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Abstract—This paper proposes a rank-deficient and sparse
penalized optimization method for addressing the problem

of through-wall radar imaging (TWRI) in the presence of
structured wall clutter. Compressive TWRI enables fast data
collection and accurate target localization, but faces with the
challenges of incomplete data measurements and strong wall

clutter. This paper handles these challenges by formulating the
task of wall-clutter removal and target image reconstruction
as a joint rank-deficient and sparse regularized minimization
problem. In this problem, the rank-deficient regularization is

used to capture the low-dimensional structure of the wall signals
and the sparse penalty is employed to represent the image
of the desired targets. We develop a proximal gradient-based
algorithm to solve the large-scale optimization problem, which

simultaneously removes unwanted wall clutter and reconstruct
an image of indoor targets. Real radar datasets are used to
validate the effectiveness of the proposed rank-deficient and

sparse regularized optimization approach.

I. INTRODUCTION

Through-wall radar (TWR) imaging has emerged as a pow-

erful technology for sensing through walls and opaque struc-

tures. It has several potential applications, such as locat-

ing victims buried under collapsed buildings, recognizing

hostages in police missions, and detecting enemy forces in

military operations [1]–[3]. However, TWRI faces strong

wall clutter and unwanted interferences, which cause target

detection very difficult. Although several studies have been

developed to tackle these challenges, there is a high demand

for efficient approaches to mitigate wall clutter and provide

a high-resolution image of behind-wall targets.

Early TWRI methods form an image of indoor targets by

employing backprojection techniques, such as delay-and-sum

beamforming [2], which are effective for image formation

provided that all antennas and frequencies are used. This

condition, however, leads to prolonged data acquisition and

ineffective system storage. To enable high-quality imaging

and fast data collection, several studies [4]–[6] have been

proposed based on compressive sensing (CS) framework [7].

In these methods, the task of image reconstruction is cast as

an ℓ1-regularized optimization problem. If wall clutter has

been completely removed prior to image reconstruction, the

ℓ1-regularized methods are suitable. However, in the presence

of wall clutter, using directly the ℓ1-penalized methods

recovers only the strong wall-clutter pixels and thereby not

revealing the targets. The reason is that the presence of
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unwanted wall reflections overwhelms target signals, making

target detection impossible.

Recent CS-based approaches have investigated target im-

age formation in conjunction with wall clutter mitigation.

These techniques typically comprise two major stages [8]–

[11]. The first stage aims to remove wall clutter by using

techniques, such as spatial filtering [12], subspace projection

[13], followed by an ℓ1 minimization for image reconstruc-

tion. Note that because such clutter mitigation techniques

are not effective for missing-measurement cases, antenna

signal reconstruction needs to be conducted before applying

clutter mitigation techniques. In other words, these existing

approaches detect targets via multistage of signal represen-

tation, wall-clutter suppression, and target-image formation,

but these stages are conducted independently.

This paper introduces a rank-deficient and sparse repre-

sentation approach for simultaneously solving the problem

of wall clutter removal and target image reconstruction in

compressive TWRI. The proposed model exploits the prior

knowledge of the low-dimensional structure of wall clutter

and the sparsity of the target scene. The former characteristic

is because the wall signals along the antenna array are

highly correlated. As a result, if the wall antenna signals

are arranged as columns of a matrix, this matrix is rank-

deficient. The sparseness of the target image holds true if

the wall component has been well-captured. The task of

clutter mitigation and image reconstruction is formulated

as a nuclear and ℓ1-norm regularized least squares (LS)

minimization problem. The LS term bounds the measurement

error; the nuclear-norm penalty is a convex relaxation for

the rank-deficient property of the wall-clutter matrix, and

the ℓ1-norm promotes the sparsity of the target image. This

paper introduces an iterative shrinkage algorithm, based on

the first-order proximal gradient (PG) method, to solve the

joint nuclear and ℓ1 regularized LS problem, yielding a

matrix containing wall-clutter and an image of indoor targets

simultaneously.

The paper is structured as follows. Section II briefly

presents TWR signal model, and Section III describes the

rank-deficient and sparse penalized LS optimization method

for TWRI. Experimental evaluation is given in Section IV

and finally, Section V concludes the paper with noticeable

remarks.

II. THROUGH-WALL RADAR SIGNAL MODEL

In this section, we present briefly the mathematical signal

model of a radar system that uses stepped-frequency and
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operates in a monostatic mode to image a scene behind a

wall. The scene supposes to contain P targets, which are

sensed by placing a transceiver along the line parallel to the

wall, synthesizing an N -element linear antenna array. Each

antenna uses an M -step frequency signal to image the scene.

The received signal zm,n for the m-th frequency at the n-th

antenna is superimposed by the wall clutter (reverberations)

zwm,n, target signal ztm,n, and noise υm,n:

zm,n = zwm,n + ztm,n + υm,n. (1)

The wall component zwm,n is modeled as

zwm,n =

R
∑

r=1

σware
−j2πfmτr

n,w . (2)

In this model, σw represents the wall reflectivity, R is the

total number of reverberations due to the wall, ar is the factor

accounting for the path loss of the r-th wall reverberation,

and τrn,w is the r-th wall return travel delay. The target

scatterer can be expressed as

ztm,n =
P
∑

p=1

σpe
−j2πfmτn,p , (3)

where σp denotes the p-th target reflectivity, and τn,p

measures the two-way signal travel time between the n-th

antenna and the p-th target.

To form a target image, the target space is divided into

Q pixels as a rectangular grid along the crossrange and

downrange directions. The value sq is considered as a

weighted indicator function used to represent the p-th target

reflectivity:

sq =

{

σp, if the p-th target occupies the q-th pixel;

0, otherwise.
(4)

In TWRI, the targets appear as clusters consisting of

points populated accurately on the image-pixel loca-

tions. Arranging measurements collected at the n-th an-

tenna, ztn = [zt1,n, . . . , z
t
M,n]

T , from (3), we can re-

late the measurement-vector ztn to the image scene

s = [s1, . . . , sQ]
T , via a dictionary matrix Ψn ∈ C

M×Q:

z
t
n = Ψn s. (5)

The (m, q)-th entry of Ψn ∈ C
M×Q is defined as

ψn(m, q) = exp(−j2πfmτn,q). Note that to focus the tar-

get image, TWRI considers the signal delay penetrating

through the wall. Details of the computation for the focusing

delay, τn,q , from the n-th antenna to the q-th pixel are

given in [2, 14, 15]. Arranging all data measurements,

zt = [(zt1)
T , . . . , (ztN )T ]T , and dictionary matrices, Ψ =

[ΨT
1 , . . . ,Ψ

T
N ]T , for N antennas, we have the linear model,

z
t = Ψ s. (6)

From (6), if the target signal ztl is available, the target

image s can be estimated using DS beamforming or direct

CS technique. The DS beamforming generates the image s by

premultiplying the target signal ztl with the adjoint operator

ΨH :

s = Ψ
H

z
t. (7)

The direct CS promotes the sparsity of s and obtains the

image by solving an ℓ1-regularization problem:

s = argmin
s

{

1

2
‖zt −Ψ s‖22+λ ‖s‖1

}

, (8)

where λ is a positive parameter. However, it is noted from (1)

that the target signal zt does not exist for image formation.

Instead, the radar system receives the radar signal z, in which

the wall return zw dominates the target component zt, plus

noise υ. Since the wall component zw overwhelms target

signal zt, the image s obtained from (7) or (8) reveals wall

clutter pixels only. Hence, before reconstruction of the target

image, wall clutter mitigation needs to be performed. This

task, however, is even more challenging under generic CS

contexts in which not full data volume is available. This

paper proposes a rank-deficient and sparsity approach that

solves the problem of wall clutter mitigation and target image

reconstruction jointly in the CS operations.

III. RANK-DEFICIENT AND SPARSE REGULARIZED TWRI

A. Nuclear and ℓ1-norm regularized LS problem

Arranging the radar signals, wall clutter, target signals, and

noise collected for all M frequencies by N antenna positions,

we obtain Z = [zm,n], Zw = [zwm,n], Zt = [ztm,n], and

Υ = [υm,n]. By doing so, we convert Eq. (1) into a matrix-

form model,

Z = Z
w + Z

t +Υ. (9)

The signal model in (9) represents TWRI operations in the

full sensing mode. In CS, however, only a subset of K
samples (K ≪M×N ) is acquired. This CS data acquisition

can be modeled via a sensing matrix Φ ∈ R
K×MN ; Φ has

only one non-zero element (equal to 1) in each row which

indicates the used frequency for a selected antenna. Using

Φ, we obtain a reduced measurement vector y ∈ C
K as

y = Φ vec(Z) = A(Z). (10)

In (10), vec(Z) is the operator that forms a long column

vector by stacking the columns in Z; Z can be obtained from

y as Z = mat(Φ†y) = A∗(y). Here, † is the pseudo-inverse

operator and mat is the operator converting a column vector

having MN entries into an M ×N matrix. Combining (9)

and (10) yields

y = Φvec(Z) = Φvec(Zw)+Φvec(Zt)+Φvec(Υ). (11)

Now, using vector y and exploiting the model that relates

the target signal and the image in (6), vec(Zt) = zt = Ψs,

we can attain the wall component Zw and the image s as

the solution to the following optimization problem:

min
Zw,s

‖Zw‖∗ + λ ‖s‖1

subject to ‖y − [A(Zw) +ΦΨ s]‖22 ≤ ǫ.
(12)

Here, ‖Zw‖∗ is the nuclear-norm defined as the sum of the

singular values of Zw, ‖s‖1 is the ℓ1-norm defined as the sum

of absolute entries of s, λ is a regularization parameter, and
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ǫ is a noise bound. Problem (12) can be handled efficiently

by casting into the standard Lagrangian form:

min
Zw,s

{f(Zw, s) ≡
1

2
‖y − [A(Zw) +ΦΨ s]‖22

+ γ(‖Zw‖∗ + λ ‖s‖1)}.
(13)

Convex theory has proved that the solutions to (12) and (13)

are equivalent if γ and ǫ obey certain relationships [16].

B. Proximal gradient algorithm

We propose an effective algorithm to minimize f(Zw, s)
in (13), producing the wall clutter Zw and target image

s simultaneously, based on the generic proximal gradient

(PG) technique. This PG technique minimizes an objective

function f(x) formed from two convex functions g(x) and

h(x):
min
x

{f(x) ≡ g(x) + λ h(x)}. (14)

Here, g(x) is smooth and differentiable, as the case of the

quadratic term in (13), whereas h(x) can be nonsmooth, as

the sum of the nuclear and ℓ1 norm terms in (13). Generally,

dealing with Problem (14) is complicated. PG overcomes this

issue by the objective function decomposition via an iterative

technique. Let xk denote a solution estimated by the k-th

iteration. Using xk and computing an auxiliary point,

uk = xk − α∇g(xk), (15)

we can obtain the next estimate xk+1 by solving

xk+1 = argmin
x

{

1

2
‖uk − x‖22 + λα h(x)

}

. (16)

In (15), ∇g(xk) is the gradient of g(x) computed using xk.

Let C be the Lipschitz constant of the ∇g. This iterative

algorithm converges if 0 < α ≤ 1/C. Special instances of

this generic PG method include proximal forward-backward

splitting [17] or fast shrinkage algorithm [18].

We apply the PG scheme in (15)–(16) to minimize Prob-

lem (13). Let (Zw
k , sk) denote an estimate of the wall

component and target image at the k-th iteration. The next

estimates are obtained by solving

(Zw
k+1, sk+1) = arg min

Zw,s
{
1

2
‖Zk − Z

w −A∗(ΦΨ s)‖2F

+ αγ‖Zw‖∗+αγλ ‖s‖1}, (17)

where Zk plays the role of uk in (15),

Zk=Z
w
k +A∗(ΦΨ sk)−αA

∗(A(Zw
k )+ΦΨ sk−y), (18)

and α ∈ (0, 1/‖Φ‖22] for convergence. Hereafter, ‖Φ‖2 is

the spectral norm of matrix defined as the maximum singular

value of Φ. Using the variable splitting technique, we can

handle Problem (17) via addressing two subproblems:

Z
w
k+1=argmin

Zw

{

1

2
‖Zk−Z

w−A∗(ΦΨsk)‖
2
F+αγ‖Z

w‖∗

}

, (19)

sk+1=argmin
s

{

1

2
‖Zk−Z

w
k+1−A

∗(ΦΨs)‖2F+αγλ‖s‖1

}

. (20)

Subproblems (19) and (20) can be handled efficiently

via shrinkage/soft-thresholding techniques. Particularly, the

nuclear-norm penalized LS problem (19) is solved using the

singular value soft-thresholding (SVT) technique [19]. The

solution is obtained by applying an SVT operator, Sαγ(·), to

the input matrix:

Z
w
k+1 = Sαγ(Zk −A∗(ΦΨ sk)). (21)

The SVT Sτ (Z) is regarded as a nonlinear function applying

a shrinkage operator of level τ to the singular values of Z.

The shrinkage or soft-thresholding operator is defined as

Tτ (x)=sign(x)max(|x|−τ, 0)= x
|x|

max(|x|−τ, 0). (22)

Once Tτ (·) is defined, Sτ (Z) is given by

Sτ (Z) = U Tτ (Λ)VH , (23)

where Z = UΛVH is the singular value decomposition of

Z. For matrices, Tτ (·) is applied to each element (entrywise).

The ℓ1 regularized minimization (20) is solved by using

the splitting technique (15)–(16):

sk+1 = argmin
s

{

1

2
‖b− s‖22 + βαγλ ‖s‖1

}

, (24)

where b is defined as

b = sk − βΨH(ΦΨ sk −A(Zk − Z
w
k+1)), (25)

for 0 < β ≤ 1/||Ψ||22. Using the proximal mapping [20], we

can solve Problem (24) by applying the shrinkage operator

to b, yielding the next estimate as

sk+1 = Tβαγλ(b). (26)

The main steps of the algorithm to solve Problem (13)

are summarized in Algorithm 1. The input into Algorithm 1

includes the measurement vector y, gradient stepsizes of α,

β, regularization parameters γ, λ, and a tolerance tol. Setting

values for these parameters is described in Section IV-A.

Algorithm 1: Wall-clutter removal and target-image estimation in
compressive TWRI using PG technique.

1) Initialize Zw
0 ← A

∗(y), S0 ← 0, and k ← 0.
2) Compute gradient evaluation using (18):

Zk←Zw
k +A∗(ΦΨ sk)−αA

∗(A(Zw
k )+ΦΨ sk−y).

3) Perform wall clutter estimation using (21):
Zw
k+1 ← Sαγ(Zk −A

∗(ΦΨ sk)).
4) Reconstruct an image of the targets using (26):

b← sk − βΨH(ΦΨ sk −A(Zk − Zw
k+1)),

sk+1 ← Tβαγλ(b).
5) Compute the objective function f(Zw

k+1, sk+1) using (13),

if
|f(Zw

k+1
,sk+1)−f(Zw

k ,sk)|

|f(Zw
k
,sk)|

< tol then terminate,

otherwise increase k ← k + 1 and go to Step 2.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Real radar datasets were collected from a real, shown in

in Fig. 1, containing one dihedral target placed behind a

wooden wall. This behind-wall scene is sensed by a 81-

element linear antenna array synthesized by a monostatic

radar system. The radar system transceives a 801-step fre-

quency signal covering the bandwidth of [1–3 GHz]. This

stepped-frequency synthetic radar aperture was positioned in

front of the 0.16 m-thick wooden wall, at a standoff distance

of 1.0 m.
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Fig. 1. Layout of the scene with a wooden wall and one dihedral
target for TWR data acquisition.

B. Experimental results

This experiment evaluates the proposed rank-deficient and

sparse approach and other existing CS-based imaging meth-

ods under generic CS operations where both antennas and

frequencies are highly compressed. CS radar imaging ac-

quired a reduced dataset, instead of full data volume, by

randomly selecting only half of the available antennas (41

out of 81). Each antenna employs only 30% (240 out of

801) frequencies, which are randomly sampled. Thus, the

used dataset constitutes only 15% of the full data volume.

This reduced dataset is used as input into the proposed PG

algorithm for clutter mitigation and image reconstruction. In-

put parameters for the proposed PG algorithm are selected as

follows: the gradient stepsizes α = 1/‖Φ‖22, β = 1/||Ψ||22,

the regularization parameters γ = 10−1‖A∗(Y)‖2, λ =
7× 10−1‖(ΦΨ)Hy‖∞, and the tolerance value tol=10−4.

Using the same reduced dataset, we also implement the

existing direct CS and multistage CS approaches for compar-

ison. The existing multistage approaches first perform data

recovery, then employ a spatial filtering [12] or a subspace

projection technique [13] for wall-clutter mitigation, and

finally reconstruct a target image by solving the ℓ1-norm

regularized problem in (8).

Fig. 2 depicts the target images reconstructed using dif-

ferent imaging methods. Without clutter removal, the direct

CS method forms an image shown in Fig. 2(a). It can

be observed that strong wall reverberations overwhelm the

desired target and cause target localization impossible. On

the other hand, by incorporating a wall clutter migration

technique, multistage CS approaches produce target images

in which strong wall clutter has been removed, revealing

the desired target, as illustrated in Figs. 2(b) and (c). The

proposed rank-deficient and sparse yields the image depicted

in Fig. 2(d) where the target pixels are further enhanced and

clutter regions are alleviated considerably.

The performances of the imaging methods are quantified

using the target-to-clutter ratio (TCR). Let At and Ac be,

respectively, the regions of target and clutter on the re-

constructed image I , and let Nt and Nc be, respectively,

the number of target and clutter pixels. The TCR (in dB)

measures the ratio of the average powers of the target region

over the clutter region:

TCR = 10 log10(

1
Nt

∑

q∈At
|Iq|

2

1
Nc

∑

q∈Ac
|Iq|2

). (27)

It is worth noting that the target region is chosen in the

vicinity of the true targets, and the clutter region is defined as

the entire image, without the target region. The TCR values

of the target images, shown in Fig. 2, formed by the different

CS-based methods are computed and listed in Table I. As

we expect from the visual interpretation, the proposed joint

nuclear-norm and ℓ1-norm approach yields the target image

with a TCR value of 26.87 dB, the highest TCR value among

those of the evaluated CS-based imaging approaches.

 !"  #"

 $"  %"

Fig. 2. Images produced by different CS-based wall clutter reduction
and target image reconstruction methods with 50% antennas and
30% frequencies (collectively represent only 15% of full measure-
ments): (a) direct ℓ1-norm minimization without clutter mitigation,
(b) multistage CS approach with signal estimation, spatial filtering,
and ℓ1-norm minimization, (c) multistage CS approach with signal
estimation, subspace projection, and ℓ1-norm minimization, and (d)
proposed joint nuclear-norm and ℓ1-norm method.

TABLE I
TARGET-TO-CLUTTER RATIO PERFORMANCES FOR THE IMAGES

PRODUCED BY SEVERAL CS-BASED TECHNIQUES WITH 50%
ANTENNAS AND 30% FREQUENCIES (COLLECTIVELY REPRESENT

ONLY 15% OF FULL MEASUREMENTS).

Clutter mitigation & image formation methods TCR (dB)

Proposed rank-deficient and sparsity approach 26.87

Multistage signal esti. & sub. proj. & ℓ1 min. [13, 8] 10.62

Multistage signal esti. & spati. filt. & & ℓ1 min. [12, 8] -1.55

Direct ℓ1 min. without clutter mitigation [4, 5] -15.22

Further insights into the proposed optimization model can

be observed from the evolution of the objective function

f(Zw, s), shown in Fig. 3 and the change of the rank values

for the wall component matrix Zw, shown in Fig. 4. Clearly,
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the cost function is monotone-decreasing and converges well

after 24 iterations. Likewise, as demonstrated in Fig. 4, the

rank value starts at 41 (min(240, 41)) and achieves a value

of 1 at the steady-state.

Iteration (i)

0 5 10 15 20

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 f
(Z

w i
,s

i)

2.3

3

4

5

6

7

Fig. 3. Evolution of the objective function f(Zw, s) during mini-
mization: the cost function value initializes at 7.22, decreases to a
local minimum of 2.23 at convergence.

Iteration (i)

0 5 10 15 20

R
a
n
k
(Z

w i
)

1

10

20

30

40

Fig. 4. The rank values of the estimated wall component Zw as a
function of the number of iterations: the rank decreasing from 41 at
first iteration to 1 at convergence.

V. CONCLUSION

This paper introduced a rank-deficient and sparsity regular-

ized optimization method to address two important problems

of wall clutter mitigation and target image formation in

compressive indoor radar imaging. We develop the PG-based

algorithm to solve the composite nuclear and ℓ1-penalized

minimization problem, removing the wall clutter and yielding

the indoor target image. We conducted several experimental

evaluations on real radar data and found that exploiting both

rank-deficient and sparsity structures improves the accuracy

of clutter suppression and target detection even with highly

compressed measurements.
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