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This paper presents an improved generalized procedure for dealing with the stability of thin-

walled beams under combined symmetric loads based on the energy method. The di®erential
equations for the case of complex loading conditions were developed using an axis transfor-

mation matrix. The work caused by external loads was related to the work of internal forces to

simplify the computational procedure. The thin-walled beam subjected to axial force F , bending

moment M at both ends, and concentrated load P at midspan was studied. The case of a
concentrated load P replaced by a distributed load q over partial beam length was also ex-

amined. The stability region boundary of the beam was derived by two approaches: one was to

estimate an approximate angle of twist prior to determination of the de°ection and the other

was to do it in the reverse way. Numerical results reveal that the ¯rst approach yields less error
than the second; however, the outcome obtained by the former was more cumbersome than the

||Corresponding author.

International Journal of Structural Stability and Dynamics
Vol. 19, No. 8 (2019) 1950098 (30 pages)

#.c World Scienti¯c Publishing Company

DOI: 10.1142/S0219455419500986

1950098-1

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. 2
01

9.
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 E

N
G

L
A

N
D

 o
n 

09
/2

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0219455419500986


latter. Above all, both approaches provided feasible results and are useful for further applica-

tions dealing with the stability analysis of thin-walled beams.

Keywords: Thin-walled beam; stability analysis; stability region; symmetric load; energy

method.

1. Introduction

Thin-walled beams have been used widely in mechanical engineering, civil

engineering, aviation, and others.1–7 In practice, it was observed that they were often

subjected to di®erent types of loading simultaneously, as well as within di®erent

boundary conditions yielded from diverse installation manners in each structure.8–13

On the one hand, stability analysis of those beams, based on system of di®erential

equations, frequently turned out to be intricate and most of the time there was no

exact solution.14 On the other hand, computer-aided engineering (CAE) softwares,

based on the ¯nite element method (FEM), only provided the analysis in a \one-

way" direction.15–20 As an example, if there is a beam subjected to a complex loading

system including distributed load q, axial force F , and bending moment M at both

ends, CAE softwares are able to provide stability safety factor only if there are input

data of q, F , andM, but it seems to be useless for the inverse analysis, such as if there

are input data of q and M , which value of F will bring the system into the unstable

state? The up-to-date CAE softwares cannot answer this question in such type of

analysis. Therefore, the development of explicit (precise) analytical expressions to

evaluate the beam state under complex loading system corresponding to di®erent

boundary conditions is truly indispensable.

Stability issues of thin-walled beams under individual load such as F , M , q or

concentrated load P were described in detail in the works of Timoshenko and Gere,1

Vlasov,2 Alfutov,3 Bazant and Cedolin,4 and Kim et al.5 Yet, Chen et al.6 also

proposed an approach to calculation of critical lateral-torsional buckling loads of

beams subjected to transverse loads; particularly in order to make the calculation

process simpler, the externally applied loads have been evaluated by using the in-

ternal bending moment and internal shear force. On one side, stability issues of the

beams subjected to two types of loading have been paid a special attention and

studied lately by many researchers such as Leung,13 Chu et al.,14 Mohri et al.,21,22

Cheng et al.,23 and Yilmaz and Kirac.24 On the other side, few studies on the sta-

bility state of the beams subjected to three and more types of loading, including the

works of Papkovitch,25 Magnucka-Blandzi,26,27 Osmani and Meftah,28 have been

found in the literature.

In particular, Phung et al.29 have recently obtained several analytical expressions

from the stability analysis of thin-walled beams subjected to three types of loading

such as M , q, and F . Besides, the analytical expression describing the boundary

surface of stability region of the beam was derived and illustrated visually in the

space of M-q-F . Although the obtained results were quite useful for practical cal-

culations in dealing with the stability issues of the beams, only the case of uniformly

P. Van Binh et al.
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distributed load q above the full beam length was considered. In fact, there are many

cases that load q is only distributed in partial beam length; however, in such cases,

the stability issue has not been studied yet.

Regarding the combined loading condition, the di±culty is not only how to solve

the system of di®erential equations, but also how to develop this system because the

generalized system of diferential equations describing critical state needs to start at

the local coordination O��� (Fig. 1). However, the system starting right at the global

coordination Oxyz, automatically eliminating minor components, has been found in

most of published work so far. This fact not only results in solution incorrectness, but

also it causes obscurity and reader's misunderstanding.

From literature review on thin-walled beams, several matters are still question-

able as follows: (i) How can the generalized system of di®erential equations for

stability problem of the beams subjected to combined loading condition be devel-

oped? (ii) How can stability region be analyzed if load q is applied only over part of

beam length? (iii) How does the application height of uniform distributed load q

in°uence on the stability state of the system? (iv) If uniform distributed load q is

replaced by concentrated load P at the beam center, how will the stability state of

the beams under loading system ofM-P -F be a®ected? (v) Is there any possibility to

develop generalized expressions for both cases of load q and load P?

In this paper, a generalized procedure is proposed to deal with the stability issue of

the thin-walled beam under symmetric combined external loads. The most important

steps to develop the system of di®erential equations are explained by using the axis

transformation matrix [K]. This point distinguishes among other published works. By

using the same problem-solving approach, two cases are considered; the ¯rst one

(Fig. 1) is a thin-walled beam subjected to force F , moment M, and load P . While

load q replaces load P in the second case (Fig. 5), however, load q in this work is

considered in a generalized form, i.e. partial distributed load. Besides, the remarkable

point here is that based on the expression describing the boundary surface of stability

region at the second case, it is possible to yield the results for the case when q is

distributed in the full beam length as well as when load q is replaced by load P at the

beam center. Load P or q application height's a®ect on the stability state of the system

is also studied. Yet, the method for de¯ning work caused by external loads through

work of internal force is suggested in this work in order to make the computational

process smoothly. Likewise, the stability region boundary of the system is represented

not only by algebraic equations, but also by a graphical form in the space of di®erent

load parameters. Hence, the equations could support the manufacturer to verify the

stability issue of the beams, besides they might also be used properly for optimal

design of the beam with lateral-torsional buckling constraints.30,31

2. Generalized Procedure and Fundamental Equations

As stated before, a simply supported thin-walled beam of length L and with doubly

symmetric cross-sections subjected to combined external loads is considered in this
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work. The external load system is symmetric, as illustrated in Figs. 1 and 5 for the

¯rst and second cases, respectively. Apart from the principal coordinate system Oxyz,

which is situated at the gravity center of the central cross-section, there is an aux-

iliary one O��� associated with the cross-section in a deformed state. Symbols u and

v are considered as de°ections in x and y directions, respectively, while Mx, My, Mz,

M�, M�, M� are denoted as moments acting on the corresponding axes. The angle of

twist and de°ections of the beam cross-section are considered to be insigni¯cant. For

the sake of external load symmetry, the beam is divided into two equal parts, and the

equation of equilibrium is just established for the right one (segment OB in Figs. 1

and 5). Also, the generalized procedure is described in Fig. 2 and explained in detail

subsequently.

Step 1: Development of formulae for internal moments Mx;My;Mz at beam cross-

section in the global coordination Oxyz.

Based on the boundary condition and external loads, the internal moments Mx;

My; Mz within the global coordination Oxyz are de¯ned by using strength of

materials theory. This is one of the most important steps to develop the system of

di®erential equations correctly.

(a)

(d)

(b)

(c)

Fig. 1. Scheme of the beam under combined loads M-P -F .

P. Van Binh et al.
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Step 2: Determination of axis transformation matrix [K]

The matrix [K], correlating the global coordination Oxyz with the local O���,

needs to be de¯ned properly. For the coordination of structural system described in

Fig. 1 and Fig. 5, the matrix [K] is as follows:

½K� ¼

1 �’ðzÞ d

dz
uðzÞ

’ðzÞ 1
d

dz
vðzÞ

� d

dz
uðzÞ � d

dz
vðzÞ 1

2
6666664

3
7777775
: ð1Þ

Step 3: Development of formula for internal moments M�, M�, M� at beam cross-

section in the local coordination O ���

Internal moments M�, M�, M� are determined in accordance with Mx, My, Mz

based on axis transformation matrix [K]:

M�

M�

M�

2
4

3
5 ¼ ½K� �

Mx

My

Mz

2
4

3
5: ð2Þ

Fig. 2. Generalized procedure for stability analysis of thin-walled beams under combined loads.
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Substituting the matrix [K] from Eq. (1) into Eq. (2), it results in:

M�

M�

M�

2
4

3
5 ¼

Mx � ’ �My þ
d

dz
u

� �
Mz

’ �Mx þMy þ
d

dz
v

� �
Mz

� d

dz
u

� �
Mx �

d

dz
v

� �
My þMz

2
66666664

3
77777775
: ð3Þ

For thin-walled beams, the de°ection v and the slope d=dzv (those cause °exural

mode), which are very small, do not interact with the lateral-torsional buckling,

hence the elements containing d=dzv in Eq. (3) can be omitted.1,29 Thus, internal

moments [M�;M�;M� ] are approximated as follows:

M�

M�

M�

2
4

3
5 ¼

Mx � ’ �My þ
d

dz
u

� �
�Mz

’ �Mx þMy

� d

dz
u

� �
�Mx þMz

2
666664

3
777775: ð4Þ

Step 4: Development of the system of di®erential equations associated with the global

coordination Oxyz

Beginning with the system of di®erential equations describing the critical state of

beam associated with the local coordination O���, it is illustrated in the general form

as follows1,2,29:

M� ¼ B1

d2v

dz2
; ð5Þ

M� ¼ B2

d2u

dz2
; ð6Þ

M� ¼ C
d’

dz
�DD

d3’

dz3
: ð7Þ

Taking into account that C is torsional sti®ness, B1 ¼ EJ1 is the maximum

bending sti®ness, B2 ¼ EJ2 is the minimum bending sti®ness, ’ is an angle of twist of

beam cross-section in the unstable state,DD ¼ EI! is the warping sti®ness, and I! is

the warping constant. For a common thin-walled beam, assume that the relation

B2=B1 has a marginal value.

From a theoretical point of view, Eq. (5) describes bending phenomenon in the

plane yOz. The de°ection in the plane yOz is caused by the unstable state of the

beam rather than by bending phenomenon, because B2=B1 is negligible.29 Hence,

Eq. (5) is not used for determining de°ection v when the beam is in an unstable state.

Considering small deformations, beam curvatures in planes xOy and yOz are

obtained by the di®erential equations d2u=dz2 ¼ 1=Ru and d2v=dz2 ¼ 1=Rv

respectively. Beam curvatures in planes xOy and yOz are also correlated by the

P. Van Binh et al.
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formula Ru ¼ Rv � ’.26,29,32 From this, a correlated equation in terms of u, v, and ’ is

as follows:

d2v

dz2
¼ d2u

dz2
� ’: ð8Þ

Substituting internal moments M� and M� from Eq. (4) into Eqs. (6) and (7), it

results in generalized system of di®erential equations associated with the global

coordination Oxyz as follows:

’ �Mx þMy ¼ B2

d2u

dz2
; ð9Þ

� d

dz
u

� �
�Mx þMz ¼ C

d’

dz
�DD

d3’

dz3
: ð10Þ

Thus, Eqs. (8)–(10) are used for de¯ning formulae for de°ections u, v, and angle

of twist ’, respectively.

Step 5: Solve the system of di®erential equations and de¯ne de°ection and angle of

twist.

In theory, it is possible to solve the system of Eqs. (8)–(10). However, in case of

the beam subjected to combined external loads, this system is intricate and so far

there have not been a generalized solution based on algebraic methods. Thus, this

type of stability problem was frequently solved by using the energy method in

accordance with one of the following two approaches.1,3,26,29

– Approach 1: Here, it has to evalutate an initial approximation of ’ satisfying the

boundary conditions, and then by using Eqs. (8) and (9) it is possible to determine u

and v. This approach is particularly commonly used for the case of simply supported

beams due to the fact that Mx and My can be easily de¯ned, consequently de°ection

u is withdrawn from Eq. (9).

– Approach 2: First, it is necessary to assess an initial approximation of u satisfying

the boundary conditions, and then it is likely to determine ’ and v based on Eqs. (8)

and (10). Here, it is rather di±cult to de¯ne ’ based on Eq. (10), especially in case

DD ¼ EI! 6¼ 0 there will be the third order di®erential equation with respect to ’.

Hence, this approach is conveniently used when dealing with the stability problem of

beams with rectangular beam cross-section and I! ¼ 0. In this paper, both of these

approaches are considered, the results are evaluated one to another for a particular

case of rectangular beam cross-section.

Step 6: Determination of expressions describing critical state of the system based on

energy method

On the basis of the formulae of u, v and ’, it needs to formulate the elastic strain

energy of the beam and work caused by external loads. In this work, a novel approach

to de¯ne work caused by external loads is suggested. As a matter of fact, in a

Improved Generalized Procedure for Determining Critical State
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conservative system, work caused by combined bending loads can be de¯ned by work

of internal moment. This in fact makes the calculation process much simpler.5

Therefore, the critical state of the system is described by the extremum condition of

the total energy.29

Based on the abovementioend procedure, two cases are considered. The ¯rst one

was a thin-walled beam subjected to axial force F , bending moment M , and con-

centrated load P . For the second, load P was replaced by a uniform partially dis-

tributed load q.

1. Case 1 — Beam under combined loads M-P-F

The beam is subjected simultaneously to moment M , force F , and load P at beam

center, as shown in Fig. 1. Bearing in mind a general context, load P application

point is located at height c in relation to gravity center of the beam cross-section.

Here, an angle of twist ’ is estimated approximately according to boundary condi-

tions of a simply supported beam, as presented in the next equation:

’ ¼ ’0 cos
� � z
L

� �
; ð11Þ

where ’0 is a constant. Based on Eq. (9), de°ection ucan be de¯ned. If so, it is

necessary to determine internal moments Mx and My as follows.

Internal moment Mx:

Mx ¼ M þ P

2

L

2
� z

� �
: ð12Þ

Internal moment My:

My ¼ �F � u: ð13Þ
By using Eqs. (9), (12), (13) and boundary condition causing uðL=2Þ ¼ 0 and

du=dzðL=2Þ ¼ 0, de°ection u is as follows:

u ¼ cos

ffiffiffiffi
F

p
zffiffiffiffiffiffi

B2

p
 !

m1 þ sin

ffiffiffiffi
F

p
zffiffiffiffiffiffi

B2

p
 !

m2

þ 1

4

L2

H 2
�ðLP � 2Pzþ 4MÞH cos

�z

L

� �
� 4B2L sin

�z

L

� �
�P

h i
; ð14Þ

wherem1 andm2 are constants, which can be found based on the boundary condition

when dealing with the di®erential Eq. (9), and they are provided in detail

in Appendix A. To simplify the formula, several additional parameters are used such

as: H ¼ B2�
2 � FL2; k ¼ L

ffiffiffiffi
F

p
=2

ffiffiffiffiffiffi
B2

p
. Moreover, elastic strain energy of the beam

can be derived from the following expression1–3:

U ¼ B2

Z L
2

0

d2u

dz2

 !
2

� dzþ C

Z L
2

0

d’

dz

� �
2

� dzþDD

Z L
2

0

d2’

dz2

 !
2

� dz: ð15Þ

P. Van Binh et al.
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In order to de¯ne work caused by external loads, generally the initial stage is to

¯nd de°ection v from Eq. (8). Nevertheless, for the beam subjected to combined

external loads, the obtained expression of v is very complicated.1,26,29 Considerding d�

to be an angle of twist of cross-section element dz, illustrated in Fig. 3, it turns out:

dWMP ¼ Mxd� ¼ Mxv
00dz: ð16Þ

According to Eq. (8), there is v 00 ¼ u 00 � ’, it yields:
dWMP ¼ Mxv

00dz ¼ Mxu
00’dz: ð17Þ

Here, work WMP caused by combined loads M and P is:

WMP ¼ 2

Z L
2

0

dWMP ¼ 2

Z L
2

0

ðMxu
00’Þ � dz: ð18Þ

It is noteworthy that force F does not cause v and � of beam cross-section in the

plane xOz, but it results in horizontal de°ection u in the plane yOz. Thus, work

caused by axial force F can be de¯ned by the following expression1,29:

WF ¼ F

Z L
2

0

du

dz

� �
2

� dz: ð19Þ

Since there is a distance c between load P application point and gravity center of

cross-section, as the beam is deformed, there exists an additional displacement of

application point as follows (Fig. 1):

cð1� cos’ð0ÞÞ ¼ c 2sin2 ’ð0Þ
2

� �
� c½’ð0Þ�2

2
: ð20Þ

For that reason, the additional work caused by concentrated load P is as follows1:

Wd ¼
1

2
� P � c � ½’ð0Þ�2: ð21Þ

The overall work caused by external loads W :

W ¼ WMP þWF þWd: ð22Þ

Fig. 3. Determination of work caused by internal force in detail.
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Substituting Eqs. (18), (19), (21) into Eq. (22), it results in:

W ¼ 2

Z L
2

0

ðMxu
00’Þ � dzþ 1

2
� P � c � ½’ð0Þ�2 þ F

Z L
2

0

du

dz

� �
2

� dz: ð23Þ

As long as the critical state of the system is described by the extremum condition

of the total energy1,3,26,29:

�ðU �W Þ ¼ 0: ð24Þ

Substituting the expressions of U and W into Eq. (24), the algebraic equation

describing the critical state of the beam is obtained as follows:

RP ¼
ffiffiffiffiffiffi
B2

p
HðcosðkÞÞ2½�24B2FL

7�2P ð�M�2 þ LP Þ
� 2L6P 2ð�B2FL

2�4 þ 3B2
2�

4 þ 9F 2L4Þ
� L5�2P ðB2

2�
4 þ F 2L4ÞðLP þ 12MÞ � 48L4MH 2ðM�2 þ LP Þ

þ 48H 3ðCL2�2 þDD�4 � 2L3PcÞ� � 96B2
2F

3=2L9�2P 2 sinð2kÞ
þ 12B2L

7
ffiffiffiffi
F

p
P 2ðB2�

2 þ FL
2Þ2 sinð4kÞ

� 96FL8�B
3=2
2 P 2ðB2�

2 þ FL2Þ cosðkÞ cosð2kÞ
þ 288FL8�B

3=2
2 P 2ðB2�

2 þ FL2Þ cosðkÞ
� 96FL8�B

3=2
2 P 2ðB2�

2 þ FL2Þ sinðkÞ sinð2kÞ
� 48B2L

7
ffiffiffiffi
F

p
P 2ðB2�

2 þ FL
2Þ2 sinð2kÞðcosðkÞÞ2 ¼ 0: ð25Þ

Based on the generalized expression (25), several individual scenarios are ana-

lyzed such as:

When c ¼ 0, from Eq. (25) there is:ffiffiffiffiffiffi
B2

p
H 2 � ½48L7

ffiffiffiffiffiffiffiffiffiffi
B2F

p
P 2ðB2

2�
4 þ 6B2FL

2�2 þ F 2L4Þ sinðkÞ
� 192FL8�B2P

2ðB2�
2 þ FL2Þ þH cosðkÞ � ð12L4MðB2

2�
4 þ F 2L4Þ

� ðLP�2 þ 4M�2 þ 4LP Þ � 48�2H 3ðCL2 þDD�2Þ
� 96B2FL

6M�2ðM�2 þ LP Þ þ 24B2FL
7�2P ð�M�2 þ LP Þ

þ F 2L10P 2ð�2 þ 18Þ þ B2
2L

6�4P 2ð�2 þ 6Þ � 2B2FL
8P 2�4Þ� ¼ 0: ð26Þ

When c ¼ 0 and DD ¼ 0 (rectangular cross-section), Eq. (25) can be simpli¯ed:ffiffiffiffiffiffi
B2

p
H 2 � ½48L7

ffiffiffiffiffiffiffiffiffiffi
B2F

p
P 2ðB2

2�
4 þ 6B2FL

2�2 þ F 2L4Þ sinðkÞ
� 192FL8�B2P

2ðB2�
2 þ FL2Þ þH cosðkÞ � ð12L4MðB2

2�
4 þ F 2L4Þ

� ðLP�2 þ 4M�2 þ 4LP Þ � 48�2H 3CL2 � 96B2FL
6M�2ðM�2 þ LP Þ

þ 24B2FL
7�2P ð�M�2 þ LP Þ þ F 2L10P 2ð�2 þ 18Þ

þ B2
2L

6�4P 2ð�2 þ 6Þ � 2B2FL
8P 2�4Þ� ¼ 0: ð27Þ

P. Van Binh et al.
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When F ¼ 0 and P ¼ 0, from Eq. (25) the critical moment Mcr is:

Mcr ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðCL2 þDD�2Þp

L2
: ð28Þ

When M ¼ 0 and P ¼ 0, from Eq. (25) the critical axial force Fcr is:

Fcr ¼
�2B2

L2
: ð29Þ

And when M ¼ 0 and F ¼ 0, from Eq. (25) the critical load Pcr is:

Pcr ¼
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�2 þ 6Þp

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðCL2 þDD�2Þp

ð�2 þ 6ÞL3
¼ 17:16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðCL2 þDD�2Þp

L3
: ð30Þ

The obtained critical load Pcr for the individual cases in accordance with Eqs. (28)

and (29) complies with the results yielded from the exact solution, which can be

found in the work of several authors.1–5 According to these references, the critical

load obtained from the exact solution of di®erential equations is: Pcr ¼
16:94

ffiffiffiffiffiffiffiffiffiffi
B2C

p
=L2, hence the deviation of coe±cient with respect to that of Eq. (30) is

insigni¯cant only 1.3% (16.94 versus 17.16).

With the aim to illustrate the stability region boundary of the beam in a graphical

form, as an example, a thin-walled I-pro¯le beam has the following parameters:

E ¼ 2:07 � 1011 Pa; � ¼ 0:28; � ¼ 7800 kg/m3, and beam geometry is as follows:

L ¼ 3m; h ¼ 0:1m; b ¼ 0:04m; t1 ¼ t2 ¼ 0:004m. In case, the beam is subjected to

an individual loading (M , F , or P ), the critical values are: Mcr ¼ 1801:3Nm,

Fcr ¼ 9796:7N, Pcr ¼ 3290:1N (with c ¼ 0).

The boundary surface of the stability region RP (Eq. (25)) of the beam in the

space ofM-F -P at di®erent values of c can be observed in Fig. 4. The graph indicates

that once c increases, Pcr decreases or the beam might turn to be unstable and vice

versa. This observation is in aggrement with the theory of thin-walled beams.1,2 The

obtained property of the stability region boundary also complies with Papkovitch's

theorem.25,29

2. Case 2 — Beam under combined loads M-q-F

Here, the beam is subjected to force F , moment M , and partially distributed load q

over the length of 	L, as shown Fig. 5, in which 	 is a dimensionless coe±cient:

0 � 	 � 1. It is noted that this case is much more complicated in comparison with

the previous one, and yet it is also a representative sample for the case of load q over

the full beam length or of load P at beam center. For this case, two important

approaches are used for dealing with the concerned problem, as mentioned before.

2.1. Estimate ' prior to determination of u

This ¯rst approach presents a calculation procedure similar to the previous case. The

angle of twist ’ is also estimated in accordance with the boundary condition of the

beam based on Eq. (11). From Eq. (9), in order to ¯nd the de°ection u, it needs to

Improved Generalized Procedure for Determining Critical State
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Fig. 4. Stability region boundary surfaces of I-pro¯le beam in the space of M-F -P at di®erent values of c.

(a)

(d)

(b)

(c)

Fig. 5. Scheme of the beam under combined loads M-q-F .

P. Van Binh et al.

1950098-12

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. 2
01

9.
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 E

N
G

L
A

N
D

 o
n 

09
/2

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



determine Mx and My. The load q is only located on the segment OE, but not on the

EB (Fig. 5). This makes the calculation much more challenging in comparison with

the case of uniform distributed load q over the full beam length, which was studied by

the authors,29 because herein Mx and My on the segments OE and EB are de¯ned by

di®erent formulas.

On the segment OE, bending moment Mx1 can be de¯ned as follows:

Mx1 ¼ M þ 	 � q � L
2

L

2
� z

� �
� 1

2
q 	 � q � L

2
� z

� �
2

: ð31Þ

And on the segment EB, bending moment Mx2 is:

Mx2 ¼ M þ 	 � q � L
2

L

2
� z

� �
: ð32Þ

Bending moment My1 on the segment OE is:

My1 ¼ �F � u1: ð33Þ
Also, bending moment My2 on the segment EB is:

My2 ¼ �F � u2: ð34Þ
Besides, formulas of u1 and u2 corresponding to the de°ections on the segments

OE and EB, respectively, need to be in accordance with the boundary condition and

principle of continuity:

u1

L

2

� �
¼ 0; u1

	L

2

� �
¼ u2

	L

2

� �
;

du1

dz

	L

2

� �
¼ du2

dz

	L

2

� �
and

du1

dz
ð0Þ ¼ 0:

Substituting Eqs. (31)–(34) into Eq. (9), the expressions for u1 and u2 are as follows:

u1 ¼ ’0 u11 cos
�z

L

� �
z2 þ u12 sin

�z

L

� �
zþ sin

ffiffiffiffi
F

p
zffiffiffiffiffiffi

B2

p
 !

c2

(

þ cos

ffiffiffiffi
F

p
zffiffiffiffiffiffi

B2

p
 !

c1 þ u13 cos
�z

L

� �)
ð35Þ

and

u2 ¼ ’0 u21 cos
�z

L

� �
zþ sin

ffiffiffiffi
F

p
zffiffiffiffiffiffi

B2

p
 !

c4 þ cos

ffiffiffiffi
F

p
zffiffiffiffiffiffi

B2

p
 !

c3

(

þ u22 cos
�z

2L

� �
þ u23 sin

�z

2L

� �)
; ð36Þ

where u11, u12, u13, u21,u22, u23 — parameters independent from z — and constants

c1, c2, c3, c4, which can be determined based on the boundary condition of u1 and u2

are given in Appendix A.
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In this case, elastic strain potential energy of the beam is obtained from the

following expression1–3:

U ¼ B2

Z 	L
2

0

d2u1

dz2

 !
2

dzþB2

Z L
2

	L
2

d2u2

dz2

 !
2

dz

þ C

Z L
2

0

d’

dz

� �
2

dzþDD

Z L
2

0

d2’

dz2

 !
2

dz: ð37Þ

In the similar way as explained above, the workWMq caused by external combined

loads M and q can be de¯ned through work of internal forces as follows:

WMq ¼ 2

Z L
2

0

dWMq ¼ 2

Z 	L
2

0

ðMx1u
00
1’Þ � dzþ 2

Z L
2

	L
2

ðMx2u
00
2’Þ � dz: ð38Þ

The work caused by axial force F is de¯ned similarly according to Eq. (19), but

here it needs to determine for two segments OE and EB separately:

WF ¼ F

Z 	L
2

0

du1

dz

� �
2

dzþ F

Z L
2

	L
2

du2

dz

� �
2

dz: ð39Þ

The additional work, due to the fact that application line of uniform distributed

load q does not coincide with the central line of the beam, similarly as stated in

previous section, is:

Wd ¼ 2

Z 	L
2

0

qcð1� cos’Þ � dz ¼ 2

Z 	L
2

0

q
c’2

2
� dz: ð40Þ

The overall work W caused by external loads is de¯ned by Eq. (22). Substituting

Eqs. (38)–(40) into Eq. (22), it results in:

W ¼ 2

Z	L
2

0

Mx1 �
d2u1

d2z
� ’

� �
dzþ 2

ZL2
	L

2

Mx2 �
d2u2

d2z
� ’

� �
dz

þ 2

Z 	L
2

0

q
c

2
’2

� �
dzþ F

Z	L
2

0

du1
dz

� �
2

dzþ F

ZL2
	L

2

du2
dz

� �
2

dz: ð41Þ

Yet, the critical state of the system is described by the extremum condition of

the total energy according to Eq. (24). Substituting the formulas of U and W into

Eq. (24), there will be an algebraic equation describing the critical state of the beam

as follows:

R ¼ R1 þ R2 þR3 þ R4 þ R5 þ R6 þR7 þ R8 ¼ 0; ð42Þ
where Ri are supplemental expressions and given in Appendix A.

P. Van Binh et al.
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The generalized expression R ¼ 0 describes stability region boundary of the beam

under force F , moment M , and load q. Several individual scenarios are evaluated:

From Eq. (42), the critical moment Mcr is obtained for the case F ¼ 0 and q ¼ 0

in accordance with Eq. (28).

From Eq. (42), the critical axial force Fcr is obtained for the caseM ¼ 0 and q ¼ 0

in accordance with Eq. (29).

Based on Eq. (42), the critical uniform distributed load qcr is obtained for the case

M ¼ 0, F ¼ 0, c ¼ 0 and 	 ¼ 1 as follows:

qcr ¼
2
ffiffiffiffiffi
30

p
�3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�4 þ 45ÞB2ðCL2 þDD�2Þp
ð�4 þ 45ÞL4

¼ 28:46
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðCL2 þ �2DDÞp

L4
ð43Þ

According to several researchers,1,2 the load qcr, which is obtained from the exact

di®erential solution, is qcr ¼ 28:30
ffiffiffiffiffiffiffiffiffiffi
B2C

p
=L3, thus the deviation of coe±cient with

respect to that of (43) is only 0.56% (28.30 versus 28.46).

When c ¼ 0 and 	 ¼ 1, from Eq. (42) there is a following equation:

�2B2
2F

2L4�4½�360L4M 2�4 þ 600B2CL
2�6 þ 600B2DD�8 � 60L6M�2ð3þ �2Þq

þ L8ð795þ 25�2 � 3�4Þq2� þ 2B2F
3L6�2½�240L4M 2�4 þ 600B2CL

2�6

þ 600B2DD�8 � 40L6M�2ð3þ �2Þq þ L8ð60þ 5�2 � 2�4Þq2�
þ 2B3

2FL
2�6½�240L4M 2�4 þ 300B2CL

2�6 þ 300B2DD�8

� 40L6M�2ð3þ �2Þq þ L8ð�240þ 15�2 � 2�4Þq2� � B4
2�

8½�120L4M 2�4

þ 120B2CL
2�6 þ 120B2DD�8 � 20L6M�2ð3þ �2Þq � L8ð45þ �4Þq2�

þ F 4L8½120L4M 2�4 � 600B2CL
2�6 � 600B2DD�8 þ 20L6M�2ð3þ �2Þq

þ L8ð�15þ 10�2 þ �4Þq2� þ 120F 5L10�4ðCL2 þDD�2Þ
þ 480B

3=2
2 F 3=2L11�4Hq2 tan k ¼ 0: ð44Þ

When c ¼ 0, 	 ¼ 1 and DD ¼ 0, from Eq. (42), there is an expression describing

the stability region of the beam with rectangular cross-section as follows:

�120C�4H 5 þ B4
2�

8L2ð120M 2�4 þ 20L2M�2ð3þ �2Þq þ L4ð45þ �4Þq2Þ
þ F 4L10ð120M 2�4 þ 20L2M�2ð3þ �2Þq þ L4ð�15þ 10�2 þ �4Þq2Þ
� 2B3

2FL
4�6ð240M 2�4 þ 40L2M�2ð3þ �2Þq þ L4ð240� 15�2 þ 2�4Þq2Þ

� 2B2F
3L8�2ð240M 2�4 þ 40L2M�2ð3þ �2Þq þ L4ð�60� 5�2 þ 2�4Þq2Þ

þ 2B2
2F

2L6�4ð360M 2�4 þ 60L2M�2ð3þ �2Þq þ L4ð�795� 25�2 þ 3�4Þq2Þ
þ 480B

3=2
2 F 3=2L9�4Hq2 tan k ¼ 0: ð45Þ

Equations (44) and (45) coincide with the results obtained by the author in the

previous work.29 It is important to note that when 	 ! 0, from Eq. (42) it is possible

to derive the expression RP ¼ 0, which describes the stability region boundary of the

beam under force F , moment M , and load P at beam center, similar to Eq. (25) in

the ¯rst case. The expression RP is de¯ned by substituting q ¼ P=	L into Eq. (42)

Improved Generalized Procedure for Determining Critical State
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and then using the following formula:

RP ¼ lim
	!0

R: ð46Þ

As a result, this second case is a generalized form of the ¯rst one and of the case in

which the load q is applied over the full beam length, as analyzed before by the

authors.29 In order to represent the stability region boundary of beam visually in

graphical form, the same thin-walled I-pro¯le beam is considered. For the cases

of an individual loading (M , F , or q), the corresponding critical results are:

Mcr ¼ 1801:3Nm, Fcr ¼ 9796:7N, qcr ¼ 1813:3N/m (with c ¼ 0).

The stability region boundary surface R of the beam in the space of M , F , q at

di®erent values of 	 can be observed in Fig. 6. The graph indicates that once 	

decreases, i.e. e®ect length of uniform distributed load q reduces, the critical value qcr
increases crucially. Meanwhile, the boundary surfaces of di®erent c values and the

case of fully distributed load q or 	 ¼ 1 can be seen in Fig. 7. It indicates that once c

increases, qcr decreases or the beam might turn to be unstable and vice versa.

2.2. Estimate u prior to determination of '

This second approach to dealing with the problem is that ¯rst it is necessary to

estimate de°ection u in accordance with the boundary condition, and then to de¯ne

angle of twist ’ based on Eq. (10). Doing so, Eq. (10) turns to be the third order

di®erential equation with respect to ’, hence the outcomes would be cumbersome

Fig. 6. Stability region boundary surfaces of I-pro¯le beam in the space of M-F -q when c=0 and at

di®erent values of 	.

P. Van Binh et al.
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and complex. Thus, in order to represent the second approach, the beam with a

rectangular cross-section (DD ¼ 0) is considered for convenience, while other con-

ditions are kept the same as decribed before in previous section (Fig. 5).

In order to comply with the boundary condition, u is estimated approximately as

follows:

u ¼ u0 cos
� � x
L

� �
: ð47Þ

By the similar problem-solving approach, the expression for ’ is de¯ned according

to Eq. (10) at the segments OE and EB such as:

On the OE:

’1 ¼
1

8C�2
q	2L2 cos

�z

L

� �
�2 � 2	qL2 cos

�z

L

� �
�2 þ 4L2� sin

	�

2

� �
	q

n
þ 4�2 cos

�z

L

� �
qz2 � 4L2� sin

	�

2

� �
q þ 8L2�	q � 16L� sin

�z

L

� �
qz

� 24L2 cos
�z

L

� �
q þ 24L2 cos

	�

2

� �
q � 8M cos

�z

L

� �
�2
o
: ð48Þ

And on the EB:

’2 ¼ � 1

4C�
	qL2 cos

�z

L

� �
�� 2L� cos

�z

L

� �
	qzþ 4	qL2 sin

�z

L

� �n
þ 2q sin

	�

2

� �
L2 � 4	qL2 � 4q sin

	�

2

� �
Lzþ 4M cos

�z

L

� �
�
o
: ð49Þ

Fig. 7. Stability region boundary surfaces of I-pro¯le beam in the space of M-F -q when 	 ¼ 1 and at
di®erent values of c.

Improved Generalized Procedure for Determining Critical State

1950098-17

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. 2
01

9.
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

N
E

W
 E

N
G

L
A

N
D

 o
n 

09
/2

1/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



The expression describing the boundary surface of the stability region derived

from Eq. (24) is:

S ¼ S1cq
3 þ S2cMq2 þ S3q

2 þ S4cM
2q þ S5Mq þ S6M

2 þ S7F þ S8 ¼ 0; ð50Þ
where Si are constants, which are independent from M ; q;F ; c and details are given

in Appendix A.

When M ¼ 0 and q ¼ 0, from Eq. (50) it is possible to derive the critical axial

force Fcr as same as Eq. (29).

When F ¼ 0 and q ¼ 0, from Eq. (50) the critical moment Mcr is:

Mcr ¼
�
ffiffiffiffiffiffiffiffiffiffi
B2C

p
L

ð51Þ

When M ¼ 0, F ¼ 0 and 	 ¼ 1, from Eq. (50), the critital uniform distributed

load qcr is:

qcr ¼
28:86

ffiffiffiffiffiffiffiffiffiffi
B2C

p
L3

: ð52Þ

Formula (51) is equivalent to the previous one (28) whenDD ¼ 0, and it is also in

agreement with the result in the previous work.29 The deviation of coe±cient be-

tween the one of (52) and the aforementioned one from the exact di®erential solution

is only 1.98% (28.30 versus 28.86).1,2 It could be neglected in practical engineering

applications. Hence, it is evident that the deviation of coe±cient from this second

approach is greater than that from the ¯rst approach.

From Eq. (50), when c ¼ 0, it is possible to obtain the expression describing the

stability region of the beam under momentM , force F and partially distribute load q

as follows:

�240CL2M 2�7 � 20ML4C�4qð6 sinð	�Þ � �3	3 þ 3�ð�2 þ 2Þ	Þ � L6C�2q2

� 30ð��2	2 þ �2	� 33Þ sinð	�Þ þ 30�ð	� 8Þ cosð	�Þ � 1920	� sin
	�

2

� �� �
þ L6C�2q2ð2�5	5 � 5�5	4 � 120�3	3 þ 5�3	2ð�2 þ 36Þ þ 960	�þ 240�Þ
� 240F�7L2C 2 þ 240B2�

9C 2 ¼ 0: ð53Þ
From Eq. (50), when set c ¼ 0 and 	 ¼ 1, the expression describing the stability

region of the beam under M, F and fully distributed load q is:

�240CL2M 2�7 þ ð�40CL4�7 � 120CL4�5ÞqM þ ð�2CL6�7 � 60CL6�5

þ 510CL6�3Þq2 þ 240B2�
9C 2 � 240F�7L2C 2 ¼ 0: ð54Þ

When 	 ! 0, similarly from Eq. (50), it is possible to derive the expression de-

scribing the stability region of the beam under M, F and load P at beam center. If

c ¼ 0, the resultant equation is:

�5CL4P 2�7 � 60CL3MP�7 þ 240B2�
9C 2 � 240F�7L2C 2 � 330CL4P 2�5

� 240CL2M 2�7 þ 960CL4P 2�4 � 240CL3MP�5 ¼ 0: ð55Þ
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Comparing Eqs. (54) with (45) and (55) with (27), it is noted that the recently

obtained expressions from the second approach are more convenient and user-

friendly than the ¯rst one in practice.

3. Evaluation of the Results

It is important to note that in the case of thin-walled beams subjected to individual

loading, the critical values can be derived accurately by solving the system of dif-

ferential equations. In fact, they could also be obtained according to the expressions

(28)–(30), (43), (51), (52); besides they are also in agreement with those obtained

from the exact solutions, which were presented before in several works.1–5,29 An

accuracy of the expression (44) for an I-pro¯le beam was veri¯ed by FEM-based NX

Nastranr software in the recent publication.17,29 The outcome pointed out that the

expression was reliable and feasible to use in practical calculation.

3.1. Accuracy of the expressions for a rectangular beam cross-section

This section is dedicated to the analysis of an accuracy of the generalized expression

(42) from the ¯rst approach and of the expression (50) from the second approach

especially for the case of rectangular cross-section thin-walled beam (DD ¼ 0) sub-

jected to combined external loads. The load q is located at the central area of the

beam, and e®ect length is a half of beam length, i.e. 	 ¼ 0:5, and load q application

line coincides with the central line of the beam, i.e. c ¼ 0. Yet, in this paper, the

accuracy analysis of the system is veri¯ed by means of the FEM-based ANSYSr

software.15,16

Considering that a thin-walled beam has the following parameters: E ¼
2:07 � 1011 Pa; � ¼ 0:28; � ¼ 7800 kg/m3, and geometry: length L ¼ 0:8m; height

h ¼ 0:08m; breadth b ¼ 0:004m. In case of individual loading, the critical values

according to Eq. (42) are as follows: Mcr ¼ 433:5Nm, Fcr ¼ 1362:0N, qcr ¼
8658:0N/m.

The graphs describing the boundary of stability region on surfaces M-q, M-F, and

q-F according to (42) and (50) do not show any di®erences among them, as it can be

observed in Figs. 8–10.

As a matter of fact by using the software, it is truly hard to analyze and illustrate

the boundary of stability region similar to that shown in Figs. 4 and 6–10. These

softwares merely allow for veri¯cation of the beam state based on stability safety

factor (nstab) for a determined individual load (M ; q;F Þ. Regarding the points inside

of the stability region, the safety factor derived from the software would be greater

than 1 (nstab > 1), while for the points outside of the stability region, the factor

would be smaller than 1 (nstab < 1), and with respect to the points right on the

stability region boundary this factor is unity (nstab ¼ 1). Hence, test method is

carried out as follows.

Improved Generalized Procedure for Determining Critical State
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Using the expressions (42) and (50) (corresponding to 	 ¼ 0:5, c ¼ 0), it is pos-

sible to select ¯ve sets of parameters (M ; q;F ) being on the border of the stability

region (points P1–P5 on the curve F ¼ Fcr=4, Fig. 8). Besides, a single set (M ; q;F )

inside of the stability region (beneath the curve F ¼ Fcr=4 there is P6) and another

single set outside of the stability region (above the curve F ¼ Fcr=4 there is P7) were

obtained. These prede¯ned seven sets of parameter (M; q;F ) are established as input

data for computational program in order to ¯nd stability safety factor for the con-

cerned beam. The obtained results, as given in Table 1, indicate that the ¯rst ¯ve

sets (P1–P5) being on the border of the stability region yield safety factor nstab � 1,

for the point being inside of the stability region P6 there is nstab > 1 and consequently

nstab < 1 for the one being outside of the stability region P7 (Fig. 8).

Similarly, seven sets of parameters (M ; q;F ) each on Figs. 9 and 10 are selected

corresponding to the points P8–P21 (Table 1). The outcomes are obtained such as 10

sets being on the border of stability region (P8–P12 and P15–P19) with safety factor

nstab � 1, whereas two sets being inside of the stability region (P13 and P20) with

nstab > 1 and another two sets being outside of the stability region (P14–P21) with

nstab < 1.

Therefore, all of 21 test points demonstrate expected results and this also proves

the correctness and accuracy of generalized expressions (42) and (50), which are

derived by two di®erent approaches. Moreover, numerical analysis shows that

Fig. 8. Boundary of stability region of a rectangular cross-section thin-walled beam with variation of axial

force F .
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Fig. 10. Boundary of stability region of a rectangular cross-section thin-walled beam with variation of

moment M .

Fig. 9. Boundary of stability region of a rectangular cross-section thin-walled beam with variation of

uniform distributed load q.
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estimation ’ prior to determination of u brings more precise results in comparison

with another approach (Table 1).

3.2. Accuracy of the expressions for an I-pro¯le beam

In order to analyze the accuracy of the expression (42) for I-pro¯le beam, a thin-

walled beam with parameters and geometry, which were given previously in Sec. 3

(for Case 1), is considered. Similarly, in the case of individual loading, the critical

values according to Eq. (42) are as follows: Mcr ¼ 1801:3Nm, Fcr ¼ 9796:7N,

qcr ¼ 1813:3N/m (with c ¼ 0). Numerial analysis is carried out with 	 ¼ 0:5,

c ¼ h=2. The obtained results are presented in Table 2 and Figs. 11–13.

Calculation yields the results as follows:

– 15 sets (M ; q;F ) being on the border of the stability region (P22–P26, P29–P33, and

P36–P40), which are obtained from the expression (42), with safety factor

nstab � 1.

– three sets being inside of the stability region (P27, P34 and P41 in Figs. 11–13) with

nstab > 1.

– three sets being outside of the stability region (P28, P35 and P42 in Figs. 11–13)

with nstab < 1.

Table 2. Stability safety factor of an I-pro¯le thin-walled (	 ¼ 0:5, c ¼ h=2).

Parameter set (M; q;F ) obtained
from the expression (42) or

from the graph Ansys

Test points M [N m] q[N/m] F [N] Point location nstab

P22 Fig. 11, location with
respect to the curve

F ¼ Fcr=4 � 2

0 1602.2 4898.3 On the border 0.95

P23 300 1230.3 4898.3 On the border 0.95

P24 600 854.8 4898.3 On the border 0.95

P25 900 476.1 4898.3 On the border 0.95

P26 1273.7 0 4898.3 On the border 0.95

P27 400 500 4898.3 Inside of stab. region 1.27

P28 1000 1500 4898.3 Out of stab. region 0.63

P29 Fig. 12, location with

respect to the curve

q ¼ qcr=4 � 2

0 1071.9 7800 On the border 0.96

P30 285.7 1071.9 6000 On the border 0.95

P31 530.6 1071.9 4000 On the border 0.95

P32 735.8 1071.9 2000 On the border 0.96

P33 916.0 1071.9 0 On the border 0.97

P34 200 1071.9 4000 Inside of stab. region 1.16

P35 800 1071.9 6000 Out of stab. region 0.75

P36 Fig. 13, location with

respect to the curve

M ¼ Mcr=4 � 2

900.6 0 7347.5 On the border 0.96

P37 900.6 285.3 6000 On the border 0.96

P38 900.6 611.3 4000 On the border 0.95

P39 900.6 871.4 2000 On the border 0.96

P40 900.6 1090.2 0 On the border 0.97

P41 900.6 500 2000 Inside of stab. region 1.15

P42 900.6 600 6000 Out of stab. region 0.85
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Fig. 11. Boundary of stability region of an I-pro¯le thin-walled beam with variation of axial force F .

Fig. 12. Boundary of stability region of an I-pro¯le thin-walled beam with variation of uniform distributed

load q.
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4. Conclusion

In this paper, a generalized procedure has been improved for determining the critical

state of a thin-walled beam under combined symmetric loads. Based on the proce-

dure, the stability issue of the beam under three types of loading was analyzed

deliberately with two signi¯cant cases: the ¯rst one was the beam subjected to axial

force F , bending moment M , and concentrated load P , and for the second, load P

was replaced by a uniform partial distributed load q. The extraordinary point is when

the e®ect length of q approaches zero, based on the obtained outcome in the second

case, it is possible to yield result of the ¯rst case.

The e®ect of load P or q application height on the stability state of the system was

also studied. It showed that the higher position of load application (P or q), the

higher probability the beam turned to be unstable and vice versa.

The obtained results actually represented a comprehensive form of the outcomes

described in the previous publication; subsequently, they play an important role in

de¯ning critical load for di®erent cases. The ability to illustrate the outcomes visually

in graphical form is quite useful for stability analysis of thin-walled beams in practice.

Also, these algebraic equations can make a ¯rm basis for the optimal design. An

accuracy of the generalized expression was in agreement with the individual cases in

thin-walled beam stability theory, as well as with numerical results from FEM-based

software.

Last but not the least, the outcome from two loading cases indicates that the

proposed generalized procedure is e±cient and easy to implement, particularly it is

Fig. 13. Boundary of stability region of an I-pro¯le thin-walled beam with variation of moment M.
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also applicable for dealing with the stability problem of thin-walled beams under

more complex loading conditions.
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Appendix A

A.1. Constants m1 and m2 in Eq. (14)

m1 ¼
L2P ð�B

3=2
2 �2 sinðkÞ � FL2

ffiffiffiffiffiffi
B2

p
sinðkÞ þ 2B2L

ffiffiffiffi
F

p
�Þ

2H 2
ffiffiffiffi
F

p
cosðkÞ ;

m2 ¼
L2P B2�2 þ FL2ð Þ ffiffiffiffiffiffi

B2

p

2H 2
ffiffiffiffi
F

p ;

Parameters in Eqs. (35) and (36)

u11 ¼
qL2

2H
;

u12 ¼ �2L3qB2�

H 2
;

u13 ¼
L2

8 �H 3
� ð��4B2

2L
2	2q þ 2B2�

2L4F	2q � F 2L6	2q þ 2�4B2
2	qL

2

� 4B2�
2L4F	q þ 2F 2L6	q þ 24B2

2�
2L2q þ 8�4B2

2M

þ 8B2FL
4q � 16B2�

2L2FM þ 8F 2L4MÞ

u21 ¼
L3	q

2H
;

u22 ¼ �ð4M þ 	qL2ÞL2

4H
;

u23 ¼
�B2L4�	q

H 2
;

c1 ¼
B2qL3

cosðkÞ ffiffiffiffi
F

p
H 3

� 3B2L�
2 sinðkÞ sinð	kÞ cos 	�

2

� � ffiffiffiffi
F

p�
þ 3B2L�

2 cosð	kÞ cosðkÞ cos 	�

2

� � ffiffiffiffi
F

p
� B

3=2
2 �3 sinðkÞ sin 	�

2

� �
cosð	kÞ

þ B
3=2
2 �3 sin

	�

2

� �
cosðkÞ sinð	kÞ þ F 3=2L3 sinðkÞ sinð	kÞ cos 	�

2

� �
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þ F 3=2L3 cosð	kÞ cosðkÞ cos 	�

2

� �
� 3FL2� sinðkÞ sin 	�

2

� �
cosð	kÞ

ffiffiffiffiffiffi
B2

p
þ 3FL2� sin

	�

2

� �
cosðkÞ sinð	kÞ

ffiffiffiffiffiffi
B2

p
þ B2L�

3	
ffiffiffiffi
F

p
� F 3=2L3�	

�
;

c2 ¼ 0;

c3 ¼
L3qB2

cosðkÞ ffiffiffiffi
F

p
H 3

� 3B2L�
2 sinðkÞ sinð	kÞ cos 	�

2

� � ffiffiffiffi
F

pn
�B

3=2
2 �3 sinðkÞ sin 	�

2

� �
cosð	kÞ þ F 3=2L3 sinðkÞ sinð	kÞ cos 	�

2

� �
� 3FL2� sinðkÞ sin 	�

2

� �
cosð	kÞ

ffiffiffiffiffiffi
B2

p
þ B2L�

3	
ffiffiffiffi
F

p
� F 3=2L3�	

o
;

c4 ¼ �B2qL3ffiffiffiffi
F

p
H 3

� 3B2L�
2 cos

	�

2

� �
sinð	kÞ

ffiffiffiffi
F

p
� B

3=2
2 �3 sin

	�

2

� �
cosð	kÞ

n
þ F 3=2L3 cos

	�

2

� �
sinð	kÞ � 3FL2� sin

	�

2

� �
cosð	kÞ

ffiffiffiffiffiffi
B2

p o
Coe±cients Ri in Eq. (42):

R1 ¼
ffiffiffiffiffiffi
B2

p
cosðkÞðT1 þ T2 þ T3 þ T4 þ T5Þ;

R2 ¼ �30B2
2L

9
ffiffiffiffi
F

p
�3 cosðkÞ sinðk	Þq2 cos

	�

2

� �
2ðB2�

2 þ FL2ÞðB2
2�

4
�

þ 14B2FL
2�2 þ F 2L4Þ � B2�

2ðB2�
2 þ 3FL

2Þ2
�
;

R3 ¼ 60FL10B
5=2
2 �4 cosðkÞ sinð	�Þ cos ðk	Þ2q2ð3B2�

2 þ FL2ÞðB2�
2 þ 3FL2Þ;

R4 ¼ 60B2
2L

9
ffiffiffiffi
F

p
q2 cos

	�

2

� �� �
2ðB2�

2 þ FL2ÞðB2
2�

4 þ 14B2FL
2�2 þ F 2L4Þ

h
� B2�

2ðB2�
2 þ 3FL

2Þ2
i
sinðkÞ�3ðcosðk	ÞÞ2;

R5 ¼ �60B2
2L

11�3F 3=2q2 cos
	�

2

� �� �
2ð3B2�

2 þ FL
2Þ2 þ �2	2H 2

h i
sinðkÞ;

R6 ¼ 30FL10�4B
5=2
2 sinð	�Þ sinðkÞ sinðk	Þq2ð3B2�

2 þ FL2ÞðB2�
2 þ 3FL2Þ;

R7 ¼ �120B2
2L

11�4F 3=2 cos
	�

2

� �
sinðk	Þ	q2ð3B2�

2 þ FL2ÞH;

R8 ¼ 120FL10 sin
	�

2

� �
cosðk	Þ�5B

5=2
2 	q2ðB2�

2 þ 3FL2ÞH;

where

T1 ¼ �60L4�2cqH 6 sin
	�

2

� �
;

T2 ¼
15

2
L6q sinð	�Þ � 1

4
B2L

2�4	qð	� 1ÞðB4
2�

8 � 5B3
2FL

2�6 þ 10B2
2F

2L4�4

�

� 10B2F
3L6�2 þ 5F 4L8Þ �M�2H 5 � 3

4
B2L

2�2qðB4
2�

8 þ 15B3
2FL

2�6

þ 50B2
2F

2L4�4 þ 22B2F
3L6�2 � 3F 4L8Þ � 1

4
F 5L12qð�2	2 � �2	þ 1Þ

�
;
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T3 ¼
15

8
L8�	q2Hð3B4

2�
8 � 40B3

2FL
2�6 � 90B2

2F
2L4�4 � F 4L8Þ cosð	�Þ;

T4 ¼ 120B2
2FL

10�5	q2ðB2�
2 þ 3FL2ÞH cos

	�

2

� �� �
2
;

T5 ¼ �3H 5�2 � 1

8
L8	5q2 þ 5L8	4q2

16
þ 15B2CL

2�2 þ 15B2DD�4 � 15CFL4

�

� 15DDFL2�2 � 15L4M 2

�
� �3H 515L6qMð�2 þ 2Þ	

4
þ �3H 3

� 5

4
L6q	3ðB2

2M�6 þ 2FL4qð3B2�
2 þ FL2Þ � 2FL2M�2ðB2�

2 � 1=2FL2ÞÞ
�

� 1

16
ð5L8q2	2ðF 2ð�2 þ 12ÞL4 � 2FB2�

2ð�2 � 18ÞL2 þ B2
2�

6ÞÞ
	

� 15�3L10q2B2F ð9B2
2�

4 þ 22B2FL
2�2 þ F 2L4Þ	H:

Coe±cients Si in Eq. (50):

S1 ¼ �L8 15ð�4	4 � 2�4	3 þ �4	2 þ 84�2	2 � 110�2	� 826Þ sinð	�Þ
�

� 30�ð�2	3 � 7�2	2 þ 6�2	� 221	þ 96Þ cosð	�Þ
þ 960	�ð�2	2 � �2	� 12Þ sin 	�

2

� �
þ 5760�2	2 cos

	�

2

� �
þ 7�5	5 � 20�5	4 þ 15�5	3 þ 500�3	3 þ ð180�3 þ 5760�Þ	þ 2880�

�

S2 ¼ 40L6�2 3ð�2	2 � �2	þ 7Þ sinð	�Þ þ 3�ð	þ 4Þ cosð	�Þ
�

þ 48	� sin
	�

2

� �
þ 2�3	3 � 3�3	2 � 24	�� 12�

i
;

S3 ¼ �L6C�2 30ð��2	2 þ �2	� 33Þ sinð	�Þ þ 30�ð	� 8Þ cosð	�Þ
�

� 1920	� sin
	�

2

� �
þ 2�5	5 � 5�5	4 � 120�3	3

þ 5�3	2ð�2 þ 36Þ þ 960	�þ 240�

�
;

S4 ¼ �240L4�4ðsinð	�Þ þ 	�Þ;
S5 ¼ �20L4C�4½6 sinð	�Þ � �3	3 þ 3�ð�2 þ 2Þ	�;
S6 ¼ �240�7L2C;

S7 ¼ �240L2�7C 2;

S8 ¼ 240B2�
9C 2:
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