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H I G H L I G H T S

• We proposed a new IAM-ELM neural network algorithm.

• We proposed a rapid coal classification method.

• Our method has the advantage of economy, speed and accuracy.

• Our method has important practical application value.

A B S T R A C T

Coal classification is an indispensable task in coal mining and production. The traditional method of coal classification has the disadvantages of high cost, low speed
and low accuracy. Therefore, a rapid coal classification method based on visible-infrared spectroscopy is proposed in this research. First, we collected samples of
different coal types and used spectrometers to measure the spectral data of these samples. Then, we proposed an improved multilayer extreme learning machine
algorithm using this algorithm to build a coal classification model. The simulation results showed that the model has good classification results. Compared with the
traditional coal classification methods, this method has an unparalleled advantage in economy, speed and accuracy.

1. Introduction

Coal is the primary source of energy. In 2017, world coal production
was 7.73 billion tons, and China accounted for 45.6% of the world’s
total output, ranking first, followed by India at 9.3%, the United States
at 9.1%, Australia at 6.2% and so on. With the development of society,
high-quality coal plays a decisive role in production efficiency and
environmental pollution, which also increases the requirement of coal
classification. There are two common kinds of traditional coal classifi-
cation methods. The first is to use the artificial classification method,
which is fast but has a low accuracy rate. The second is to use the
chemical analysis method, which is highly accurate but has the short-
comings of being high cost and time consuming. Therefore, determining
the type of coal quickly and accurately is an important problem to be
solved in modern beneficiation technology. It has great significance in
reducing the classification cost and improving the classification effi-
ciency.

In recent years, advances in spectral technology have led to the

advantages of fast analysis, low detection cost and high efficiency.
Therefore, spectral technology has been widely used in food mon-
itoring, ore classification, variety identification and other fields [1–4].
For coal mines, spectral technology has been successfully applied in
coal analysis and classification. Andres and Bona [5,6] used diffuse
reflectance infrared Fourier transform spectroscopy and partial least
squares regression to estimate coal moisture, ash, volatile matter, fixed
carbon, heating value and percentage of carbon, hydrogen, nitrogen
and sulfur, and the results were well-predicted. Tanno et al. [7] used
terahertz spectroscopy to accurately calculate moisture in coal. Kim
et al. [8] used near-infrared diffuse reflectance to measure the spec-
troscopy analysis of coal, and positive results were obtained. Wang
et al. [9,10] proposed a coal component analysis model based on a
support vector machine, a partial least squares regression algorithm and
near-infrared reflectance spectroscopy. The model analyzed six com-
ponents of coal, including total moisture, inherent moisture, ash, vo-
latile matter, fixed carbon, and sulfur. Zeng et al. [11,12] used the soft
measurement method to provide coal moisture monitoring for utility
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boilers, and the results of this method were consistent with proximate
analysis data. Wang et al. [13] constructed a classification model of coal
based on a confidence machine, a support vector machine algorithm
and near-infrared spectroscopy, and a good classification result was
obtained. Gomez et al. [14] used Fourier transform infrared photo-
acoustic spectroscopy combined with partial least squares to predict ash
content, volatile matter, fixed carbon and calorific value in coal and
obtained good prediction results. Ren et al. [15] proposed a coal-like
classification model based on hyperspectral data in the 500–2350 nm
band combined with multilayer perceptron, which can quickly and ef-
ficiently obtain coal classification information. Le et al. [16] used
visible-infrared spectroscopy and a deep neural network to analyze the
moisture, ash, volatile matter, fixed carbon, sulfur and the low heating
value in coal. Compared with traditional coal analysis methods, this
method has unparalleled advantages in economy, speed and accuracy.

The extreme learning machine (ELM) is a single hidden layer
feedforward neural network proposed by professor Huang in 2006 [17].
The algorithm has the advantages of strong learning ability, good
generalization, fast training speed and high precision [18–21]. It
compensates for many of the shortcomings of traditional neural net-
works. In this paper, the algorithm is used to construct the classifier of
the coal recognition model, and the validity of this method is examined
by MATLAB software simulation.

2. The Collection and processing of spectral data

This study collected a total of four sample species, including an-
thracite, bituminous coal, lignite and coal gangue. The number of
samples is shown in Table 1. The dataset was divided into three subsets.
The training set had 130 samples, the validation set had 66 samples,
and the test set had 119 samples. We used the SVC HR-1024 Spectro-
meter of Spectra Vista Company of the United States as an experimental
instrument. The spectral range of the instrument was 350–2500 nm.
The spectral band was 1024. The spectral resolution was in the
1000–1850 nm range, less than 8.5 nm.

First, we cleaned the surface of the sample and then chose to make
the spectral measurement experiment outside in the sun between 10:00
a.m. and 2:00p.m., during which time the sky was cloudless, or the
clouds were few. The probe of the spectrometer was 480mm from the
sample surface and perpendicular to the sample surface. During the
experiment, a whiteboard measurement was calibrated every 10min.
The experimenter was not allowed to move around and wore dark
clothes to reduce interference with the spectral data in the surrounding
environment. The spectral data acquisition experiment is shown in
Fig. 1.

Fig. 1(c) is the original spectral curve, and each spectral datum has
1024 characteristics. If the data are applied directly to the classification
model algorithm, the computational complexity of the model will be
high. In addition, the correlation between the sample data is strong, and
the redundancy information of the data will decrease the accuracy of
the model. Therefore, this study used principal component analysis
(PCA) [22] to reduce the dimensions of the spectral data. Finally, we
replaced the original data with the first 8 principal components with a
contribution rate of 99.8%. Fig. 1(d) is a sample distribution diagram of
the first three principal components of the data. After the PCA di-
mensionality reduction, the data reflected the different characteristics

of the coal types.

3. Classification algorithms

3.1. Extreme learning machine

For any different N samples x t( , )i i in which
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H is the matrix output by the hidden layer of the neural network. T is
the expected output.

The method developed by Professor Huang randomly chooses the
input weights and hidden layer bias. Training this network resembles
the process for obtaining the least squares solution β̂ of the linear
system =Hβ T.

Finally, we calculate that the minimum of the least squares solution
of the linear system is

= +β H T (5)

Here, +H is the Moore-Penrose generalized inverse matrix of H. The
minimum of the least squares solution of =Hβ T is unique.

3.2. A multilayer extreme learning machine

In 2016, Qu et al. [23] proposed a two-hidden-layer ELM neural
network (TELM). The TELM algorithm finds a way to make the output
of neural network predictions infinitely close to the actual given output.
At the same time, the TELM neural network also retains some ad-
vantages of the ELM neural network, such as strong generalization
ability, high recognition precision and fast operation speed.

Based on the ELM and TELM algorithms, we presented a multilayer
extreme learning algorithm (M-ELM) [24]. Suppose the M-ELM network
has K hidden layers ( ⩾K 2); then, the algorithm implementation process
is as follows:

First, we calculate the output matrix H1 of the first hidden layer.
Then, we calculate the initial output weight = +β H T1 1 of the first
hidden layer and the output layer according to Eq. (5). Then, we can
calculate the expected output matrix H E2 of the second layer by Eq. (6):

= +H TβE2 1 (6)

Now, we define a matrix =W B W[ ]H2 2 2 , where B2 is the input bias
of the second layer, and W2 is the input weight of the second layer.
Then, WH2 is obtained through Eq. (7).

= − +gW H M( )H E2
1

2 2 (7)

Table 1
Characteristics of the dataset.

Types Label Number of samples

Anthracite 1 71
Bituminous coal 2 80
Lignite 3 58
Coal gangue 4 106
Total – 315
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In Eq. (7), =M 1 H[ ]T
2 1 , where vector 1 is a column vector con-

sisting of N scalars 1, +M2 is the generalized inverse matrix of M2, and
−g x( )1 is the inverse function of the activation function g x( ).

Next, we obtain the actual output matrix H A2 of the second layer
through Eq. (8).

= gH W M( )A H2 2 2 (8)

Then, we calculate the output weight β2 of the second layer.

= +β H TA2 2 (9)

+H A2 in Eq. (9) is the generalized inverse matrix of H A2 .
By analogy, we obtain the expected output matrix HiE, the actual

output matrix HiA, and the output weight βi of the hidden layer number
i ( ⩽ ⩽i2 K). Finally, the output of the entire network is represented by
Eq. (10).

=f x H β( ) K K (10)

3.3. An improved artificial bee colony algorithm for optimizing the M-ELM
network

An artificial bee colony (ABC) algorithm [25] was proposed in 2007
to mimic bee foraging behavior. There are 3 kinds of bees in the al-
gorithm: employed bees, onlooker bees, and scout bees. The location of
the flower source represents a set of feasible solutions D for the staying
optimization problem. The amount of nectar represents the degree of
adaptability of the optimization problem. If you select the maximum

number of iterations for Mk, the ABC algorithm implementation process
is as follows:

Suppose the number of food sources is SN, and the fitness value of
the =i i SN( 1, 2, ..., ) source is fiti. The employed bees search for a new
food source according to Eq. (11).

= + −v u φ u u( )ij ij ij nj (11)

In Eq. (11), vij is a new food source; uij is an existing food source; φ is
a random value between [−1, 1]; n is a random number between

SN[1, ], and ⩽ ⩽ ⩽ ⩽n i i SN j d# , 1 , 1 ; d is the dimension of the fea-
sible solution D. If the fitness value of vij is greater than that of uij, the
employed bees will replace uij with vij; otherwise, it will be retained.

When all the employed bees complete the search, they return to the
hive and share information about the food source with the onlooker
bees. The onlooker bees select the =i i SN( 1, 2, ..., ) source according to
the roulette algorithm. The onlooker bees search for a new food source
according to Eq. (11) within the neighborhood of the selected food
source, and calculate and retain a more adaptable food source.

When the food source is in the limit cycle, the position information
is not updated, and the scout bees update the food source according to
Eq. (12).

= + −u u φ u u( )ij j j jmin, max, min, (12)

In Eq. (12), u jmin, and u jmax, are the upper and lower limits, re-
spectively, of the j element in feasible solution D.

In Eq. (11), we can see that the search range of the employed bees is
relatively small, so ABC may not have the optimal fitness value found.

Fig. 1. Collection and processing of the spectral data.
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Therefore, based on the idea of the particle swarm optimization algo-
rithm [26], this study adds inertia weight ω to Eq. (11) and proposes Eq.
(13):

= + − = −v ωu φ u u ω ω rand ω( ); (0, 1)ij ij ij nj c c (13)

In Eq. (13), ωc is a constant. We use Eq. (13) to search for new food
sources and update the ABC algorithm, which we call the inertia weight
ABC (IW-ABC).

Now return to the M-ELM algorithm. Under the condition that the
number of hidden layer nodes and the number of hidden layers K have
been determined, the main influence on the performance of the M-ELM
model is the initial input weight W1 and initial bias B1. Therefore, the
main concern now is determining the values of these parameters,
making the classification model more stable and increasing the classi-
fication accuracy. Here, we introduce the use of IW-ABC to optimize W1

and B1 of the M-ELM algorithm (IAM-ELM algorithm). Fig. 2 is a flow
chart of the algorithm. Below we introduce the implementation process
of the algorithm:

Algorithm 1. IAM-ELM algorithm

1. Input data; initialize the IW-ABC algorithm, where d=R * NE+NE, NE is the
number of hidden layer nodes of the M-ELM algorithm, the number of honey
sources is 2*SN; and the number of employed bees, onlooker bees and scout bees
is SN. The D of the IW-ABC algorithm is WH of the M-ELM algorithm.

for i= 1:Mk
2. The IW-ABC employed bees search for food sources and calculate the best fitness

value by the M-ELM algorithm.
3. IW-ABC onlooker bees search for food sources and calculate the best fitness values

by the M-ELM algorithm.
4. If i= limit and the food source position is unchanged; the scout bees update the

food source location.
end
5. Retain the optimal W1 and B1 of the M-ELM algorithm.

4. Results and discussion

This experiment was conducted under a Windows 10 operating
system, Intel Core™ i5-7200U CPU @ 2.7 GHz, and 8 GB of memory,
NVIDIA M150 graphics, 2 GB GDDR5 memory, and MATLAB 2014b. In
the experiment, the SN value of IAM-ELM is 20, the activation function
is the Sigmoid function, and the number of hidden layer nodes is se-
lected as 10. The experiment was repeated 100 times, and the average
of the results was taken as the final result of the experiment.

4.1. Coal classification model based on the IAM-ELM algorithm

Based on the IAM-ELM algorithm, we established a coal classifica-
tion model (IAM-ELM model). Fig. 3 shows the classification accuracy
and training time of the IAM-ELM model. According to Fig. 3(a), we can
see that the hidden layer of the IAM-ELM algorithm number K≥ 3, and
the accuracy of the model significantly increased from 87.1% to 92.5%.
As the number of iterations Mk ranged from 20 to 40, the model was
stable, and the accuracy was highest. Fig. 3(b) shows the training time
of the IAM-ELM model, and the training time increased, from 26.7 s to
213.9 s, as the number of hidden layers K and iterations Mk increased.

Fig. 4 is the result of classifying coal in the IAM-ELM model. As
shown in Fig. 4, we can see that the types of coal that were incorrectly
identified were mainly in the first and second categories, namely an-
thracite and bituminous coal, because the visible and near-infrared
spectra of the two coals are similar, so that a small number of coal was
incorrectly identified. Based on the above analysis results, we can
conclude that the IAM-ELM model has a good classification result and
that the classification accuracy is over 90%, which provides a fast, ef-
ficient and high-precision classification method for coal.

4.2. Comparison of different methods

Zhang et al. [27] proposed an instance cloned extreme learning
machine (IC-ELM). According to the experimental results of Zhang, IC-
ELM can achieve better classification results compared with the basic
ELM and other typical machine learning algorithms.

Support vector machine (SVM) is a machine learning algorithm
[28–30], that can effectively solve the problems of small samples, high-
dimensional data and nonlinearity, so the algorithm is widely used in
many classifications. In papers [9] and [13], a coal classification model
(CM-SVM) based on near-infrared spectroscopy and confidence ma-
chine-SVM was proposed. Their experimental results showed that the
classification effect of the model is better than that of traditional SVM.

Random forest (RF) is an integrated machine learning algorithm
[31]. It uses a sampling method to randomly extract several groups of
samples, then models the samples, and finally obtains the final result by

Fig. 2. Flowchart of the IAM-ELM algorithm.
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the voting method. In recent years, the RF algorithm has been widely
used in classification and regression problems [32–34]. As described in
a previous paper [35], a SMOTE-RF algorithm was proposed in 2018,

and the algorithm was used to identify coal in different countries; the
results were good.

Ren et al. [15] constructed a coal classification model by using
multi-layer perceptron (MLP) algorithm. This study compares the ELM,
IC-ELM, IAM-ELM, CM-SVM, MLP and SMOTE-RF algorithms. For the
CM-SVM algorithm, the cross-validation number is 10, and the kernel
function is the Sigmoid function. The number of trees of the BagRF
algorithm is 200, the MLP algorithm uses a two-layer network.

Table 2 is the result of classifying different methods. The highest
classification accuracy of the algorithm was the IAM-ELM algorithm,
reaching 92.25%. The second was the IC-ELM algorithm, reaching
91.26%, and the third was the CM-SVM algorithm, reaching 90.46%.
Compared with the traditional ELM algorithm, the IAM-ELM algorithm
improves the classification accuracy by 3%. For training time, the
fastest was the ELM algorithm, followed by the IC-ELM and MLP al-
gorithms. The results show that the proposed IAM-ELM algorithm can
improve the classification result of coal species and proves the effec-
tiveness of the method.

5. Conclusion

The spectral technique plays an important role in the identification
of coal varieties. In this research, we fused spectral and computer
technology to solve the problem of mineral classification. We propose
the IAM-ELM algorithm and use the algorithm to establish a rapid coal
classification model. Experimental results show that the classification
accuracy of the IAM-ELM algorithm is higher than that of traditional
ELM, IC-ELM, CM-SVM, MLP and SMOTE-RF algorithms. Compared
with the traditional method of coal classification, our method has the
advantage of economy, speed and accuracy and has important practical
application value.
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