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Abstract
We report on photoelectrochemical (PEC) characteristic of a few–layerMoS2–flakes deposited ZnO
nanorod (MS–ZNR) configuration prepared via the hydrothermal and themetal–organic chemical
vapor deposition (MOCVD) approach. TheMS–ZNRnanostructure exhibited enhanced photo-
excited electron-hole pair separation and transfer for energy–storage/or conversion applications. Due
to a suppressing the recombinationmechanismof charge carriers, the PECperformance ofMS–ZNR
photoelectrode revealed higher photocurrent density (1.42mA.cm–2 at 0.2 V, η=0.91%,with 0.1M
Na2S electrolyte) than a ZnONRphotoelectrode.We propose a potential application ofMoS2–flakes
hybrid nanostructure as enhanced efficient, inexpensive, and non–noblemetal for PECdevices.

1. Introduction

Photoelectrochemical (PEC)material research forwater splitting has been interesting as a promising solution to
produce high hydrogen gas efficiency, inexpensive and environment friendless to replace the conventional fossil
fuels [1–3].Multi-structured semiconductors (TiO2, ZnO), as well as two–dimensional (2D) transition–metal
dichalcogenide (MX2,M=Mo,W, Ti, V, andX=S, Se, Te) have been extensively studied to promise the PEC
photoanodes. They have exhibited highly photoexcited electron-hole pair separation and transfer, excellent
chemical stability, and earth abundance.Moreover,many efforts have beenwidely investigated to
semiconductor photocatalysts for achievingwater to hydrogen conversion efficiency. Especially,molybdenum
disulfides (MoS2) have received significant attention in a recent year because of its potential applications in
optoelectronic devices [4–7]. Highmobility of the few-layerMoS2 is fast separation and transfer of charge
carriers, an excellent combination between large/flexible areas, and controllable bandgap (from1.2–1.9 eV)
[8, 9] due to quantum confinement effects. At present,MoS2 has been successfully reported bymany
approaches, includingmicromechanical exfoliation [8, 10], metalorganic chemical vapour deposition
(MOCVD) [4, 11], mechanical exfoliation [8, 12], hydrothermal [4, 13], solvothermal [14], liquid phase
exfoliation [7], laser ablation [15]. Among them, theMOCVDmethod is the simplest vapor phase technique to
synthesize few-layerMoS2flake, typically in a large andflexible area. Besides, pure zinc oxide (ZnO)material
basedwater splitting researches have been indicated a good promising heterogeneous photoelectrochemical. It
exhibited attracted properties such as photoexcited electron-hole in visible light, contributionwithmany
homogeneous photocatalysts, high carriermobility, low cost [16]. However, ZnOhas still exhibitedmany
limitations due to fast recombination of charge carriers, and awide band gap (3.37 eV) to photoexcitation in
visible light for improving photoelectrochemical efficient of ZnO. To obtain high photoelectrochemical
efficient,many efforts have been reported tomodify pristine ZnO structure, in which has used doping noble
metals (Au, Ag, Pt) [17, 18], hybrid, and composite nanostructure [5, 19, 20].

In this work, we studied an effect of the few-layerMoS2–flakes deposited ZnONR structure on
morphological, optical, structural properties. Furthermore, the PEC cell was also investigated using 0.1 MNa2S
buffer with sulfuric acid (H2SO4) electrolyte in the potential range between –0.6 to 0.4 V.
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2. Experimental procedures

Avertically–standing ZnOnanorod arraywas grown on a 500–nm–thickfluorine doped tin oxide (FTO) glass
substrate by the hydrothermal route [21, 22] in a Teflon–lined stainless steel autoclave. First, a 200–nm–thick Zn
filmwas deposited on FTO substrate by the direct current (DC)magnetron sputteringmethod (power of 50
watts, a target–substrate distance of 10–cm, and time of 1 min). The zinc filmwas treated by a temperature at
500 °C for 2 h in the air to form aZnO seed-mediated hydrothermalmethod. Second, an aqueous solution of
zinc nitrate (0.04 M, (Zn(NO3)2, 0.91 g:H2O, 60 ml) and hexamethylenetetramine (0.04 M,C2H12N4, 0.67 g:
H2O60ml) (from SigmaAldrich Inc.)was dissolved for ZnOnanorod growth. After the synthesis, the ZNR
arraywas annealed at 500 °C for 2 h in the air with 8 °Cmin−1 of ramping time. A few–layerMoS2flakewas
deposited onZnOnanorod array usingMOCVD system at 200 °Cunder pressure of 1 mTorr. A precursor of
Mo and S asMo (CO)6 (vaporized at 20 °C) andH2S (75 sccmofflow rate, 5% in balanceN2), respectively was
conducted in a quartz tube using anAr gas of 25 sccm [6, 23]. Themorphology of anMS–ZNR sample was
investigated by field emission scanning electronmicroscope (FE–SEM, energy–dispersive X-ray (EDX)
techniques (Hitachi, Japan S–4800). By using theX-ray diffraction (XRD) technique (Cu–Kα radiation,λ=
1.54 Å, Rigaku), micro Raman, spectroscopy (ANDOR) using an excitingwavelength of 532–nm, the structural
properties of theMS–ZNRwere studied. Also, a Fourier–transform infrared spectroscopy (FTIR–5700)was
used to investigate the infrared reflectance property of theMS–ZNR structure. Theworking size of a PEC cell
was processed in a 0.5×0.5 cm2 of FTOglass substrate using epoxy to cover an undesired area. A three
electrode system (Pt sheet as counter andKCl saturated calomelHg/Hg2Cl2 as reference electrodes),
electrochemical analyzer (potentiostat/galvanostat 263 A), electrolyte comprised of 0.1 MNa2S buffer with
H2SO4, a 150WXe arc lam solar simulator withAM1.5 G filter (100 mW.cm–2 of power), and sourceMeter
(Keithley 2400)were used for PEC characterization.

3. Results and discussion

FE–SEM images of few-layerMS–ZNRflake samples with different deposition times (60, 90 and 120 s) are
shown infigures 1(b)–(d). As depositedMoS2 onZnONRs, the thickMoS2 layer is continued growthwhile
deposition time is increased and its covered thewhole surface of ZnONRs, as shown infigure 1(d).

Themorphology of vertical–standing ZnONRwas significantly affected by theMoS2 amount, whichwas
modified the ZnONR shape from a smooth side–well toflake. The diameter of ZnONRs alsowasmanipulated
from50 to 70–nmafter 120 s. The edge of theMoS2 flake is grown on the side–well of ZnONR that exhibited
more conductive than a basal plane. For the 60 s, themorphology of the ZnONRdid not change significantly
comparedwith the pristine ZnO/FTO substrate, as shown infigure 1(b). This structure has been provided better
electric contact and high efficiency of photogenerated electrons and holes process for the PECwater splitting
application [6, 7, 23, 24].

TheMS–ZNR structures were confirmed through theXRD and EDS spectra, as shown infigures 2 and 3. The
XRDpeaks at 2θ=31.749°, 34.420°, 36.230°, 47.526°, 56.544°, 62.855°, 67.918°, 69.01°, 72.56°, and 76.920°
that are assigned to the (100), (002), (101), (102), (110), (103), (112), (201), (004), and (202) planes of hexagonal
wurtzite of ZnO (Ref. JCPDSNo. 036–1451), respectively. Comparingwith a pristine ZnONR,XRDpeak at
2θ=14.19° is also assigned to the (002) plane of a hexagonal phase ofMoS2 (Ref. JCPDSNo. 037–1492) [25].
Although there is not differentmorphology between pristine ZnONRandMS–ZNR (as–deposited of the 60 s)
samples. However, theMS–ZNR is still observed diffraction peak at the (002)planewith a strong intensity that is
characterized by a good crystal structure ofMoS2flakes. The intensity of (002)MoS2 plane is also increased by
the increasing growth time. Infigure 3, the EDX spectrumof the point shape scanning of theMS–ZNR array
(120 s) that shown clearly observed Zn,O,Mo, S element peaks. The elemental concentrations are obtained as
31.35, 66.14, 0.95, and 1.56% inweight of oxygen, zinc, sulfide, andmolybdenum, respectively. The result
exhibits a purity ofMS–ZNR structurewithout other elements. Infigure 4, Raman spectra of the ZnOnanorod
and few-layerMoS2 deposited ZNR samples are shown. Phonon frequency peaks at 95.8, 202.6, 276.6, 322.7,
376.9, 434.8, 538, and 579.7 cm–1 correspond to themodes of E ,low

2 E2 ,low
2 B ,low

1 2E2, E ,high
2 A1(TO), B ,high

1 and
1E1 (LO), respectively. Also, E1g, E ,g2

1 and peaks are attributed to phonon variation frequencies of hexagonal

MoS2 at 284.2, 378.09, and 405.04 cm
–1, respectively. The Ag

1and peaks are assigned to the out–of–plane and in–
planemodes that come froma variation of the atomic S–Mo, and Smodes [25, 26], respectively. To explain the
vibration of ZnOmodes, the optical phononsΓopt is given byΓopt=1A1+2B1+1E1+2E2 [26]. Herein, A1,
E1, and 2E2 ( )E E,low high

2 2 modes are a transverse opticalmode (TO), a longitudinal opticalmode (LO and
frequency vibration phonon of an oxygen atom, and heavy Zn sublattices, respectively. Besides, the 2B1
( )B B,low high

1 1 modes are Raman active by conducting defects [26]. Fourier transform infrared spectroscopy
(FTIR) ofMS–ZNR samples were carried out at room temperature in the range of 850–3600 cm–1, as shown in
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Figure 5. The result showed that the spectral reflectance of samples is as a function of wavenumber and aswell as
a surface roughness (nanorods).

The samples have stronger sensitivity and absorption in short IR range (2000–3500 cm–1) thanmid–IR–
range (1000–2000 cm−1).Most samples absorb IR radiation at about 1021, 1405, 1632, 2184, 2810 and

Figure 1. SEM images of pristine ZnOnanorod array, few-layerMoS2–ZnOflakes sampleswith different deposition times.

Figure 2.XRDpatterns of a pristine ZnOnanorod andMS–ZNRwith different deposition times of 60, 90 and 120 s.
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3442 cm–1 in the IR range that corresponds to ZnOnanorod [27, 28]. Comparing to pristine ZnONR that less
absorbs thanMS–ZNR. TheMS–ZNRs also reveal a blue–shift at about 1405 cm–1 due to a roughmorphology
effect of nanorod (a few–layerMoS2flakes).

As a result, we determined the few-layerMoS2flakes completely deposited ZnO/FTOnanorodwhich could
be further applied for a photoelectrochemical (PEC) cell. The PEC cell was investigated in dark and underUV–
light in the potential range between –0.6 to 0.4 V at a scan rate of 10 mV.s–1 using a 0.1 MNa2S buffer with
H2SO4 electrolyte, as shown infigure 6(a). The photocurrent density (PCD) strongly depended on as-deposited
MoS2 content. TheMS–ZNR (90 s) sample revealed amaximumcurrent of a 1.42 mA.cm–2 at an applied
potential of 0.2 V,while ZnONR sample exhibited the PCDof a 0.2 mA.cm–2 at 0.2 V.However, the PCD
(0.43 mA.cm–2 at 0.2 V) of theMS–ZNR (120 s) sample is less than a 0.99 mA.cm–2 comparing to theMS–ZNR
(90 s) sample at the same condition. Figure 6(b) shows photoconversion efficiency (η) of the PEC cell with
variousworking electrodes. The device obtained amaximumvalue of 0.56%, at−0.05 V, 0.91% at−0.07 V, and
0.25% at –0.08 V forMS–ZNR samples with 60, 90 and 120 s, respectively. The PEC cell promotes high
photocatalytic efficiency due to a fast photogenerated electron-hole pair separation, and transfer properties
across the heterojunction. ThemoreMoS2 content deposition could further promote adhesiveMoS2–to–ZnO
(type II-like). The reducing the surface area in contact with the electrolyte that leads to a reduced electrochemical
property occurring at the surface, thus, reducing the photocurrent density.

Figure 3.EDX spectrum and elemental composition of anMS–ZNR sample (120 s).

Figure 4.Raman spectra ofMS–ZNR samples with various deposition times of 60, 90 and 120 s, respectively.
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Besides, thickerMoS2–flakewill absorbmore photons yieldingmore photogenerated electron-hole pairs,
the transport distance of a carrier to the output circuit also increased. It implies decreasing PEC efficiency due to
a recombination loss. Also, the length diffusion of a carrier should be larger than a distance between
heterojunction and the edge ofMoS2–flakes [23, 29], and thus, the high of theMoS2 flakes should be less than
200–nm.Vertically–standingMoS2 not only served as a higher area of the edge per unit substrate area but also
established better electronic contact with ZnOnanorods. This result leads to enhancing PCDup to seven times
(1.42 mA.cm–2)more than that of only ZnONRs (0.2 mA.cm–2). Beyond this finding, we propose a potential
application ofMoS2–flakes hybrid nanostructure as highly efficient, inexpensive for photoelectrochemical
applications.

Figure 5. Spectral FTIR ofMS–ZNR samples at 300 Kunder an incident angle of 45°.

Figure 6. (a)Photocurrent density curve of PEC cells ofMS–ZNR samples with different deposition time ofMoS2, (b)
Photoconversion efficiency (η) of the PEC cell.
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4. Conclusions

In summary, we successfully synthesized a vertically–standing few–layerMoS2/ZnO/FTOnanorod for
improving photoelectrochemical (PEC) cell performance usingMOCVDapproach. Various deposited time of
MoS2–flakes that critically affected PECperformance. The PECperformance ofMoS2/ZnO/FTO (90 s) sample
obtained a photocurrent density of a 1.42 mA.cm–2 at 0.2 Vwith 7 times higher than that of pristine ZnONRs.
This result base on a high density of their edge and fast photogenerated electron-hole pair separation and
transfermechanism across the heterojunction. As a result, we recommend a hybridway that combines
hydrothermal, andMOCVDgrowth to further promote the photoelectrochemical activity of ZnOby employing
non–noblemetalMoS2 catalyst.
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