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Abstract — This paper is a study of the geometrical non-

linearity influence of the elastic suspension in 

micromechanical gyroscope under the conditions of angular 

vibration. The spatial non-linear oscillations of the elastic 

suspension were considered. A quasi-linear system of 

equations of Mathieu–Hill, describing the motion of 

sensitive element on vibrating conditions close to the main 

parametric resonance, was obtained. In this paper an 

averaged equation of motion and found stationary regimes 

of oscillations was built. The case of losing stability of 

oscillations in terms of the main parametric resonance was 

analyzed. And the angular vibration in the resonance case 

leads to additional deflection of gyroscope. It is shown that 

for certain parameters of the system the regime of plane 

stationary oscillations of the sensitive element of the MMG 

becomes unstable. The conditions for the appearance and 

stability of spatial stationary oscillations in the vicinity of 

the main resonance are investigated depending on the 

parameters of the system. 

 

Index Terms — micromechanical gyroscope, dynamic, non-

linearity influence. 

I. INTRODUCTION 

Consider one of the constructive schemes 

micromechanical gyroscope (MMG) with an elastic 

suspension of a rigid body- sensitive element on sub-

frame [1] (Fig.1). Kinematic scheme of the gyroscope is 

two-stage of cardanic suspension of the sensitive element. 

According to the accepted classification, this is 

micromechanical gyroscope with an angular motion 

sensor (MMG-RR type) [2,3]. 

 

Figure 1.  Micromechanical gyroscope RR-type. 

We assume that the sensor of MMG is balanced, point 

O center suspension and the center of mass coincide. 

Assume that the design provides infinite torsion bending 

stiffness. 

II. DYNAMIC OF MICROMECHANICAL GYROSCOPE 

Consider a micromechanical gyroscope RR-type with 

angular motion of sensitive element, which was used 

within control system as mobile objects. 

Let * * *Ox y z  and Oxyz   are coordinate systems of 

basis and sensitive element of gyroscope, respectively 

(Fig.2). The relative position of the coordinate systems 

was presented by the following scheme: 

 
* 1

* * * 1 1 1x y
Ox y z Ox y z Oxyz

 
⎯⎯→ ⎯⎯→

 
. (1) 

This scheme was indicated by upper the arrow - angle, 

and under the arrow - the axis around which rotates 

counterclockwise by this angle. 

 

Figure 2.  Kinematic scheme of sensitive suspension in 
micromechanical gyroscope RR-type. 

The kinematic energy of the system is: 
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where , ,x y zJ J J - axial moments of inertia of the 

gyroscope sensor about Ox, Oy, Oz axes, respectively; 



, ,x y zI I I  - axial moments of inertia of the intermediate 

frame about Ox1, Oy1, Oz1, respectively. We assume 

centrifugal moments of inertia of the sensing element and 

frame are zero. 

On the power electrodes to excite vibrations, the AC-

voltage is applied and the moment of electrostatic 

actuator appeared: 

 0 0sinM M t=
 
, (3) 

where 0M  and 0 - amplitude and frequency of the 

forced moment. 

The potential energy of the system is illustrated: 

 
2 21 1

2 2
P c c M   = + −

 
, (4) 

where M −  the forced moment, ,c c  - the torsion 

stiffness’s by respective coordinates. 

Dissipative function of dissipative energies is: 
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, (5) 

where ,k k  - damping coefficients while rotating the 

outer and inner frames about axes *Ox  and Oy , 

respectively. 

The system of Lagrange’s equations is: 
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, (6) 

where ,Q Q   - generalized forces: 
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The system of equations of gyroscope motion is 

obtained: 
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(8) 

Giving the smallness of generalized coordinates   and 

 , rewrite the Lagrange’s equations (8) with precision of 

fourth order of coordinates: 
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(9) 

The system of equations (9) describes a quasi-linear 

oscillations of a micromechanical gyroscope sensor on a 

moving basis. 

Normalization of the system of equations. It is 

convenient to go to the dimensionless variables, by which 

we can reduce the number of system parameters, and 

investigate the nonlinear effects associated by finite 

amplitude oscillation of sensor, vibration of base and 

manufacturing errors. 

We assume that there are two oscillation frequencies 

1ω and 2ω  of gyroscope sensor: 

 ( )2 1, 1
y x x

c c

J J I

     = = = = −
+

,(10) 

where  - dimensionless parameter, characterizing the 

small residual difference between oscillation frequencies. 

Also consider the small difference in energy 

dissipation of generalized coordinates   and  : 
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where 1 2,  - normalized damping coefficients of the 

order of unity. 

The dimensionless time  , normalized generalized 

coordinates ,x y  and angular velocity   are obtained by 

the following relationships: 
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where 1 2, j j - dimensionless parameters that characterize 

the mass-geometric characteristics of the gyroscope: 
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where j  and  - normalized parameters of gyroscope. 

Giving substitutions (12), (13), equation of motion (9) 

takes the following form: 
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Hereinafter, the dot over letters denotes differentiation 

with respect to the dimensionless time  . 

III. THE GEOMETRICAL NON-LINEARITY INFLUENCE 

OF THE ELASTIC SUSPENSION 

We pose the problem of studying the dynamics of 

small free oscillations of a micromechanical gyroscope 

sensor on a vibrating base, taking into account the 

geometric nonlinearity of elastic suspension. The greatest 

practical interest is the case of the main parametric 

resonance when the frequency of the angular vibration 

closes to double the frequency of free oscillations of the 

system. 

First, consider the case of still hard ( )0 =  elastic 

suspension sensor and an isotropic energy dissipation 

( )1 2  = =  then the equation of small oscillations of 

the micromechanical gyroscope can be written in such a 

way: 
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Let the angular velocity of the base varies according to 

the rule [5]: 

 * 0 1 0sin 2 ,t = +
 
 (16) 

where 0  - given constant angular velocity of the base; 

1  and 02 - amplitude and frequency angular vibration 

of the base. 

Taking into account (12) the expression (16) for 

normalized angular velocity of the base will be: 

 0 1 sin 2 ,   = +
 
 (17) 

where 0 - dimensionless constant of angular velocity of 

the base, 1 - normalized amplitude of angular vibrating 

velocity of the base,   - dimensionless vibrating 

frequency of the base: 
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In view of the law for the angular velocity of the 

vibration base (17) equations (15) are a nonlinear system 

of differential equations of Mathieu – Hill: 
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The dynamics of the system in the slow variables. 

Next, we consider the problem of the dynamics (19) in 

the resonance case, when the angular vibrating frequency 

closes to double the frequency of free oscillations of the 

system, i.e. [7,10]: 

 1 , − =
 
 (20) 

where   - frequency detuning of system ( )~ 1 . 

For the perturbed system (19) apply the averaging 

method Krylov-Bogolyubov and present it to the standard 

form by the transition from the variables to the slow 

variables Van der Pol from the formulas : 
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Near the main parametric resonance (20) equations 

(19) after the transition to the slow variables according to 

the formulas (21) take the form [4,6]: 
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(22) 

Stationary oscillations of a nonlinear system. 

Analytically integrate the system of nonlinear differential 

equations (22) for arbitrary initial conditions is not 

possible. This can be done by numerical integration 

methods.  

For applications, it is important to study the stationary 

mode of sensor MMG vibrations. To determine the 

stationary oscillations we find the singular points of the 

system (20), equating to zero the right-hand side of 

equations (20). 

The basic properties of stationary vibrations of the 

system (22) can be studied analytically in the case of 

small damping coefficient ( )0 =  and the lack of the  



uniform angular velocity ( )0 0 = . In this case, the 

solution of the nonlinear algebraic equations: 
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can be found by numerical methods. 

 

 

Figure 3.  The amplitude-frequency characteristics of the forced 

stationary oscillations when 1 0 = . 

The amplitude-frequency characteristics ( ) ( ),A B   

(Fig. 3, 4,) are a family of parabolas, where in the 

doubled value of frequency detuning   must be greater 

than the angular amplitude of vibration of a base 1 . 

Lyapunov stable stationary oscillation amplitudes are 

marked in Fig. 3, 4, dark and unstable - a light 

background. Note that the presence of rotational vibration 

to the base ( )0 0  leads to the additional branch on the 

amplitude-frequency characteristic [8,9,10]. 

 

 

Figure 4.  The amplitude-frequency characteristics of the forced 

stationary oscillations when 1 0.1 = . 

IV. CONCLUSION 

A new mathematical model of the sensor vibrations, 

which takes into account the geometric nonlinearity of 

the elastic suspension under conditions of a rotational 

vibration, was developed. Equations of oscillations are 

system of nonlinearity differential equations Mathieu-

Hill. Using the averaging method of Krylov-Bogolyubov 

to investigate the dynamics of a gyroscope in the slow 

variables. As shown that the angular vibration, occurring 

at the non-resonant frequencies within the framework of 

the assumptions, does not affect the accuracy of the 

gyroscope. And the angular vibration in the resonance 

case leads to additional deflection of gyroscope. It is 



shown that for certain parameters of the system the 

regime of plane stationary oscillations of the sensitive 

element of the MMG becomes unstable. The conditions 

for the appearance and stability of spatial stationary 

oscillations in the vicinity of the main resonance are 

investigated depending on the parameters of the system. 
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