are the usual Pauli matrices. In quantum field theory, the
parameter σ in the Dirac equation is often called the mass
of the Dirac field (or Dirac mass), and this mass parameter
can be both positive and negative.

In order to create JR states, one needs to have at least one
interface between two BWAs with opposite propagation mis-
matches. For waveguides with n < 0, we have σ � σ1, whereas
for n ≥ 0, we have σ � σ2. Note that the condition σ1σ2 < 0
must be held true. The illustrative sketch of this system is de-
picted in Fig. 1(a) in [31]. At the interface between two adja-
cent BWAs, the exact analytical localized solutions for JR states
have been obtained in [31] in the linear case. In the nonlinear
case, as shown in one of our latest works, which will be pub-
lished elsewhere [33], the JR states can be obtained via the
so-called shooting method, which can be implemented by
introducing a detuning parameter for the stationary solutions.
In this way, one can reduce Eq. (1) into a system of nonlinear
algebraic equations, which can be solved by using the shooting
method to “shoot” from the soliton center to its vanishing tails.
This method has also been successfully used to numerically get
the profiles for dissipative Bragg solitons in active nonlinear
fibers [38]. In Fig. 1(a), we show the propagation of a JR state
of the first type in the ideal condition, i.e., without any disturb-
ance (see also Fig. 1 in [31] for more details). In Fig. 1(c),

we plot the profile of this JR state, which is very stable during
propagation, as clearly demonstrated in Fig. 1(a). Note that the
peak amplitude of JR states is localized at the interface with
waveguide positions n � �−1; 0�.

Meanwhile, in order to create DSs, one just needs a BWA.
The analytical solutions for DSs have been obtained in [15].
In Fig. 1(b), we show the propagation of a DS in the ideal con-
dition, i.e., without any disturbance (see also Fig. 2 in [15] for
more details). In Fig. 1(d), we plot the profile of this DS, which
is also very stable during propagation, as clearly demonstrated
in Fig. 1(b). Note that a DS consists of intense and weak
components that are localized adjacent to each other. For
instance, the intense component is localized at the even wave-
guides, whereas the weak component is localized at the odd
waveguides.

So, in Fig. 1, we have just shown the pure JR state and DS in
the ideal condition. In the following sections, we will impose
strong disturbance upon these two structures with the aim to
investigate their robustness. To estimate real physical parame-
ters of the calculated DSs below, we use typical parameters in
WAs made of AlGaAs [39], where the coupling coefficient
and nonlinear coefficient in physical units are K � 1240 m−1

and Γ � 6.5 m−1 W−1, respectively. In this case, the power
scale will be P0 � K ∕Γ � 190.8 W, thus the peak power
of the DS and JR state shown in Fig. 1 will be around
30 W, and the length scale in the propagation direction will
be z0 � 1∕K � 0.8 mm. Indeed, from the dimensionless
Eq. (1), one can straightforwardly get back to the system of
CMEs in real physical units,

i
dAn

dZ
� κ

z0
�An�1 � An−1� − �−1�n

σ

z0
An �

γ

P0z0
jAnj2An � 0,

(3)
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Fig. 1. (a), (b) Propagation of a JR state of the first type and a DS in
BWAs, respectively, without any disturbance. (c), (d) Profiles of the JR
state and the DS, respectively. Parameters for (a) and (c): coupling
coefficient κ � 1, nonlinear coefficient γ � 0, propagation mismatch
for the BWAwith negative waveguide positions (i.e., n < 0) σ1 � −1,
propagation mismatch for the BWA with positive waveguide positions
(i.e., n ≥ 0) σ2 � 1, linear potential parameter α � 0. Parameters for
(b) and (d): coupling coefficient κ � 1, nonlinear coefficient γ � 1,
propagation mismatch for the whole BWA σ � −1, linear potential
parameter α � 0.
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by using the following transformations: an � An∕
ffiffiffiffiffi

P0

p
and

z � Z∕z0, where the square of the electric field jAnj2 is in units
of the optical power (like the power scale P0), as is often
adopted in fiber optics [5]. So, now it is clear that if we want
to set both the dimensionless coupling coefficient κ and the
nonlinear coefficient γ equal to unity, as in this work, then
we have to choose the length scale z0 � κ∕K � 1∕K and
the power scale P0 � γ∕�Γz0� � γK ∕Γ � K ∕Γ, respectively.

3. JACKIW–REBBI STATES AND DIRAC
SOLITONS DYNAMICS WHEN THE
NONLINEARITY IS TURNED ON/OFF

As mentioned above, in Figs. 1(a) and 1(c), we set γ � 0 for JR
states, whereas in Figs. 1(b) and 1(d), we set γ � 1 for DSs.
The reason for using these specific values of γ is simple: the
exact analytical solutions for JR states and DSs are obtained
only in the linear and nonlinear regimes, respectively. In this
section, we will turn on/off the nonlinearity, i.e., switch
on/off the nonlinear coefficient γ in Eq. (1), to see how the
pure JR state and DS evolve under this circumstance. In
Fig. 2(a), we show the evolution of the JR state in the nonlinear
regime (now γ � 1) when the initial profile is one of the linear
JR states plotted in Fig. 1(c). In Fig. 2(c), we plot the input (red
curve with round markers) and output (black curve) of this JR
state shown in Fig. 2(a). As clearly seen in Figs. 2(a) and 2(c),
when the nonlinearity is turned on/off (i.e., γ is switched
between 0 and 1), the JR profile is just slightly adjusted at
the beginning and quickly becomes perfectly stabilized during
propagation. Note again that the profiles of localized nonlinear
JR states can be exactly calculated by using some numerical
methods, e.g., the shooting method, as shown in [33].

In contrast, one gets totally different scenarios for DSs when
the nonlinearity is turned on/off. Indeed, in Fig. 2(b), we show
the evolution of the DS in the linear regime (now γ � 0) when
the initial profile is the one of the nonlinear DSs plotted in

Fig. 1(d). In Fig. 2(d), we plot the input (red curve) and output
(black curve) of this DS shown in Fig. 2(b). It is clearly dem-
onstrated that, unlike JR states, DSs are very sensitive to the
switching of the nonlinear coefficient γ. In the nonlinear re-
gime, as shown in Figs. 1(b) and 1(d), one can get a very stable
DS due to the well-known balance between the diffraction-
based spreading and nonlinearity-based focusing. However,
in the linear regime, this balance is broken; as a result, the
DS is totally destroyed after a short distance, and we can see
a strong spreading of the beam in Figs. 2(b) and 2(d). This
linear spreading is also common for all solitons in continuous
media, including the well-known solitons obtained from the
nonlinear Schrödinger equations in optical fibers [4], if the
nonlinearity is switched off.

So, we have demonstrated that the JR states are extremely
robust if the nonlinearity is turned on/off. This unique feature
of JR states is remarkable, because other solitons can be easily
destroyed in this circumstance. The reason for this robustness
is based on the topological nature of JR states [31], which, as
discussed in the Introduction, can have a great potential in the
development of robust optical circuits [37].

4. JACKIW–REBBI STATES AND DIRAC
SOLITONS DYNAMICS UNDER THE LINEAR
POTENTIAL

In this section, we investigate the robustness of JR states and
DSs by applying the external transverse linear potential across
the system, which changes the propagation constant along the
array in a linear fashion. This method has been successfully
exploited to generate the photonic analogue of the quantum
nonrelativistic Bloch oscillations in WAs [7] by using, for
instance, the electro-optic [9] or thermal-optic effect [10].
Mathematically, this linear potential results in adding an extra
term αnan to the left-hand side of Eq. (1), where the coefficient
α is the linear potential parameter. It is well-known that in WAs
consisting of identical waveguides, in the linear regime, the
linear potential will lead to the Bloch oscillations of beams
during propagation in a sinusoidal fashion with a period
z0 � 2π∕α (see, for instance, Figs. 2(a) and 2(b) in [7] for more
details). However, if the nonlinearity is included, then in Was,
one can observe the diffractive resonant radiation and the
anomalous compensation of the soliton self-wavenumber shift
(see Figs. 2(c) and 2(d) in [7] for more details).

As mentioned above, the influence of the linear potential on
beam dynamics in WAs has been well-investigated. However,
in BWAs, to the best of our knowledge, this influence has not
been analyzed so far. Now, we want to investigate the dynamics
of initial JR states and DSs in BWAs under the influence of this
linear potential. In Fig. 3(a), we show the evolution of the JR
state in the linear regime (γ � 0) with the linear potential
parameter α � 0.02. The initial profile of the JR state in
Fig. 3(a) is the one of the linear JR state plotted in
Fig. 1(c). The input (red curve with round markers) and output
(black curve) of this JR state are plotted in Fig. 3(c). Note that
all other parameters (except for α) are exactly the same as in
Fig. 1(a). As clearly demonstrated in Figs. 3(a) and 3(c), the
JR state is quite robust under the influence of the linear poten-
tial, and its profile is slightly varied during propagation. It is
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Fig. 2. (a) Propagation of the JR state of the first type shown
in Fig. 1(a), but now in the nonlinear regime, i.e., γ � 1.
(b) Propagation of the initial DS shown in Fig. 1(b), but now in
the linear regime, i.e., γ � 0. (c) Input and output profiles of the
JR state in (a). (d) Input and output profiles of the beam in (b).
All other parameters (except for the nonlinear coefficient γ) are exactly
the same as in Fig. 1.
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worth mentioning that if we use the nonlinear JR states calcu-
lated in [33] as the input condition for obtaining Figs. 3(a) and
3(c), then the main above-mentioned features of JR states will
remain: the nonlinear JR states are also quite robust with re-
spect to the linear transverse potential, and their profiles are
also only slightly changed during propagation.

In contrast, like in the case when the nonlinearity is turned
on/off as shown in Fig. 2, one gets totally different scenarios for
DSs when the linear potential is applied. Indeed, in Fig. 3(b)
we show the evolution of the DS in the nonlinear regime
(γ � 1) with the linear potential parameter α � 0.02. The ini-
tial profile of the DS is the one of the nonlinear DS plotted in
Fig. 1(d). The input (red curve) and output (black curve) of this
DS are plotted in Fig. 3(d). It is clearly demonstrated that, un-
like JR states, DSs are very sensitive to the presence of linear
potential. At the beginning, the beam (which initially is a DS) is
bent downwards, like the Bloch oscillations; then, it strongly
emits radiations, which totally destroy the structure of the
DS. Later on, these radiations again gather together and form
another beam with the output profile completely different from
the input profile of the DS. Note that the linear potential
parameter α � 0 in Fig. 1, but α � 0.02 in Fig. 3. Apart from
that, all conditions and parameters for obtaining results in
Fig. 3 are exactly the same as in Fig. 1.

So, we have demonstrated that the JR states are very robust
under the influence of linear potential. The JR states are just
localized at the interface between two BWAs and cannot be
displaced or destroyed by the linear potential, unlike DSs.
This amazing feature of JR states once more proves the robust-
ness of JR states under strong disturbance and also has a root in
the topological nature of JR states.

5. JACKIW–REBBI STATES AND DIRAC
SOLITONS DYNAMICS WITH OBLIQUE
INCIDENCE

All JR states and DSs analyzed above are normally launched
into the system. In this section, we investigate the dynamics

of JR states and DSs when they are launched obliquely into
the system. Mathematically, this can be easily done if we multi-
ply the initial JR states and DSs by an extra term in the form of
einφ. Physically, this extra term represents the initial phase dif-
ference between fields at adjacent waveguides. In all cases
shown above where beams are launched normally, this initial
phase difference is just equal to zero, i.e., φ � 0. Now, in this
section, as an example, we will set φ � π∕10 for getting results
in Fig. 4. All other conditions and parameters used in Fig. 4 are
exactly the same as in Fig. 1.

In Fig. 4(a), we show the evolution of the JR state under the
oblique incidence (φ � π∕10). The initial profile of the JR
state in Fig. 4(a) is also the one of the linear JR state plotted
in Fig. 1(c). The input (red curve with round markers) and
output (black curve) of this JR state are plotted in Fig. 4(c).
It is quite unexpected that even the oblique incidence cannot
displace the JR state from the interface between two BWAs. As
clearly shown in Fig. 4(a), the JR state propagates just along the
interface as if it was launched normally. As compared to the
pure JR state shown in Figs. 1(a) and 1(c), the profile of
the JR state in Figs. 4(a) and 4(c) is just slightly varied during
propagation. This feature is also true if we use nonlinear JR
states calculated in [33] instead of linear ones at the input.

On the contrary, we have a different scenario for the DS
evolution under the oblique incidence (φ � π∕10), as shown
in Fig. 4(b). The initial profile of the DS is also the one of the
nonlinear DS plotted in Fig. 1(d). The input (red curve) and
output (black curve) of this DS are plotted in Fig. 4(d). It is
clearly demonstrated that, unlike JR states, DSs are very sensi-
tive to oblique incidence. As expected, the oblique incidence
bends the DS, and as a result, the DS propagates under a certain
angle inside the BWA. Although the DS emits some weak
radiation during propagation in Fig. 4(b), the structure of
the DS is also quite robust in this case.

So, we have demonstrated that the JR state is very robust
under the oblique incidence in the sense that the JR state just
propagates along the interface between two BWAs, whereas the
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DS can be easily shifted transversally as expected. This feature
of JR states also has a root in their topological nature. Apart
from this difference, the structures of both the JR state and
the DS are rather robust in this case.

6. CONCLUSION

In conclusion, we demonstrate numerically that JR states
formed at the interface between two BWAs are extremely ro-
bust under strong disturbance of various types such as the turn-
ing on/off of nonlinearity, the linear transverse potential, and
the variation of the incidence angles. All of these types of strong
disturbance cannot displace the JR states from the interface,
neither can they destroy the JR states structure. This amazing
feature of JR states is totally different from the DSs in BWAs or
from other solitons in continuous media, which can be easily
destroyed and/or displaced transversally under these strong dis-
turbances. The robustness of JR states is due to the fact that
they are topologically protected from many kinds of strong
disturbance. This amazing feature of JR states in BWAs can
have great potential for developing robust optical circuits.

Funding. Le Quy Don Technical University (19.ĐH.01).
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