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Abstract. Improving the technical performance of the wire electro-discharge machining (WEDM) process is

an effective solution to decrease manufacturing costs. This paper addresses a multi-response optimization to

simultaneously improve the cutting area rate CAR and decrease the kerf width AKW, while the average surface

roughness ASR is predefined as a constraint. The processing conditions considered include the pulse-on time Ton,

the current I, the voltage V and the wire speed S. A WEDM machine was adopted in conjunction with the Box–

Behnken matrix to conduct experimental trials for machining of SKD61 steel. Highly nonlinear relationships

between machining parameters and technological outputs were developed using the Kriging models. Finally, an

archive-based micro-genetic algorithm (AMGA) was used to resolve the trade-off analysis among three

responses and determine the optimal values of the processing factors. The results showed that a set of feasible

solutions can be determined for the low kerf width as well as the surface roughness and the high cutting area

rate. The selection of optimum parameters could help the WEDM operators to save the machining costs and

time. The combination of the Kriging model and AMGA could be considered as an intelligent approach for

modelling WEDM processes and predicting optimal results.
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1. Introduction

The important task of machining processes is to improve

technological performances, such as processing efficiency,

the machined part quality and the accuracy. The first

solution focuses on the improvement of the machine’s

components and technologies, such as smart control [1] and

advanced devices [2]. The second method pays attention to

optimization of processing conditions to ensure the tech-

nical targets. Apparently, the determination of optimal

factors is inexpensive and has better sustainable develop-

ment, as compared with dramatic investments. Conse-

quently, improving the machining criteria by means of

optimal conditions can be considered to be an intelligent

choice.

The effects of processing conditions on the technical

outputs of the wire electro-discharge machining (WEDM)

processes have been investigated by many researchers. The

parameters were optimized in an effort to improve the

working performances for the WEDM processes of SKD11

steel [3], EN 353 steel [4] and AISI D3 [5] material.

Additionally, investigators solved the trade-off among

multi-responses for the WEDM processes of YG15 steel

[6], AISI D2material [7] and Inconel alloys [8, 9]. Recently,

optimal processing conditions for the WEDM processes of

composite materials were studied [10–12]. The technolog-

ical responses considered were the cutting speed, the

material removal rate (MRR), the surface roughness prop-

erties, the kerf width and the wire wear ratio. Additionally,

the depth of the recast layer, the crack density and the

dimensional accuracy were also considered as important

outputs. The factors optimized were the processing

parameters (the pulse-on time, the pulse-off time, the spark

current, the open voltage, the wire speed, the feed rate and

the water pressure), the tool characteristics (the diameter,

the material and the wire tension) and the workpiece

properties.

As a result, different optimizing techniques, including

the response surface methodology (RSM) [13–15], the

Taguchi-based methods [16–18], the fuzzy neural system

(FNS) [19–21] and the artificial intelligence (AI) [22–24],

were used to explore the relationships between inputs and

outputs. However, the aforementioned works regarding

parametric optimization for the WEDM processes have still

the following deficiencies.
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When the relationships between inputs and outputs are

highly nonlinear, the traditional technique, such as RSM,

does not ensure predictive accuracy due to an estimating

error [25]. The other approaches, including AI and FNS, are

considered to be better than the RSM models when mod-

elling the nonlinear WEDM processes. Additionally, the

Taguchi-based methods could be used for local optimiza-

tion due to discrete space.

The investigators have selected the optimal conditions

for minimizing surface roughness. Practically, the surface

roughness is a technical requirement, which should be

defined before the actual machining to save the machining

time and costs.

Predictive models, which can be used to render the

nonlinear relationships between the inputs and the outputs,

including the cutting area rate (CAR), surface roughness

and kerf width for the WEDM process of the SKD61

material, have not been presented in the aforementioned

works.

The optimum settings of machining factors may have

inefficient results because of the strong conflicts among the

technological performances.

To fulfill the mentioned research gaps, a multiple-re-

sponse optimization of process parameters of the WEDM

process of mould material has been considered in this paper

for improving the technical performances. Furthermore, we

recognized that the effects of processing conditions con-

tributed to variations in measured performances, such as

cutting efficiency, surface integrity and dimensional accu-

racy. Therefore, an effective approach for modelling

WEDM process behaviour and the optimizing processing

factors in terms of improving working performances is still

a significant contribution.

In this work, the average surface roughness (ASR), the

average kerf width (AKW) and the CAR are considered as

important responses. The Kriging model is used instead of

RSM and Taguchi to render the highly nonlinear relation-

ships between machining parameters and technical

responses. The Kriging model can be considered to be an

effective approach with regard to the highly nonlinear

characteristic. An evolutionary archive-based micro-genetic

algorithm (AMGA) is used to generate the feasible design

points and identify the best optimal solution.

2. Materials and methods

The material SKD61 is chosen in this work due to the wide

application in the moulding industry and machine tool. The

chemical composition of SKD61 material is shown in

table 1. The workpiece prepared has the dimensions of 230

mm990 mm98 mm. Four process parameters, including

the current I, the pulse-on time Ton, the voltage V and the

wire speed S, as well as three levels (-1, 0 and ?1) are

shown in table 2. The ranges of the parameters are chosen

based on the machine tool’s characteristics, the recom-

mendations of the wire’s manufacturer and material prop-

erties. These values are then verified by machining trials in

order to ensure machinability and avoid any interruptions.

2.1 Optimization framework

The systematic optimizing procedure is displayed in fig-

ure 1 in order to develop predictive models and determine

optimal values. An experimental matrix generated by the

Box–Behnken method is applied to save the experimental

costs [26–28]. The predictive models of the AKW, the ASR

and the CAR are then developed with respect to process

parameters using the Kriging approach.

In this paper, the AMGA is applied to find a set of fea-

sible solutions, which can be used to enhance the surface

integrity. AMGA is an evolutionary technique, in which

each objective is individually resolved. The mutation and

solution are conducted using the chosen designs. The

search history and solution selection are performed by

means of a myriad of different heuristics. The optimal

values of the parameters and responses are identified at the

end of the convergent run. Therefore, AMGA can be used

to find global optimization with low computational effort

[29–31].

2.2 Experiments and measurements

A CNC WEDM machine, namely MTL-SFL70, is used to

perform the experimental runs as depicted in figure 2a. A

molybdenum wire of diameter 0.18 mm is used as the tool

material. A constant machining length of 35 mm in the

workpiece is obtained in each experimental run. A new

wire is used in order to eliminate possible interferences.

The ASR (lm) is an important indicator of the surface

integrity, which is measured in the horizontal and vertical

Table 1. Chemical composition of SKD61.

C Si Mn P S Cr Mo Cu V

0.38 0.9 0.28 0.03 0.02 4.9 1.2 0.26 0.95

Table 2. Process parameters and their levels.

Symbol Parameters Level -1 Level 0 Level ?1

I Current (A) 2 5 8

Ton Pulse-on time (ls) 1 3 5

V Voltage (V) 30 50 70

S Wire speed (m/min) 4 6 8
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directions using a roughness tester Mitutoyo SJ-301, as

shown in figure 2b. Values are obtained from five positions

and the average is calculated using the following formula:

Rax ¼ Rax1þ Rax2þ Rax3þ Rax4þ Rax5

5
ð1Þ

Ray ¼ Ray1þ Ray2þ Ray3þ Ray4þ Ray5

5
ð2Þ

ASR ¼ Raxþ Ray

2
ð3Þ

where Rax (lm) and Ray (lm) denote the ASR in x- and y-

direction, respectively.

The kerfwidth is an indicator of thewastedmaterial, which

is used to evaluate the dimensional accuracy of the machined

part. Carl Zeiss 37081Microscopy is used tomeasure the kerf

width of all specimens, as shown in figure 2c. The average

value is calculated from the values at twenty positions over

the entire length. The kerf width value is estimated using the

following equation, as depicted in figure 2d:

AKW ¼ 1

N

XN

i¼1

KWi ð4Þ

where KWi and N are the keft width at the i position and the

total number of measured points, respectively.

Generally, the MRR is generally considered as a signif-

icant output variable. The MRR (mm3/min) is calculated

using the following equation:

MRR ¼ L � AKW � H
t

ð5Þ

where L (mm), AKW (mm), H (mm) and t (min) are the

cutting length, the kerf width, the workpiece thickness and

machining time, respectively. In this research, a cutting

length of 35 mm is used for all machining runs. Therefore,

we used a terminology, namely CAR (mm2/min), which is

defined as the ratio of the material removal in the

machining area to the cutting time. The CAR can be con-

sidered as the criterion of production rate when the WEDM

process is used to produce slots, grooves and open pockets

in the workpieces, which have different thicknesses. The

CAR can be computed by the following equation:

CAR ¼ AKW � H

t
ðmm2=minÞ ð6Þ

2.3 Kriging model

The Kriging models of ASR, ASK and CAR in terms of

processing factors are proposed using the experimental

data. It can be described by means of Eq. (7):

yðxÞ ¼ pðxÞ þ zðxÞ ð7Þ

where y(x) denotes the polynomial function to be devel-

oped, p(x) is a known polynomial function and z(x) is the

realization of a normally distributed stochastic process [32].

TheKriging predictor at a specific value of x is calculated as

byðxÞ ¼ bb þ rTðxÞR�1ðf � cpbÞ ð8Þ

where f denotes the column vector containing the sample

data and p is the filled column vector. The factor bb is

calculated using the following equation:

bb ¼ ðpTR�1pÞ�1
pTR�1y ð9Þ

In Eq. (8), rT(x) is the correlation vector and estimated as

rTðxÞ ¼ ½Rðx; x1Þ;Rðx; x2Þ; . . .;Rðx; xNÞ�T ð10Þ

Figure 1. Systematic optimization procedure.
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In this paper, the Gaussian correlative function is used

and defined as

RðhÞ ¼ exp½�
Xm

k¼1

hkðxik � x
j
kÞ

2� ð11Þ

The estimated variance of the proposed model is calcu-

lated as

br2 ¼ ðy� pbbÞR�1ðy� pbbÞ
N

ð12Þ

The correlation factor hk is estimated as

maxUðhkÞ ¼ � ½N lnðbr2 þ ln Rj j�
2

ð13Þ

where br2and Rj j are functions of hk.

3. Results and discussion

3.1 Development of Kriging models

The experimental results of the WEDM process are given in

table 3. The scalar factor b and correlation parameter hk are
obtained by means of the maximum likelihood method to

develop the Kriging models, as shown in table 4.

Figure 2. Experiments and measurements.
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3.2 Model fitness

The adequacy of the Kriging models can be assessed by the

coefficients of determination, including R2, R2 adjusted and

R2 predicted. The R2 coefficient is defined as the ratio of

explained variation to the total variation and is a measure of

the degree of fit. The adjusted R2-value indicates the total

variability that could be explained by the model after the

significant factors were considered. The predicted R2-value

presents the total variability that could be expected by the

model in any new data.

The R2-values of ASR, AKW and CAR are 0.9894, 0.9818

and 0.9822, respectively, indicating the good agreements

between predicted and measured values. The adjusted R2-

values of ASR, AKW and CAR are 0.9834, 0.9758 and

0.9761, respectively, proving the satisfactoriness of the

models proposed. Additionally, the predicted R2-values of

ASR, AKW and CAR are 0.9714, 0.9678 and 0.9674,

respectively, indicating the significances of the Kriging

models in any new data (figure 3). Therefore, the adequacy

of the Kriging models proposed for three responses is

acceptable.

To exhibit the advantage of the proposed approach,

comparisons of the values of R2, R2 adjusted and R2 pre-

dicted for the Kriging and RSM models are performed.

When the RSM models are used the R2-values of ASR,

AKW and CAR are 0.9543, 0.9479 and 0.9503, respectively.

The adjusted R2-values for RSM models of ASR, AKW and

CAR are 0.9494, 0.9424 and 0.9452, respectively. Fur-

thermore, the predicted R2-values of ASR, AKW and CAR

are 0.9384, 0.9316 and 0.9346, respectively. Additionally,

the data points generated by the Kriging models are more

evenly distributed than the RSM ones (figure 4). This

means that the adequacy of Kriging models is better than

that of RSM methods. Similar outcomes can be found in the

publications of [25, 33].

In this paper, Nos. 1–26 are used to develop Kriging

models of machining responses and Nos. 27–30 are adopted

for testing the accuracy of the obtained Kriging model. The

comparisons between predicted values (PV) and experi-

mental values (EV) of the test points are shown in table 5.

As a result, the percentage deviations for the CAR, ASR and

AKW lie within the ranges of -0.52% to 0.75%, -0.35% to

0.71% and -1.03% to 0.93%, respectively. The small

errors indicate that the Kirging models are adequate and

can be used for the optimizing process.

3.3 The effects of processing conditions

on the technical responses

The effects of processing factors on the ASR are shown in

figure 5a. As a result, the surface roughness increased when

the current changed from 2 to 8 A and voltage increased

Table 3. Experimental results.

No.

I

(A)

Ton
(ls)

V

(V)

S

(m/min)

AKW

(lm)

ASR

(lm)

CAR

(mm2/min)

Experimental data for developing Kriging models

1 5 3 70 4 216.42 3.48 0.19056

2 8 3 30 6 242.84 4.26 0.19015

3 5 5 50 8 244.24 2.06 0.26184

4 8 5 50 6 236.36 4.15 0.23414

5 5 5 50 4 222.57 1.79 0.19870

6 5 3 30 4 230.35 1.78 0.15839

7 2 3 70 6 246.52 3.98 0.20933

8 5 3 50 6 212.61 3.42 0.17297

9 2 3 30 6 258.74 2.28 0.16629

10 2 1 50 6 225.57 1.68 0.14751

11 5 3 50 6 211.12 3.41 0.17234

12 2 3 50 4 233.45 1.62 0.15350

13 5 1 30 6 228.54 1.88 0.16563

14 5 1 50 8 211.75 1.56 0.19173

15 2 5 50 6 256.57 2.18 0.21784

16 5 5 30 6 252.48 2.37 0.22306

17 8 3 50 4 211.69 3.62 0.16826

18 8 3 70 6 231.76 5.99 0.22500

19 5 1 50 4 196.53 1.28 0.13672

20 8 3 50 8 232.79 3.94 0.22659

21 2 3 50 8 248.74 1.94 0.20076

22 5 5 70 6 243.79 4.07 0.26736

23 5 1 70 6 209.39 3.56 0.18697

24 8 1 50 6 208.48 3.64 0.17063

25 5 3 70 8 235.64 3.78 0.25159

26 5 3 30 8 247.53 2.08 0.21452

Experimental data for testing accuracy

27 2 3 50 4 234.54 1.63 0.15129

28 5 5 50 6 232.78 2.87 0.22020

29 8 1 70 8 231.35 4.06 0.24578

30 2 3 70 4 240.28 2.82 0.19029

Table 4. Values of Kriging model parameters.

Responses

Correlation parameter hk

Scalar factor bI S Ton V

AKW 0.157514 0.093077 0.185455 0.229464 0.572705

ASR 0.211879 0.148699 0.102242 0.163737 -0.169793

CAR 0.043371 0.181079 0.261909 0.208638 0.322109
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from 30 to 80 V. At a low value of I or V, the discharge

energy will be low, leading to less material removal, which

causes small craters and smooth surface. In contrast, the

discharge energy will increase at a high value of I or V,

leading to excessive material removal, which results in

larger and deeper craters.

Additionally, ASR is increased with an increment in the

pulse-on time and then decreased by the continuously

increased parameter. The longer the pulse-on time, the

higher the discharge energy, which facilitates the melting

and evaporation of materials; hence, the formation of big-

ger and deeper craters is observed. An increment in the

pulse-on time results in excessive discharge energy, leading

to even distribution of sparks. Obviously, smaller craters

are produced.

Similarly, increased average roughness is associated

with increased wire speed. After peak values, an incre-

ment of the wire speed leads to a smoother surface. The

thermal energy is transferred to the wire and carried away

from the work zone at a lower speed. Therefore, the low

energy is used to melt the material, leading to smaller

craters. An increased wire speed results in a faster

washout and creates rapid occurrence of the EDM sparks.

As a result, more thermal energy is used to melt and

vaporize the materials, resulting in increased size craters

[34]. An excessive increment in the wire speed leads to

even distribution of the spark, which causes smaller sized

craters and a smoother surface. Similar outcomes can be

found in the work of [35].

As shown in figure 5b, an increase in the current or

voltage causes higher discharge energy, which leads to an

increment in the rate of melting and evaporation. The CAR

increases with increase in the pulse-on time because more

material gets melted and evaporated, resulting in an

improved CAR. A higher speed effectively influences the

flushing of the debris material, contributing to a faster CAR.

Figure 3. Investigations of the model accuracy for the Kriging models.
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Figure 5c shows that kerf width increases with longer

pulse-on time. Higher discharge energy is available due to

the increased duration, leading to an increase in the

machining width. The increased kerf width is associated

with increased wire speed. At a higher value of wire speed,

faster washout is observed and the sparks occur rapidly.

The higher discharge energy generated causes excessive

material removal and resultantly leads to an increased kerf

width. Furthermore, an excessive speed effectively

influences on the flushing of the debris material, thereby

increasing width [12, 34, 35].

An increase in current or voltage leads to a reduction of

kerf width. After the shrinkage point, increased machining

width is associated with increased current or voltage. At a

higher value of I or V, the debris may stick onto the

workpiece surface, which leads to the erosion of the wire;

hence, the diameter of the wire is decreased. Obviously,

less kerf is produced [35]. An excessive increment in

Figure 4. Investigations of the model accuracy for the RSM models.

Table 5. Comparison of predicted and experimental values.

No.

AKW ASR CAR

PV EV Error (%) PV EV Error (%) PV EV Error (%)

27 232.37 234.54 -0.93 1.64 1.63 0.61 0.15243 0.15129 0.75

28 230.41 232.78 -1.03 2.86 2.87 -0.35 0.22168 0.22020 0.67

29 230.62 231.35 -0.32 4.08 4.06 0.49 0.24452 0.24578 -0.52

30 242.54 240.28 0.93 2.84 2.82 0.71 0.19146 0.19029 0.61
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Figure 5. Effects of process parameters on the WEDM responses.
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current or voltage results in higher discharge energy, which

leads to not only a higher MRR, but also effective flushing

of the debris [34], thereby increasing groove. The cross-

sections of the kerf width at the different parameters are

shown in figure 6.

A scanning electron microscope (SEM Nano Nova 450)

is employed to explore the machined surface morphology at

various machining conditions. The SEM images at different

experimental conditions are shown in figure 7. A smoother

surface having small cracks and holes is depicted at a low

value of current, as shown in figure 7a. Bigger craters and

cracks are found at a higher current (figure 7b). An incre-

ment in the wire speed could lead to an increase in surface

roughness (figure 7c), as compared with a low condition

setting (figure 7d).

The combined effects of processing factors on the tech-

nical performances are depicted in figure 8.

The contributions of inputs are depicted using Pareto

charts, as shown in figure 9. The blue bar shows that the

process parameters have a positive effect on the objective,

while the red denotes a negative influence. In figure 7a, all

single terms, quadratic terms (V2 and I2) and the interaction

terms (IV and TonV) have a positive influence on the surface

roughness. As a result, the percentage contributions of I, V,

Ton and S are 21.057%, 18.04%, 5.33% and 3.16%,

respectively. The S2 accounts for the highest percentage

contribution with respect to quadratic terms (20.46%); this

is followed by Ton
2 (17.04%), V2 (7.58%) and I2 (6.97%).

The contributions of the interaction terms IV and TonV are

0.16% and 0.11%, respectively, which have a positive

effect on the surface roughness.

As shown in figure 7b, all quadratic terms, the single

terms (Ton and S) and two interaction terms (TonV and

TonS) have a positive influence on kerf width. As a result,

V2 is the most affected factor due to the highest contribu-

tion (19.98%) with regard to the quadratic term, followed

by I2 (18.47%), Ton
2 (4.49) and S2 (3.83%). The pulse-on-

time Ton has the largest positive effect on AKW with a

percentage of 16.85%, followed by S (10.52%), I (10.13%)

and V (7.38%). The contribution of interaction terms Ton-
V and TonS are 3.00% and 1.86%, respectively.

Figure 7c shows that all single terms and quadratic terms

as well as the interaction terms (TonV and SI) have positive

influences on the CAR. As a result, V2 has the largest

contribution with respect to quadratic terms (13.79%),

followed by Ton
2 (10.06%), S2 (6.14%) and I2 (2.69%).

Especially, Ton is the most effective parameter due to the

highest contribution regarding single terms (21.52%), fol-

lowed by S (18.17%), V (11.34%) and I (6.37%). The

percentages of the interaction terms TonV and SI are 3.67%

Figure 5. continued
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Figure 6. The cross sections of the kerf width at various conditions.
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and 1.77%, respectively. Other terms (ITon, IV, TonS and

VS) are listed as insignificant factors.

4. Optimization results

The developed mathematical models for the CAR, ASR and

AKW are optimized using AMGA, which has the capacity

of finding the optimal solution of a multi-objective prob-

lem. It is a tough work to determine the optimal process

parameters for simultaneously improving three machining

responses. Additionally, the processing factors, including

current, voltage, pulse-on time and wire speed, have com-

plex effects on the technical outputs. The optimizing issue

can be described as follows:

find X = [I, Ton, V, S]

maximize CAR; minimize AKW

constraints: Ra B Raupper

2 B I B 8 (A), 1 B Ton B 5 (ls), 30 B V B 70 (V), 4 B S B

8 (m/min).

The developed equations showing the relationship

between process parameters and machining responses are

used to find optimal parameters by means of the AMGA.

Single-objective optimizations for each objective are con-

ducted to demonstrate the benefits of multi-objective

optimization.

The optimizing results for maximizing the CAR are

exhibited in model I (table 6). Higher value of CAR indi-

cates an improved processing efficiency. Obviously, an

absolute maximum for CAR is observed when machining

parameters are close to their highest values.

The results for minimizing kerf width are presented in

model II. In this case, lesser kerf width indicates better

response variable. As a result, the minimal kerf width is

196.42 lm at a current of 5.86 A, a voltage of 52.76 V, a

pulse-on time of 1.40 ls, and a wire speed of 4.50 m/min.

Figure 7. Surface morphology at various conditions.
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Similarly, an improvement of surface roughness could be

obtained by optimization. The optimal process parameters

were found to be a current of 2.55 A, a voltage of 42.00 V,

a pulse-on time of 1.95 ls and a wire speed of 4.00 m/min

(model III).

The optimal parameters of the multi-objective opti-

mization are selected from the Pareto front with the con-

strained surface roughness in the experimental range. The

operating values of AMGA parameters population size,

number of generations, crossover probability, crossover

distribution index and mutation distribution index are 20,

40, 0.9, 10 and 20, respectively. The Pareto front generated

by the AMGA algorithm is displayed in figure 10, in which

the blue points are feasible solutions. As a result, the global

relations among the technological responses shown in fig-

ure 10 can be used to determine the maximum values of

Figure 8. Interaction effects of each machining parameter on the objectives.
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CAR and the minimal values of kerf width with the pre-

defined constraints of ASR. The selection of the optimal

point depends on the decision of the WEDM operators

based on the weighting of AKW and CAR for a specific

purpose. The representative scenarios with the constraints

of ASR are shown in table 7.

Practically, when the operators use working experience

or operating guide, it is hard to find the global optimum

process parameters that maximize CAR and minimize AKW

with a predefined ASR. Therefore, the contributions to the

academy and industry of this research can be listed as the

following:

The trade-off among ASR, kerf width and CAR is solved

by means of optimization of machining factors for the

WEDM process of the SKD61 material.

The Kriging models, which are employed here for

depicting the nonlinear relationships between process

parameters and machining responses, can be used to predict

the output values with sufficient accuracy for the WEDM

process of SKD 61 material. The Kriging method is more

effective than the common approach (e.g., RSM) while

dealing with the highly nonlinear relationships in the

WEDM process.

Figure 9. Pareto charts for three objectives.

Table 6. Optimization results.

Model

Optimization parameters Responses

I

(A)

Ton
(ls)

V

(V)

S

(m/

min)

CAR

(mm2/

min)

AKW

(lm)

ASR

(lm)

I 7.24 4.87 68.81 7.88 0.31

II 5.86 1.40 52.76 4.50 196.42

III 2.55 1.95 42.00 4.00 1.10
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When the ASR is predefined, the values of kerf width,

CAR and process parameters can be determined with the aid

of the Pareto fronts. The selection of the proper solution

depends on the desired targets in the specific machining

case.

5. Conclusions

This paper presented an optimization based on machining

parameters for the WEDM process of SKD61 material in

order to maximize CAR, minimize kerf width and to keep

the surface roughness below a desired limit. The Kriging

models of three responses were developed in terms of

processing factors, including the pulse-on time, the current,

the voltage and the wire speed. An AMGA was used to

predict the optimal values. The conclusions of this research

can be listed as follows:

1. The Kriging models for ASR, kerf width and CAR having

R2-values of 0.9894, 0.9818 and 0.9822, respectively,

indicate a good correlation between the predicted and

experimental values. The models proposed effectively

exhibited the nonlinear relationships in terms of pro-

cessing parameters. The predictive models developed

can be used for the WEDM process of SKD61 material

to forecast the optimal parameters with sufficient

accuracy.

2. The Pareto fronts generated by the AMGA can signif-

icantly support the WEDM operators to select appropri-

ate parameters to decrease kerf width and increase CAR

with predefined constraints of the roughness criteria. The

selection of optimal parameters can decrease the efforts

required and machining costs as well as time.

3. The hybrid approach of the Kriging models and AMGA

can be widely applied for the optimization of the WEDM

process instead of using practical experience and oper-

ating guide. The method of approach in this research is

multi-purposeful and can be used in all cases of WEDM

processes with different materials.

4. This paper is expected to be a significant contribution to

thoroughly investigate the effects of the process param-

eters on ASR, kerf width and CAR for the WEDM

process of SKD61 material. It can be stated that the

processing factors, including the pulse-on time, the

current, the voltage and the wire speed, have significant

impacts on the outputs. A higher value of surface

Figure 10. Pareto fonts generated by AMGA.

Table 7. Representative scenarios with constraints of the average surface roughness.

Scenario

Optimization parameters
Constraints

Responses

I

(A)

Ton
(ls)

V

(V)

S

(m/min)

ASR

(lm)

CAR

(mm2/min)

AKW

(lm)

1 3.71 1.02 41.28 7.15 1.50 0.16643 219.87

1 3.23 5.00 55.74 7.83 2.00 0.26202 253.84

3 5.36 1.02 51.89 6.92 2.50 0.17224 204.06

4 6.03 5.00 65.08 4.06 3.00 0.23232 227.89
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roughness is observed with an increased pulse-on time or

wire speed until it reaches the peak value and then with

further factors, roughness continuously decreases. AKW

decreases with an increased current or voltage until it

reaches the optimal point and then with further factors,

roughness increases.

5. Solving the multi-objective optimization problem by

considering surface roughness as a constraint is more

practical and realistic in the WEDM processes, as

compared with the models in which surface roughness

is used as an optimization goal. The proposed approach

combining Kriging models and AMGA could be used to

solve the natural conflicts among milling performances

and observe reliable parameter settings.
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