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Abstract—In this paper, a methodology for rapid impact
control of Ball and Beam system is proposed and its performance
is compared with the LQR method. Ball and Beam system is
a large nonlinear system parameters are difficult to estimate
accurately and easily in which affect by noise. In this work, the
model of the system is transformed into a Jordanian model by
using the differential transformation so that the system is in the
form of a quasi-time-optimal equation. As a result, synthesis of
control laws does not need to linearize the system, this is the
superiority of this method. In addition, applying new control
laws ensure that the system not only obtains optimal time
corresponding to the desired output value but also stabilizes with
varying parameters and noise interference. The simulation results
illustrate the effectiveness of the proposed method.

Index Terms—Ball and Beam system, quasi-time-optimal con-
trol, controllable Jordan form, parameter uncertainty

I. INTRODUCTION

Ball and Beam system is a typical system used in study

of modern and intelligent control theory. Unstable dynamics

of the system is similar to the problems of study in aerospace

industry. Ball and Beam system consists of a bar rotated in the

vertical plane by the torque of the actuator, and a ball moves

freely along the rod axis.

Among recent studies, [1] presented an approach based on

Lyapunov method combined with calibration process when

starting to show positive results. Moreover, quality of the

designing controller is not really impressive. Some studies

using intelligent control methods such as [2-4] presented

successful results when designing controller is using Neural

Networks and Type-2 Fuzzy Control.

This study focuses on an issue related to quasi-time-optimal

control. Controllers are synthesized as nonlinear state feedback

based on the Jordan formula. When combining efficient con-

trollers in rapidity of action, it is not necessary to rely on the

linearized equation system as the current contribution.

The rest of the paper is organized as follows. Part II is

for physical modeling of Ball and Beam system. Part III is

an overview of the effective control method in rapid impact.

Applying the method to synthesize the rapid impact controllers

for Ball and Beam system is in Part IV. There, the output of

the feedback controller is built and is sufficient for the local

stable property of the system. In Part V, the simulation results

were presented and compared with the LQR method. Finally,

in Part VI, the main contributions of the paper are summarized

and future research is indicated.

II. DYNAMICAL MODEL OF THE BALL AND BEAM

SYSTEM

A. Experimental Setup

We consider a well-known Ball and Beam system, which is

schematically depicted in Fig. 1.

Fig. 1. Ball and Beam system.

The system consists of a ball which can roll on a beam

without slipping. The beam rotates around its pivot point

where a torque T can be applied. Position (x) of the ball is

measured with respect to the pivot point and the beam angle

(φ) is defined relative to the horizontal plane. The values of

the mass (m) and radius (r) of the ball, its moment of inertia

(J1) as well as the moment of inertia (J2) of the beam are

given in Table I together with the gravity constant (g) and are

the same as those used in [1,6]. They will be used for the

simulations in Section V.

2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications & 
Computing (SigTelCom)

978-1-5386-7963-0/19/$31.00 ©2019 IEEE 30



TABLE I
THE PARAMETER OF BALL AND BEAM

Symbol Description Value Unit

M ball mass 0.05 kg

r ball radius 0.01 m

J1 ball moment of inertia 2.10−6 kg.m2

J2 beam moment of inertia 0.02 kg.m2

g gravity 9.81 m2/

s2

A DC motor is used to generate the torque (T) on the beam.

The ball position at time (t) x(t) is measured with an ultrasonic

sound distance sensor. The rotation angle is measured using

an incremental encoder. Due to this, we do not measure the

absolute rotation angle φ(t), but rather the relative angular

difference with respect to the beginning of the measurement

at t = 0, i.e.φ(t)− φ0, where φ0 is the angular offset.

B. Equations of Motion

The Lagrange’s function of the system as follows [1,9]:

L =
1

2
J2φ̇

2+
1

2
J1(

ẋ

r
+ φ̇)2+

1

2
m(ẋ2+ ẋ2φ̇2)−mgx sin(φ)

(1)

L is defined as the difference between the kinetic energy

and the potential energy employed, yielding the following

equations of motion:

(J1 + J2 +mx2)φ̈+ 2mxẋφ̇+mgx cos(φ) = T (2)

(
J1

r2
+m)ẍ−mxφ̇2 +mg sin(φ) = 0 (3)

C. State-Space Representation

Introducing the state vector x = (x1, x2, x3, x4)
T =

(x, ẋ, ϕ, ϕ̇)T and the input u = T ∈ R, we obtain the space-

state representation ẋ = f(x, u), x(0) = x0 with:

f(x, u) =











x2
mx1x

2
4−mg sin(x3)

A

x4
u−2mx1x2x4−mgx1 cos(x3)

B+mx2
1











(4)

where A = J1
/

r2 +m and B = J1 + J2 are employed for

notational convenience.

III. APPROACH TO QUASI-TIME-OPTIMAL

CONTROL

With this approach, it is possible to solve the synthesis

of control law for a large nonlinear object class, in which

the control law provides many advantages for the system,

such as quasi-time-optimal control, asymptotic stability and

sustainable.

The concept of quasi-time-optimal control is shown below,

suppose the system model in state-space is taken by Jordan in

the form:
{

ẋi = fi (x1, x2, . . . xi+1) , i = 1, n− 1;
ẋn = fn (x1, x2, . . . xn) + u.

(5)

where fi (◦) is an analytic function, which means that the

derivative exists according to all variables x1, x2, . . . xi+1,

∀i < n → ∂fi/∂xi+1
6= 0, and u(t) is the control signal.

The synthetic method of rapid-impact nearly-optimal con-

trol laws for the system (5) by using the differential transfor-

mations puts system (5) on the virtual system of equations of

the form (6):






ẏi = νi
yi√

yi
2+εi2

+ gi (y1, y2, ..., yi−1, yi+1, ....yi+1, εi)

ẏn = yn√
yn

2+εn2

(6)

where i = 1, n− 1, h(y, ε) = y√
y2+ε2

, un is quasi-time-

optimal function, gi (◦) is a continuous function, εi; i = 1, n
is the parameter of quasi-time-optimal control.

When controlling needs to choose some outputs such that

the purpose of quasi-time-optimal control for the output is

achieved, we use the quasi-time-optimal control equations rank

k which has the following form:






ẏ1 = −vm1 h(y1, ε1) + y2; . . . ; ẏk = vmk h(yk, εk) + yk+1

ẏk+1 = −yk+1

εk+1
+ yk+2; . . . ; ẏn−1 = −yn−1

εn−1
+ yn

ẏn = −yn

εn
(7)

It is easy to see that the system of equations (7) is asymp-

totically stable according to Liapunov with the Liapunov’s

function V = 1
2 (y1 + y2 + ...+ yn)

2, here εi ≤ 0.5 ; i = 1, n;
and νi > 2

h(max(yi),εi)
; i = 1, k. From this solving the

equation with y1 = φ(x1), we get the quasi-time-optimal

control control laws of the desired variable.

IV. SYNTHESIS OF CONTROL LAWS FOR BALL

AND BEAM SYSTEM

A. LQR Optimal Control Law for Ball and Beam system

First, the nonlinear system (4) will be put on a linear form:

Ẋ = AX +Bu at point (0,0,0,0).

where A =











∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4











and B =

[

∂f1
∂u

∂f2
∂u

∂f3
∂u

∂f4
∂u

]

The matrix K of the optimal control value: u(t) = −KX(t)
is obtained when quality norm J reaching the minimum value:

J =
∞
∫

0

(XTQX + uTRu)dt where Q is a positive determinant

(or semi-positive), R is the positive determinant matrix. If the

optimal K matrix is defined by the Riccati equation of the

form: K = R−1BTP , the matrix P must satisfy the equation:

PA+ATP +Q− PBR−1BTP = 0.

The control law, u(t), with the parameters mentioned above

is achieved according to the LQR method with matrix values

Q and R:

Q =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









;R = 100;
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u(t) = −0.9911x1(t) − 0.3822x2(t)
+ 0.9522x3(t) + 0.2193x4(t)

B. The quasi-time-optimal control law

Considering the model (4), if the component mx1x
2
4 is the

angular velocity of the bar, which has a small value, we change

the form of Jordan by removing components nonlinear mx1x
2
4.

Then, we obtain the state equation of the Ball and Beam

system as follows:

f(x, u) =











x2
−mg sin(x3)

A

x4
u−2mx1x2x4−mgx1 cos(x3)

B+mx2
1











(8)

The system (8) is Jordan-controlled and still nonlinear [3].

The virtual system is selected in the form (9) when the Ball

position is guaranteed to be placed in the preset-position with

the quasi-time optimal control. The quasi-time-optimal control

law following u distance is found when resolving (9) with

y1 = x1. The formulas of u are:



















ẏ1 = −v
y1−ysp√

(y1−ysp)
2+ε12

+ y2

ẏ2 = −y2

ε2
+ y3

ẏ3 = −y3

ε3
+ y4

ẏ4 = −y4

ε4

(9)

V. SIMULATION AND EVALUATION OF THE

RESULT OF RAPID-IMPACT NEARLY-OPTIMAL

CONTROL

Following the proposed method, the control law is synthe-

sized to provide stable control for Ball and Beam system. The

results of system simulation with initial system values are

as follows: xsp = 0, x(0) = 0.5, ẋ (0) = 0, φ (0) = 0.4,

φ̇ (0) = 0. The parameters of quasi-time-optimal control:

v = 1, ε1 = 0.2, ε2 = ε3 = ε4 = 0.3. Figure 2 shows

the response to the position of the ball with the two methods

mentioned above. It is evident that the position response

of system with quasi-time-optimal control law has a better

stability results. Particularly, the oscillation and overshoot do

not occur as in the response produced by LQR method. Figure

3 shows the angle response of Beam under the quasi-time-

optimal control method , which is faster and more stable than

the counterpart.

CONCLUSION

The results obtained when synthesizing the control law

for the Ball and Beam system have demonstrated the rapid

optimization for high-complex nonlinear systems. Compared

with the traditional LQR method, the position and angle re-

sponses produced by using the proposed composite controller

are better. Future studies will add adaptive control laws when

parameters of control systems are varying or the systems are

not the form of Jordan.

Fig. 2. The position response of Ball.

Fig. 3. The angle response of Beam.
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