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ABSTRACT
This article focus on validation phase-field method for simulation of free vibration and buckling of crack
plates. The formula is derived from using Reissner-Mindlin plate theory. Validation simulation is carried
out by numerically investigating free vibration and buckling of cracked plate with taking the configura-
tion, material property, crack location, and other relevant assumptions as the same with the comparing
references. The article shows that phase-field approach can be used to estimate the critical buckling load
and frequencies of vibration mode. The article also demonstrates the significant advanced of phase-field
method for plates with complex crack geometries.

1. Introduction

Cracks appear in many structures such as plate and shell so that
studying the behavior of cracked plates, shells, and other struc-
tures is very important. There are some common ways to study
the fracture in plate and shell such as finite element method
(FEM), extend FEM (XFEM), isogeometric analysis (IGA),
phase-field method, …Kim and Glaucio [33] presented mixed-
mode crack growth in two-dimensional functionally graded
materials based on FEM. Belytschko et al. [6], Gravouli et al.
[14], and Moes et al. [21] used XFEM for studying the crack
growth. Rabczuk et al. [24] combined meshfree method and
XFEM for simulation cohesive fracture. Wells and Sluys [29]
relied on XFEM to utilize crack models for dynamic crack prop-
agation. Mostofizadesh et al. [20] analyzed crack propagation
in thin shells subjected to blast loading. Wang et al. [30] used
this method for studying dynamic fracture of fluid structure.
XFEM was used in Dolbow et al. [12] to model and show the
mixed-mode fracture of plate based on Mindlin-Reissner the-
ory, the authors analyzed the stress intensity factors in crack
plates. Hughes et al. [16] was the first authors to incorporate
IGA, and this method was applied successfully in analysis of
fracture mechanics.

It can be said that fracture mechanics in stability or instabil-
ity analysis of the various advanced structures nowadays get a
very important role in engineering field and have the great con-
centrations from researchers and scientists [34]–[36]. Among
the investigations of stability of structures, buckling analysis is
one of the most important problem needed to consider. Arani
et al. [37] applied the nanotechnology as a single-walled car-
bon nanotubes (SWCNTs) resting in a concrete column beam
as the first study they combined together to explore the non-
linear buckling analysis, Kolahchi et al. [38], [39] also used this

CONTACT Nguyen Dinh Duc ducnd@vnu.edu.vn Advanced Materials and Structures Laboratory, VNU, Hanoi, University of Engineering and Technology,
 - Xuan Thuy Street - Cau Giay, Hanoi, Vietnam.
Color versions of one or more figures in this article can be found online at www.tandfonline.com/umcm.

reinforced nanostructure (SWCNTs) to examine the nonlin-
ear dynamic stability of embedded temperature-dependent vis-
coelastic plates, and investigate the nonlocal dynamic buckling
behavior of embedded microplates reinforced once again with
SWCNTs by using Bolotin method. Kolachi [40] was also the
first researcher give the study of the dynamic buckling of sand-
wich nanoplates by using visco-nonlocal-refined zigzag theo-
ries, or another study by Bilouei et al. [41] in buckling anal-
ysis in concrete column improved with nanofiber reinforced
polymer (NFRP). On the other hand, vibration problems also
have a big position in considering the stability of the struc-
tures. Madani et al. [42] used differential cubature method to
research the reinforced complex material as functionally graded
cacbon nanotubes embedded in piezoelectric cylindrical shell
when applied uniform and nonuniform temperature distribu-
tion in the model, Mohammad et al. [43] made the investigation
of concrete pipe covered by SiO2 nanopartical and fiber rein-
forced plate layer in seismic behavior testing in underwater fluid
conveyer as applying the inner and outer fluids like the external
forces.

It is clear that there are several method to examine and
analyze the behaviors of structures in stability or instabilty
problems, especially with the impact of fractures. Recently,
phase-field method gets many focus from researchers due to
its advantages in fracture mechanic peoblems such as crack-
ing. Borden et al. [7] used the higher isogeometric basis
functions and higher-order phase-field model to study the
brittle fracture. Schillinger et al. [26] showed isogeometric
collocation methods for phase-field fracture models. Bhard-
waj et al. [32] explored the numerical simulation of cracked
plate using extended IGA under different loads and boundary
conditions.
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Table . Comparison of present results with experimental results for critical buckling load of cracked plate in [].

Sample number Crack length (c/H) Crack inclination (α) Experimental buckling load (N) [] Present (N) % Diff

c .    .
c .   .
c .   .
c . °   .
c .   .
c .   .
c . °   .
c .   .
c .   .

Table . Critical buckling load of cracked plate with different thicknesses.

L/h

H/l    

 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .

Table . Critical buckling loadof platewith different crack length and inclined angle
crack, plate with three cracks.

Inclined angle crack

c/H ° ° ° °

. . . . .
. . . . .
. . . . .
. . . . .

Table . Validation of the obtained frequencies with other methods.

ωi c/H
Ref. []

theoretical
Ref. []

experimental Ref. [] FEM Present

 . . . . .
 . . . . .
 . . . . .

Table . Dimensionless frequencies of cracked plate with different thicknesses
(ωa20/h0)

√
ρ(1 − ν2)/E , (a = h).

L/h

H/l    

 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .
 . . . .

Areias et al. [4] showed a new formulation and procedure to
study the stress intensity factors and arbitrary crack growth in
plates and shells. In [3], Areias et al. gave the analysis the cracks
in thin shells based onKirchhoff-Love quadrilateral element and
Song et al. [27] used phantom node method and shell element
of Belytscho-Lin-Tsay to analyze dynamic crack propagation in
shells under impulsive loads. Crack growth in shells fuselage
structures was simulated in [11], [22].

Bourdin et al. [8], [9] offered the phase-fieldmethod tomodel
the fracture in structures, they were based on and improved
Griffith’s theory presented by Francfort and Marigo [13]. Then,
this method was applied widely in both static and dynamic brit-
tle fractures [1], [2], [10], [15], [18], [19], [31]. But the applica-
tion of this method to model the fracture in plate and shell has
not been used widely. By considering shell as a plate combines
with a standardmembrane, Ulmer et al. [28] applied phase-field
model to analyze the fracture in shells. Areias el al. [5] used
finite-strain plates and shells and two independent phase-fields
to find out the bending fracture behavior. Recently, Duc et al.
[31] have used the phase-field method to study dynamic crack
propagation in functionally graded epoxy composite with glass
fibers.

In this article, we use phase-field method to study buckling
and free vibration of cracked plate, the numerical results of this
work is compared with experiment results to show the accu-
racy of this method. And from this basis we show the effects
of some parameters on buckling and free vibration of cracked
plate.

The rest of the article is organized as follows: Theoretical
formulation of Reissner-Mindlin plate theory is presented in
Section 2 involving kinetics and governing equations. Formu-
lation of phase-field for free vibration and buckling analysis
of cracked Reissner-Mindlin plates is presented in Section 3.
In Section 4, firstly, validation or accuracy study of the devel-
oped method is analyzed and presented, then some numeri-
cal results for buckling analysis of cracked plate with difference
crack length and crack geometries are analyzed and presented
in Section 4. Some conclusions drawn from the present work
are given in Section 5.

L

H

c
α

y

x

Figure . The model geometry of a plate with an inclined central crack.
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Figure . Effect of thickness on CBLR (L=H= . m, CFCF).

2. Formulation for Reissner-Mindlin plate

Using the first-order shear deformation theory of the Reissner-
Mindlin formulation, the three-dimensional (3D) displacement
field is expressed in term of middle plane as:

u
(
x, y, z

) = u0
(
x, y

) + zβx
(
x, y

)
v

(
x, y, z

) = v0
(
x, y

) + zβy
(
x, y

)
w

(
x, y, z

) = w0
(
x, y

)
,

(1)

where u, v,w are the displacements components in the x, y, z
axes, respectively; βx, βy are the transverse normal rotations in
the xz and yz planes; and u0, v0,w0 are displacement of middle
surface.

From the expression of strains in 3D solid, the strains in terms
of mid-plan deformation can be expressed as follow:

ε =
{
εp
0

}
+

{
zεb
γ s

}
, (2)

where the vector εp and εb contain a membrane, bending and
transverse strain, respectively.

εp =
⎧⎨
⎩

u0,x
v0,y

u0,y + v0,x

⎫⎬
⎭ ; εb =

⎧⎨
⎩

βx,x
βy,y

βx,y + βy,x

⎫⎬
⎭ ;

γ s =
{
βx + w0,x
βy + w0,y

}
. (3)

The potential energy for plate without of cracks can be writ-
ten as:

U (δ) =
1
2

∫
�

{
εTpAεp + εTpBεb + εTb Bεp + εTbDbεb + γT

s Dsγ s

}
d�,

(4)

where δ is displacement vector, the matrices A, B, Db, and Db
are the extensional, bending-extensional coupling, and bending
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Figure . The influence of internal length at different thicknesses (L= H = . m,
c/H= ., α = 0◦).

stiffness coefficients and are explicitly given by

A = Eh
(1 − ν2)

⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎤
⎦ ;

B = Eh
(1 − ν2)

⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎤
⎦ (5a)

Db = Eh3

12 (1−ν2)

⎡
⎣ 1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎤
⎦ ;

Ds = kEh
2 (1 + ν)

[
1 0
0 1

]
, (5b)

where h is thickness of the plate; E is elastic modulus; and k is
transverse shear correction factor.

3. Phase-fieldmodel for crack

In phase-field theory of fracture, s is defined a variable phase-
field parameter, which continuously varies from 0 to 1. When
s equals 0, it means that material phase is fractured, and it
is not fractured when s equals 1, if s gets value between 0
and 1 then material in this place is softening. This phase is
understood as a progress of microcrack in material and mate-
rial stiffness is decreased. So that, in phase-field theory, the
crack, which is characterized by phase-field fracture variable in
range [0,1], forms a narrow band representing the crack in dif-
fusive setting. Because of this formulation, the material con-
tains no explicit discontinuities in materials, and we can have
derivation and integral in all domain of analysis. Phase-field
variable is taken in strain energy formula of plate by s2 func-
tion, it means that strain energy in cracked area are decreased
to 0.

3.1. Vibrational formula for prebuckling analyses

The potential energy for plate subjected to in-plane prebuckling
stress can be written as:

U (δ, s) =⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∫
�
s2

{
εTpAεp + εTpBεb + εTb Bεp + εTbDεb + γT

s Dsγ s

}
d�

+ 1
2

∫
�
s2

[
w,x w,y

]
σ̂ 0[w,x w,y

]Thd�

+ 1
2

∫
�
s2

[
φx,x φx,y

]
σ̂ 0[φx,x φx,y

]T h3
12d�

+ 1
2

∫
�
s2

[
φy,x φy,y

]
σ̂ 0[φy,x φy,y

]T h3
12d�

+ ∫
�
GCh

[
(1−ν)2

4l + l|∇s|2
]
d�

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=
{∫

�
s2
 (δ) d� + ∫

�
GCh

[
(1−ν)2

4l + l|∇s|2
]
d�

}
(6)

where GC is the critical energy release rate or surface energy in
Griffith’s theory and l is a positive regularization constant to reg-
ulate the size of the fracture zone.
And

σ̂
0 =

[
σ 0
x τ 0

xy
τ 0
xy σ 0

y

]
. (7)

The first variation of the functionalU (δ, s) is given by
{
δU (δ, s, δδ) = 0
δU (δ, s, δs) = 0 (8)

and then, we have the formulations for prebuckling analyses
of cracked plate as
⎧⎪⎨
⎪⎩

(∑
Ke + λcr

∑
Ke

G
)
δ = 0 (9a)∫

�
2s
 (δ) δsd� + ∫

�
2GCh

[
− (1−ν)

4l + l∇s∇ (δs)
]

(9b)

×d� = 0

3.2. Vibrational formula for free vibration

For free vibration analysis of plates, the kinetic energy is
expressed as:

Te = 1
2

∫
�e

s2u̇Tρu̇d� = 1
2
δ̇
T
Meδ̇. (10)

Where the element mass matrix is given by

Me =
∫
�e

s2LTρLd�; L =
⎡
⎣ 1 0 0 z 0
0 1 0 0 z
0 0 1 0 0

⎤
⎦ (11)

The Lagrange functional is expressed as

L (δ, s) = T (δ, s) −U (δ, s)

= 1
2

∫
�e

s2u̇Tρu̇d� − 1
2

∫
�

s2
{
εTpAεp + εTpBεb + εTb Bεp

+εTbDεb + γT
s Dsγ s

}
d�

−
∫

�

GCh
[

(1 − ν)2

4l
+ l|∇s|2

]
d�

= 
 (δ, s) −
∫

�

GCh
[

(1 − ν)2

4l
+ l|∇s|2

]
d� (12)
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Figure  First five buckling modes of CFCF cracked plate (L=H= . m, h= . mm, c/H= ., H/l= ).

L

H

c

α

y

x

α

Figure . The model geometry of a plate with three cracks and cracks are similar in
length.

The first variation of the Lagrange functional is given by
{
δL (δ, s, δδ) = 0
δL (δ, s, δs) = 0 (13)

Then the eigen values andmode shapes are obtained by solv-
ing the following equation:

⎧⎪⎨
⎪⎩

(∑
Ke + ω2 ∑

Me) δ = 0 (14a)∫
�
2s.
 (δ) δsd� + ∫

�
2GCh

[
− (1−ν)

4l + l∇s∇ (δs)
]

(14b)

×d� = 0

4. Numerical results

4.1. Buckling of cracked plate

In this section, we study buckling of cracked plates. Firstly, the
crack shape is defined by solving Eq. 9b with function 
(δ) as
following [10]:


 (δ) = B
GJ

4l
.H (x) (15)

with

H (x) =
{
1 i f x ≤ lcrack and − l

2 ≤ y ≤ l
2

0 else (16)
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Figure . First five buckling modes of CFCF plate with three cracks (L=H= . m, h= . mm, c/H= ., H/l= ).

Figure . Convergence of internal length at different thicknesses (L= H = . m,
c/H= ., α = 0◦ , CFCF).

and the scalar B’s magnitude can be 103, whereas lcrack is the
length of the crack.

After solving Eq. 9b, we can find out s, and take this
value of s to Eq. 9ato get buckling loads and buckling mode
shapes.

Firstly, we compare the results of buckling load of cracked
plate by this method with experimental results of Seifi et al. [25]
as in Table 1, plate with 240 × 240 × 12 mm3 size, Young mod-
ulus E = 70 MPa, Poisson ratio 0.33, this plate is compressed in
two opposite clamped edges, in the other two edges, the forces
are not applied, which can be seen in Figure 1. From Table 1,
we can see that the numerical result based on this method
is dependable. The maximum error between this numerical
results and experimental results reach 9%, this problem is easy
to understand because of the error when material producing is
not pure and crack size is not perfect. To verify this, we study
the effect of plate thickness on critical buckling load of cracked
plate.

The plate with L=H= 0.24m is compressed at two opposite
edges as Figure 1, thickness h, crack length c, crack inclinationα,
Young modulus E= 70MPa, and Poisson ratio 0.33. For greater
convenience, we define the buckling critical load ratio (BCLR)
as follow.

BCLR = 100 (λcr) a0
Eh30

(with a0 = 10h0) (17)

Plate thickness is changed from 1.15 to 1.25 mm, crack
angle is changed from 0° to 90°, as we reported in Table 2.
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Figure . Effect of thickness on frequencies (L=H= . m, CFCF).

We can see that when crack length is increased or plate thick-
ness is decreased, the critical buckling load is decreased as the
plate stiffness is decreased. When crack inclination is increased,
because the plate is compressed at two opposite edges as in
Figure 1, energy release surface at crack is decreased, and this
reason makes plate stiffness increased, so that the plate stability
is higher. These phenomena agreewith results from experiments
reported in Seifi et al. [25].

Specially from Figure 2, we can see that with cracked plate
as Seifi et al. [25], when plate thickness change about 50 µm
from thickness value in Seifi experiment, the critical buckling
load will have error from 11.96% to 13.02%. The errors in the
results of this work in comparison with Seifi experiment results
as in Table 1 are easy to understand.

In the next study, we show the effect of plate thickness on
plate stability and examine how the convergence of the method
depends on internal length at different thicknesses, we change
thickness value with L/h = 50–200 and internal length l has
value H/l = 100–800, we report as in Table 2 and plot as in
Figure 3.

From Figure 3, we can see that when H/l gets value from
100 to 800 then the change of critical buckling load is small.
On the other hand, internal length l has small effect on results,
so that, in all study below we chose internal length value
H/l = 400.

First five bucklingmode shapes of cracked plate at three cases
of inclined angle (0°, 30°, and 90°) are plotted in Figure 4. From
this we can see that inclined angle of crack has much effect on
the shape of cracked plate buckling mode shapes.

Next, to show advantages of this method over the other
method, e.g., XFEMmethod, we study buckling of CFCF square
plate with three cracks compressed in two opposite edges as in

Figure 5. Plate length L and width H are the same L = H =
0.24m, thickness h= 1.2 mm, Youngmodulus E= 70MPa, and
Poisson ratio 0.33,H/l = 400, three cracks have the same length
c and have cross point at plate center, we change crack length c
(c/H = 0.1–0.4) and crack angle α from 15° to 60° and report
the coefficient buckling as in Table 3.

Table 3 shows that when crack length decreases and rack
angle α increases then energy release surface decreases, so that
the critical buckling load decreases.

In this case of plate with three cracks have cross point veri-
fied that phase-fieldmethod can deal with various complexity of
crack shape, in which some other method (e.g., XFEMmethod)
cannot solve effectively. Figure 6 plots first five mode buckling
shapes in two cases of crack angle (30° and 60°), and it shows
that crack angle has effected much on buckling mode shapes of
cracked plate.

4.2. Free vibration of cracked plate

In this section, we keep studying free vibration of cracked plate.
As buckling problem, the crack shape is defined by solving
Eq. 14bwith function 
(δ) as followed:


 (δ) = B
GJ

4l
.H (x) , (18)

where

H (x) =
{
1 if x ≤ lcrack and −l

2 ≤ y ≤ l
2

0 else (19)

with B = 103.
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Figure . First five mode shapes of CFCF cracked plate (L=H= . m, h= . mm, c/H= ., H/l= ).

After solving Eq. 14b, we can get s, and take this value of s
to Eq. 14ato find out eigen frequencies and free vibration mode
shapes, respectively.

To show the accuracy of this method, frequencies of pure
metal cantilever plate with one crack get from the numerical
result compared with that experimental, theoretical, and FEM
results of other authors, plate with 24 × 24 × 2.75 cm3 size,
Young’s modulus E = 67 MPa, Poisson’s ratio 0.33, and mass
density 2800 kg/m3. The center of the crack is located at the
coordinates x = 9 cm and y = 9 cm. The comparison repotted
as in Table 4 shows a small error and this proves the accuracy of
this results, note that we chose l = L/200.

Based on the method, we use this program to study effect of
some parameters on cracked plate frequencies modelled as in
Figure 1.

Firstly, we study the effect of plate thickness and internal
length, plate with L = 0.24 m length, H = 0.24 wide and thick-
ness h, internal length c/H= 0.5, inclined angle α = 0◦, Young’s
modulus E = 6.7e10 Pa, Poisson’s ratio 0.33, and mass den-
sity 2800 kg/m3, two opposite edges clamped and two edges are
free (CFCF), plate thickness changed from L/h = 50 to 200, we

report the normal frequencies (ωa20/h0)
√

ρ(1 − ν2)/E, with a0
= 10h0 as in Table 5 and plot these results in Figure 7.We can see
that if plate thickness increases, then plate is getting stiffer and
frequencies increase, the effect of the internal length changes
on frequencies is not significant, so that, from now we choose
H/l = 400.

Next, we study the effect of crack length, inclined angle, and
plate thickness on frequencies of plate with size and proper-
ties material as above, but only thickness get value from 1.15–
1.25 mm, we plot as in Figure 8. From this figure, we can see
that increasing plate thickness or decreasing crack length will
make plate getting stiffer and the first frequency will increase,
when crack inclined angle increase, with boundary condition
CFCF as Figure 1, because energy release surface at crack
is decreasing, plate stiff is increasing, so that the frequencies
increase.

First five mode shapes of cracked plate with two boundary
conditions (CFCF and SSSS) and three inclined angles (0°, 30°,
and 90°) are plotted in Figures 9 and 10. These figures show that
the boundary condition and crack inclined angle have a signifi-
cant effect on mode shapes of cracked plate.
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Figure . First five mode shapes of SSSS cracked plate (L=H= . m, h= . mm, c/H= ., H/l= ).

5. Conclusions

By using phase-filed and based on Reissner-Mindlin plate the-
ory, the article has studied free vibration and static buckling of
cracked plate. In cracked plate buckling problem, plate is com-
pressed in two clamped oposite edges while two other edges are
free, when the inclined angle and the plate thickness decrease
and the crack length increases then the cracked plate is prone
for buckling, otherwise the phase-filed method the article used
is more advantageous than other method (example XFEM, …)
when dealing with plate have complex crack shapes. In problem
of free vibration of cracked plate, the article shows that when
the plate thickness increases, the crack length decreases and the
inclined crack angle increases then the frequencies of cracked
plate increase. The obtained results in this article are validated
by comparing with other results reported in the open literature.
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