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Abstract. In this paper, the variation of constant formulas for Grünwald-Letnikov-type fractional difference equations are estab-
lished. As an application, we prove a stability result for solutions of a class of autonomous scalar fractional difference equations.

Introduction

It is well-known that the Laplace transform method can be utilized to derive a variation of constants formula for linear
fractional differential equations [1]. In this paper we use the Z-transform to establish variation of constant formulas
for Grünwald-Letnikov-type fractional difference equations in Section 2. In Section 3 we prove some stability results
for solutions of a class of autonomous scalar fractional difference equations.

Let α ∈ (0, 1), h > 0. Consider a fractional difference equation of the form

(0Δ̃
α
h x)(t + h) = A(t)x(t) + f (t) (t ∈ hN), (1)

where x : hN→ R
d, 0Δ̃

α
h is the Grünwald-Letnikov-type fractional h-difference operator of order α, f : hN→ R

d and

A : hN→ R
d×d. For an initial value x0 ∈ Rn, (1) has a unique solution x : hN→ R

d which satisfies the initial condition
x(0) = x0. We denote x by ϕG-L(·, x0).

Remark 1 (Solving linear homogeneous fractional difference equations (1)). The linear homogeneous initial value
problem, (0Δ̃

α
h x)(t + h) = Ax(t), x(0) = x0 ∈ R

d, t ∈ hN, A ∈ R
d×d, has a unique solution given by the formula (see

e.g. [2, Proposition 32])

ϕG-L(t, x0) = E(α,α)

(
Ahα, t

h

)
x0 (t ∈ hN).
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A reader who is familiar with fractional difference equations may very well skip the remainder of the introduction
in which we recall notation to keep the paper self-contained. Denote by R the set of real numbers, by Z the set of
integers, by N � Z≥0 the set {0, 1, 2, . . . } of natural numbers including 0, and by Z≤0 � {0,−1,−2, . . . } the set of
non-positive integers. For a ∈ R, h > 0, we denote by (hN)a the set hN + a = {a, a + h, . . . }. We write hN instead of
(hN)0. By Γ : R \ Z≤0 → R we denote the Euler Gamma function defined by

Γ(α) � lim
n→∞

nαn!

α(α + 1) · · · (α + n)
(α ∈ R \ Z≤0). (2)

Note that

Γ(α) =

⎧⎪⎪⎨⎪⎪⎩
∫ ∞

0
xα−1e−xdx if α > 0,

Γ(α+1)
α

if α < 0 and α ∈ R \ Z≤0.
(3)

Binomial coefficients
(

r
m

)
can be defined for any r,m ∈ C as described in [3, Section 5.5, formula (5.90)]. For r ∈ R

and m ∈ Z the binomial coefficient satisfies [3, Section 5.1, formula (5.1)]

(
r
m

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r(r−1)···(r−m+1)

m!
if m ∈ Z≥1,

1 if m = 0,

0 if m ∈ Z≤−1.

Definition 2. [2, Definition 27] Let α, a ∈ R. The Grünwald-Letnikov-type h-difference operator aΔ̃
α
h of order α for a

function x : (hN)a → R is defined by

(aΔ̃
α
h x)(t) =

t−a
h∑

k=0

a(α)
k x(t − kh) (t ∈ (hN)a),

where a(α)
k = (−1)k

(
α
k

)
1
hα .

For β ∈ C, we define a discrete-time Mittag-Leffler function E(α,β)(A, ·) by

E(α,β)(A, n) =

∞∑
k=0

Ak
(
n − k + kα + β − 1

n − k

)
(n ∈ Z), (4)

see [2, 4, 5] for this and similar definitions.

Proposition 3. [2, Proposition 9] Let α ∈ (0, 1], λ, β ∈ R and β < α + 1. If all solutions z ∈ C of the equation
(z − 1)α = λzα−1 satisfy |z| < 1, then limn→∞ E(α,β)(λ, n) = 0.

Corollary 4. [2, Corollary 10] Let α ∈ (0, 1], λ, β ∈ R and β < α + 1. All solutions z ∈ C of the equation (z − 1)α =
λzα−1 satisfy |z| < 1 if and only if −2α < λ < 0.

Variation of constants formulas

Theorem 5 (Variation of constant formulas for Grünwald-Letnikov-type fractional difference equations). Let α ∈
(0, 1), A ∈ Rd×d and f : hN→ R

d. The solution of (1), (0Δ̃
α
h x)(t + h) = Ax(t) + f (t), x(0) = x0 ∈ Rn is given by

ϕG-L(t, x0) = E(α,α)(Ahα, t
h )x0 +

t
h∑

k=0

E(α,α)(Ahα, t
h − k) f (k) (t ∈ hN). (5)
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Remark 6 (Variation of constants formula applied to nonlinear equation). Let α ∈ (0, 1) and x : hN → R
d be a

solution of the nonlinear fractional difference equation (0Δ̃
α
h x)(t + h) = Ax(t) + g(x(t)), where 0Δ̃

α
h is the Grünwald-

Letnikov-type difference operator of order α, g : Rd → R
d and A ∈ R

d×d. Then x is also a solution of the (nonau-
tonomous) linear fractional difference equation (1) with f : hN → R

d, t �→ g(x(t)). By Theorem 5, x satisfies the
implicit equation

x(t) = E(α,α)(Ahα, t
h )x0 +

t
h∑

k=0

E(α,α)(A, t
h − k)g(x(k)) (t ∈ hN).

To prepare the proof of Theorem 5, we summarize some results about the Z-transform of a sequence x : N → R,

which is defined by Z[x](z) =
∞∑

i=0
x(i)z−i for z ∈ C, |z| > R � lim supi→∞ |x(i)|1/i, see e.g. [6, Chapter 6] and [7]. The

Z-transform of Rd or Rd×d valued sequences is defined component-wise. The proof of the following lemma follows
from [8, Lemma 3] and [2, Proposition 28].

Lemma 7 (Z-transform of Mittag-Leffler functions and fractional differences). Let a ∈ R, α ∈ (0, 1).

(i) Let A ∈ Rd×d, β ∈ R. ThenZ[E(α,β)(A, ·)](z) =
(

z
z−1

)β (
I − 1

z

(
z

z−1

)α
A
)−1

.
(ii) Let x : (hN)a → R

d and y(n) � (aΔ̃
α
h x)(t) for t ∈ (hN)α and n ∈ N0 such that t = a + nh. Then Z[y](z) =(

zh
z−1

)−αZ[x](z), where X(z) = Z[x](z) and x(n) � x(a + nh).

Proof of Theorem 5. By Lemma 7(ii), applying theZ-transform to equation (1) with the Grünwald-Letnikov-type
forward difference operator, we get(

zh
z − 1

)−α
Z[ϕG-L(·, x0)

]
(z) = AZ[ϕG-L(·, x0)

]
(z) +Z[ f ](z).

Using Lemma 7(i), we obtain

Z[ϕG-L(·, x0)
]
(z) = Z[E(α,α)(Ahα, ·)(z)x0

]
+Z[E(α,α)(Ahα, ·)(z)x0

]Z[ f ](z).

Applying the inverse of theZ-transform yields

ϕG-L(·, x0) = E(α,α)(Ahα, t
h )x0 +Z−1 [Z[E(α,α)(Ahα, ·)(z)x0

]Z[ f ](z)
]
.

Hence, we get

ϕG-L(t, x0) = E(α,α)(Ahα, t
h )x0 +

t
h∑

k=0

E(α,α)(Ahα, t
h − k) f (k) (t ∈ hN).

Boundedness of scalar linear Grünwald-Letnikov-type difference equations

Theorem 8 (Stability of linear homogeneous Grünwald-Letnikov-type scalar difference equation). Let α ∈ (0, 1),
λ ∈ R. If all solutions z ∈ C of

1 − 1

z

( z
z − 1

)α
λhα = 0 (6)

satisfy |z| < 1, then
(0Δ̃
α
h x)(t + h) = λx(t) (t ∈ hN) (7)

is asymptotically stable.

Proof. From Theorem 5, we have ϕG-L(t, x0) = E(α,α)(λhα, t
h )x0. From (8), we have (z−1)α = λhαzα−1. Hence, from

Proposition 3, we have lim t
h→∞ E(α,α)(λ

α, t
h ) = 0.
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Theorem 9 (Boundedness of nonautonomous linear Grünwald-Letnikov-type scalar difference equation). Let α ∈
(0, 1), λ ∈ R and (λn)n∈N a sequence in l1. If all solutions z ∈ C of

1 − 1

z

( z
z − 1

)α
λhα = 0. (8)

satisfy |z| < 1, then the solution of

(0Δ̃
α
h x)(t + h) = λx(t) + λt/h (t ∈ hN), (9)

with initial condition x(0) = x0 ∈ Rn, is bounded.

Proof. By Theorem 5, the solution of (9), x(0) = x0 ∈ Rn, is given by

ϕG-L(t, x0) = E(α,α)(λhα, t
h )x0 +

t
h∑

k=0

E(α,α)(λhα, t
h − k)λk (t ∈ hN).

By Theorem (8), there exists M ≥ 0 such that |E(α,α)(λ
α, t

h )| ≤ M for t ∈ hN. Then,∣∣∣∣∣∣∣∣
t
h∑

k=0

E(α,α)(λhα,
t
h
− k)λk

∣∣∣∣∣∣∣∣ ≤ M

t
h∑

k=0

|λk | (t ∈ hN),

proving that |ϕG-L(t, x0)| ≤ M|x0| + M
∑∞

k=0 |λk |.

Using Corollary 4, the following Corollary follows from Theorem 9.

Corollary 10. Let α ∈ (0, 1), λ ∈ R, (λn)n∈N a sequence in l1. Then the solution of (9) is bounded if −
(

2
h

)α
< λ < 0.
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