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Abstract—This paper discusses dynamic properties of discrete
Volterra equations of convolution type. The asymptotic separation
of solutions is studied. More precisely, a polynomial lower bound
for the norm of differences between two different solutions of
discrete Volterra equations of convolution type is presented. We
apply this result to the theory of fractional difference equations.

I. INTRODUCTION AND NOTATION

In this paper we consider discrete Volterra equations of
convolution type. This type of equations has been widely used
as a mathematical model in population dynamics [1]. Some
of the first qualitative results about asymptotic behaviour of
discrete Volterra equations were presented in [2]. A systematic
study of Volterra difference equations may be traced back
to paper [3] by Elaydi that appeared in 1994. Independently,
Kolmanovskii and his collaborators developed a parallel the-
ory [4]–[7]. Interesting results on stability, boundedness and
existence of solutions of Volterra difference equations may be
found in [8]–[14]. Very deep and general results about the
exact rates of decay of the solutions of a Volterra difference
equation are obtained in [15]. Yet another type of qualitative
results about discrete Volterra difference equations, such as
oscilation, convergence and stability are presented in the
papers [16]–[18]. The main objective of this paper is to
present an asymptotic lower bound on separation between two
solutions of Volterra difference equations, i.e. we will present
an asymptotic lower bound for the norm of the difference of
two solutions. Results of this kind may be found in [19],
however, the assumptions of this paper are too strong to
apply the results to fractional difference equations. Such an
application was one of our objective and motivation to study
this problem.

In this paper we denote by R the set of real numbers, by Z
the set of integers, by N := Z≥0 the set of natural numbers
{0, 1, 2, . . . } including 0, and by Z≤0 := {0,−1,−2, . . . }
the set of non-positive integers. For a ∈ R we denote by
Na := a + N the set {a, a + 1, . . . }. The symbol Rd is used
for the d-dimensional Euclidean space with Euclidean norm
‖ · ‖. We will use the same symbol to denote the operator

norm generated by the Euclidean norm. By dxe := min{k ∈
Z : k ≥ x} we denote the least integer greater or equal to x
and by bxc := max{k ∈ Z : k ≤ x} the greatest integer less
or equal to x.

II. MAIN RESULT

In the paper [20] it has been shown that if a solution of the
multidimensional Volterra equation of convolution type

R(n+ 1) = AR (n) +

n∑
k=0

B(n− k)R(k) (n ∈ N),

tends to zero, then it decays exponentially if and only if the
sequence (B (n))n∈N does so. An open problem is to describe
the decay rate for sequences (B (n))n∈N tending to zero with
another rate of convergency. A partial answer to this question
is the content of this paper.

Let us consider the following discrete convolution Volterra
equation

x(n+ 1) = x(0) +
n∑
k=0

a(n− k)A(k)x(k) (n ∈ N), (1)

where (A(n))n∈N is a bounded sequence of d× d matrices

sup
n∈N
‖A(n)‖ = M <∞, (2)

(a(n))n∈N is a decreasing sequence of positive numbers
satisfying

a(n) ≤ M

nα
(3)

for α ∈ (0, 1), for all n ∈ N \ {0}, and M > 0. Observe that
the following inequality
n∑
k=1

1

kα
≤
∫ n+1

1

x−αdx+ 1 =
(n+ 1)

−α+1

−α+ 1
− 1

−α+ 1
+ 1

implies that there exists a positive constant C such that
n∑
k=1

a (k) ≤ Cn1−α. (4)

13978-1-7281-0933-6/19/$31.00 ©2019 IEEE 



For an initial value x0 ∈ Rn, (1) has a unique solution
x : N → Rd which satisfies the initial condition x(0) = x0.
We denote it by ϕ(·, x0).

The next theorem contains the main result of our paper,
which shows that the norm of the difference of two solutions
of equation (1) tends to infinity slower than nλ with a certain

positive λ.
Theorem 1: Let λ > 1−α

α , x, y ∈ Rd and x 6= y. Then

lim sup
n→∞

nλ‖ϕ(n, x)− ϕ(n, y)‖ =∞. (5)

Proof. Let x, y ∈ Rd with x 6= y and λ > 1−α
α . Suppose the

contrary, i.e. there exists K ∈ R such that

lim sup
n→∞

nλ‖ϕ(n, x)− ϕ(n, y)‖ < K,

which implies that

lim
n→∞

‖ϕ(n, x)− ϕ(n, y)‖ = 0 (6)

and therefore

L := sup
n∈N
‖ϕ(n, x)− ϕ(n, y)‖ <∞. (7)

Furthermore, there exists N ∈ N such that

‖ϕ(n, x)− ϕ(n, y)‖ ≤ Kn−λ (n ≥ N). (8)

We have
ϕ(n, x)− ϕ(n, y) =

x− y +

n∑
k=0

a(n− k)A(k)(ϕ(k, x)− ϕ(k, y)) =

x− y +

n∑
k=0

B(n, k)(ϕ(k, x)− ϕ(k, y)),

where
B(n, k) := a(n− k)A(k).

Thus,
‖x− y‖ ≤

‖ϕ(n, x)− ϕ(n, y)‖+

∥∥∥∥∥
n∑
k=0

B(n, k)(ϕ(k, x)− ϕ(k, y))

∥∥∥∥∥ .
Letting n→∞ and using (6), we obtain that

lim sup
n→∞

∥∥∥∥∥
n∑
k=0

B(n, k)(ϕ(k, x)− ϕ(k, y))

∥∥∥∥∥ > 0. (9)

Since λ > 1−α
α , there exists δ ∈ ( 1−α

λ , α). Thus, to gain a
contradiction to inequality (9), it is sufficient to show that

lim sup
n→∞

dnδe−1∑
k=0

B(n, k)(ϕ(k, x)− ϕ(k, y)) = 0 (10)

and

lim sup
n→∞

n∑
k=dnδe

B(n, k)(ϕ(k, x)− ϕ(k, y)) = 0. (11)

By definition of B(n, k) and non-negativity of the sequence
a(n), we have∥∥∥∥∥∥

dnδe−1∑
k=0

B(n, k)(ϕ(k, x)− ϕ(k, y))

∥∥∥∥∥∥ ≤
dnδe−1∑
k=0

‖B(n, k)‖‖ϕ(k, x)− ϕ(k, y)‖ ≤

dnδe−1∑
k=0

Ma(n− k)‖ϕ(k, x)− ϕ(k, y)‖ ≤

ML

dnδe−1∑
k=0

a(n− k) = ML
n∑

k=n−dnδe+1

a (k) ,

where we used (7) to obtain the last inequality. Because the
sequence (a(n))n∈N is decreasing,∥∥∥∥∥∥

dnδe−1∑
k=0

B(n, k)(ϕ(k, x)− ϕ(k, y))

∥∥∥∥∥∥ ≤
MLdnδea(n− dnδe).

Using (3), we obtain that∥∥∥∥∥∥
dnδe−1∑
k=0

B(n, k)(ϕ(k, x)− ϕ (k, y))

∥∥∥∥∥∥ ≤
ML(nδ + 1)

M

(n− nδ)α
,

which, together with the fact that δ < α, proves (10). To
conclude the proof we show (11). For this purpose, we use
the estimate∥∥∥∥∥∥

n∑
k=dnδe

B(n, k)(ϕ(k, x)− ϕ(k, y))

∥∥∥∥∥∥ ≤
n∑

k=dnδe

‖B(n, k)‖‖ϕ(k, x)− ϕ(k, y)‖ ≤

M
n∑

k=dnδe

a(n− k)‖ϕ(k, x)− ϕ(k, y)‖.

Let n ∈ N satisfy that nδ ≥ N . Using (8), we obtain that∥∥∥∥∥∥
n∑

k=dnδe

B(n, k)(ϕ(k, x)− ϕ(k, y))

∥∥∥∥∥∥ ≤
MKdnδe−λ

n∑
k=dnδe

a(n− k) ≤MKn−λδ
n−dnδe∑
k=0

a(k).
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By (4) we have∥∥∥∥∥∥
n∑

k=dnδe

B(n, k)(ϕ(k, x)− ϕ(k, y))

∥∥∥∥∥∥ ≤
MKn−λδ

n−dnδe∑
k=0

a(k) ≤

MKn−λδ
n∑
k=0

a(k) ≤MKn−λδCn1−α.

Note that −λδ + 1 − α < 0, (11) is proved and the proof is
complete.

III. A THEORETICAL APPLICATION

In this section we will show that, using Theorem 1 with an
appropriately defined sequence (a (n))n∈N, we obtain results
about nonautonomous fractional difference systems [21].

Before we present the main result of this section we intro-
duce some necessary notions concerning fractional calculus.
By Γ: R \ Z≤0 → R we denote the Euler Gamma function
defined by

Γ(α) := lim
n→∞

nαn!

α(α+ 1) · · · (α+ n)
(α ∈ R \ Z≤0), (12)

which is well-defined, since the limit exists (see e.g. [22, p.
156], and

Γ(α) =


∫∞

0
xα−1e−xdx if α > 0,

Γ(α+1)
α if α < 0 and α ∈ R \ Z≤0.

(13)
Note that Γ(α) > 0 for all α > 0.

For s ∈ R with s+ 1, s+ 1− α /∈ Z≤0 the falling factorial
power (s)(α) is defined by

(s)(α) :=
Γ(s+ 1)

Γ(s+ 1− α)

(
s ∈ (R\Z≤−1)∩(R\α+Z≤−1)

)
.

(14)
For ν ∈ R>0 and a function f : N → R, the ν-th delta
fractional sum ∆−νf : Nν → R of f is defined as

(∆−νf)(t) :=
1

Γ(ν)

t−ν∑
k=0

(t− k − 1)(ν−1)f(k) (t ∈ Nν).

Let α ∈ (0, 1) and f : N → R. The Caputo forward
difference C∆

αf : N1−α → R of f of order α is defined
as the composition C∆

α := ∆−(1−α) ◦ ∆ of the (1 − α)-
th delta fractional sum with the classical difference operator
t 7→ ∆f(t) := f(t+ 1)− f(t), i.e.

(C∆
αf)(t) := (∆−(1−α)∆f)(t) (t ∈ N1−α).

Consider equation (1) with the sequence (a (n))n∈N of the
following form

a(n) = (−1)n
(
−β
n

)
, (15)

where(
β

n

)
:=

β(β − 1) · · · (β − n+ 1)

n!
(β ∈ R, n ∈ N).

At first, let us notice certain properties of the sequence.

Lemma 1: Let β > 0. Then the following statements hold:
I) a(n) > 0 for n ∈ N;

II) if 0 < β < 1, then (a(n))n∈N is a decreasing sequence;
III) there exists M > 0 such that

a(n) <
M

n1−β (n ∈ N \ {0}).

Proof. I) Let β > 0. To prove this point let us notice that
a(0) = 1 and for n ∈ N \ {0},

a(n) = (−1)n
(−β)(−β − 1) · · · (−β − n+ 1)

n!
=

β(β + 1) · · · (β + n− 1)

n!
.

Thus, a(n) > 0 for n ∈ N.
II) From the assumption that β ∈ (0, 1) we get

a(n+ 1) =
β(β + 1) · · · (β + n)

(n+ 1)!
=

β + n

n+ 1
a(n) < a(n) (n ∈ N),

i.e. (a(n))n∈N is a decreasing sequence.
III) To prove this point we will consider the Euler Gamma

function Γ : R\Z≤0 → R. From its definition we obtain

Γ(β) = lim
n→∞

1

(−1)nn−β(β + n) (−β)(−β−1)···(−β−n+1)
n!

= lim
n→∞

1

n1−β(βn + 1)(−1)n
(−β
n

)
= lim
n→∞

1

n1−β(βn + 1)a(n)
.

Hence,

lim
n→∞

Γ(β)

(
β

n
+ 1

)
n1−βa(n) = 1.

Using I) and the fact that Γ(β) > 0, there exists M > 0 such
that

Γ(β)

(
β

n
+ 1

)
n1−βa(n) ≤M (n ∈ N).

Hence

a(n) ≤ M

Γ(β)(βn + 1)n1−β
≤ M

n1−β (n ∈ N \ {0})

with

M :=
M

Γ(β)
.
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In the next theorem we will show that equation (1) with a(n)
given by (15) is equivalent to a linear bounded nonautonomous
fractional difference system

(C∆
βx)(n+ 1− β) = A(n)x(n) (n ∈ N), (16)

where x : N → Rd, C∆
β is the Caputo forward difference

operator of a real order β ∈ (0, 1) and A : N → Rd×d is
bounded.

More precisely the following theorem holds. In addtion, we
present the proof for clarity below.

Theorem 2: Let β ∈ (0, 1) then x : N→ Rd is a solution of
(16) with initial condition x(0) ∈ Rd if and only if

x(n+1) = x(0)+
n∑
k=0

(−1)n−k
(
−β
n− k

)
A(k)x(k) (n ∈ N).

(17)

Proof. Using the identity from [23, Thm. 2.4] we get

x(t) = x(0)+

1

Γ(β)

t−β∑
s=1−β

(t− s− 1)(β−1)(∆βx)(s) (t ∈ N \ {0}),

where (s)(β) is the falling factorial power (see (14)).
For n ∈ N and t := n+ 1, the substitution s = k+ (1− β)

yields
x(n+ 1) = x(0)+

1

Γ(β)

n∑
k=0

(n− k + β − 1)(β−1)(∆βx)(k + 1− β) (n ∈ N).

From the definition of falling factorial power we have

1

Γ(β)
(n− k + β − 1)(β−1) =

Γ(n− k + β)

Γ(β)Γ(n− k + 1)
=(

n− k + β − 1

n− k

)
=

(
β + (n− k)− 1

n− k

)
(k ∈ {0, . . . , n}).

Using the identity (see [24, pp. 165])(
β + k − 1

k

)
= (−1)k

(
−β
k

)
(β ∈ R, k ∈ N)

we obtain
1

Γ(β)
(n− k + β − 1)(β−1) =

(−1)n−k
(
−β
n− k

)
(k ∈ {0, . . . , n})

and therefore
x(n+ 1) = x(0)+

n∑
k=0

(−1)n−k
(
−β
n− k

)
(∆βx)(k + 1− β) (n ∈ N)

which completes the proof.

From III) of Lemma 1 we see that the sequence (a (n))n∈N
given by (15) satisfies (3) and therefore from Theorem 1 and
then by Theorem 2, we obtain the following corollary.

Corollary 1: If λ > 1−β
β , x, y ∈ Rd and x 6= y, then

lim sup
n→∞

nλ‖ϕC(n, x)− ϕC(n, y)‖ =∞, (18)

where (ϕC(n, z))n∈N is the solution of (16) with initial con-
dition ϕC(0, z) = z.

The characterization of asymptotic properties of solutions
of linear equations Lyapunov exponents is frequently used
in control theory [25]–[27] and in particular within model
predictive control [28]–[30]. The Lyapunov exponent of a
solution (y(n))n∈N is defined as

lim sup
n→∞

1

n
ln ‖y(n)‖

and, in particular, the stability analysis is performed according
to its sign. A consequence of Corollary 1 is that the Lyapunov
exponent of an arbitrary non-trivial solution of (16) is non-
negative, i.e.

lim sup
n→∞

1

n
ln ‖ϕC(n, x0)‖ ≥ 0 (19)

for all x0 ∈ Rd, x0 6= 0 and therefore, this classical definition
of the Lyapunov exponents cannot be applied to the stability
analysis of nonautonomous fractional difference systems of
the form (16)

IV. CONCLUSIONS

In this paper we investigated dynamic properties of discrete
Volterra equations of convolution type. For this equation
we presented a polynomial lower bound for the norm of
differences between two different solutions. In particular,
this theorem implies that the classical Lyapunov exponent
is not an appropriate tool for stability analysis of fractional
equations. An appropriate modification of the definition of
Lyapunov exponents for discrete fractional equations is an
important challenge of the theory of Lyapunov exponents.
We also showed that for a particular sequence of coefficients
the Volterra equation specializes to a discrete time-varying
fractional equation and in this way we applied our main result
to the context of fractional linear systems.
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