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Improving the accuracy of the autonomous mobile
robot localization systems based on the multiple

sensor fusion methods
Lan Anh Nguyen, Pham Trung Dung, Trung Dung Ngo, Xuan Tung Truong

Abstract—Localization system plays an important role in
navigation frameworks of autonomous mobile robots. Because,
it provides significant information for the remainder systems of
the navigation frameworks. Recently, to improve the accuracy of
the robot pose estimation system in dynamic environments, the
mobile robots are equipped with a variety of sensors, such as
wheel encoders, a global positioning system (GPS) sensor, and
an inertial measurement unit (IMU) sensor. In this paper, we
propose an improved localization system for autonomous mobile
robots using multiple sensor fusion techniques. To accomplish
that, an extended Kalman filter (EKF) algorithm is utilized to fuse
the data from the wheel encoders, GPS and IMU sensors. The
simulation results show that, our proposed localization system
is able to provide higher accuracy of estimating mobile robot’s
pose than conventional systems.

Index Terms—Autonomous mobile robots, localization system,
navigation system, sensor fusion techniques.

I. INTRODUCTION

Localization is the problem of estimating robot’s pose rel-

ative to its environment from sensor observations. To achieve

autonomous navigation, the mobile robot must maintain an

accurate knowledge of its position and orientation. Successful

achievement of all other navigation tasks depends on the

robot ability to know its position and orientation accurately.

While a mobile robot moving in a real-world environment,

it is equipped with a sensor system to know its position

and orientation. Therefore, to localize successfully the robot

have to determine both motion model and measurement model

exactly [1]. However, there are a number of non-deterministic

errors that remain, leading to uncertainties in robot pose

estimation over time. Each errors are base on a distribution

rule, either Gaussian or non-Gaussian. Therefore, in order

to improve the accuracy of the localization system in the

dynamic environment, it is necessary to first determine the

cause of the disturbance, the type of noise distribution and

how to eliminate such noise [2]. Because the noise randomly

occurs during the robot’s navigation, thus one of the common

solutions used to compensate the noise caused by motion

model and the measurement model is the sensor fusion with

difference precision. In addition, each sensor measures only

once or two parameters of the environment with limited
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accuracy. Moreover, using more sensors with higher accuracy

will increase a quality of measurement. This is why the sensor

fusion algorithms are thriving.

Several mobile robot localization systems have been pro-

posed in recent years to improve the performance of the

robot pose estimation [3], [4], [5], [6], [7] and [8]. An

enhanced low-cost 3-D localization system is presented in

[3]. In this paper, the authors made use of the Kalman

filter algorithm to integrate the data from wheel encoders,

MEMS-based inertial sensors, and GPS. In [4], the researchers

presented a localization system of a mobile robot, which is

equipped with 3–axis inertial measurement unit, an active

beacon system, and wheel encoders. To do that, they utilized

a low-pass filter and a Kalman filter algorithm to reduce

noise of input sensors data and obtain more precise robot

position and robot movement in real-time. In [5], the authors

proposed a localization system of a mobile robot along an

uneven path, where it cannot solely rely on encoders, GPS or

accelerometer individually. In this system, the Kalman filter-

based sensor fusion algorithm was implemented in order to

get the best position estimation. A self-localization technique

for autonomous mobile robot based on particle filtering in

active beacon system is presented in [6]. Using ultrasonic

sensor as a particle filter is applied to eliminate process and

measurement noise. In [7], the authors presented a sensor

fusion framework, that improves the localization system of

mobile robots with limited computational resources. To do

that, they employs an event based Kalman filter to combine the

measurements of a global sensor and an inertial measurement

unit on an event based schedule, using fewer resources but

with similar performance when compared to the conventional

methods. In [8], an adaptive neuron fuzzy inference system

was proposed for fusing the GPS and IMU measurements

to enhance performance estimation in low cost navigation

system when the robot moves in a dynamic environment or

slippery ground surfaces and uneven road conditions. In this

paper, to improve the accuracy of the localization system of

the autonomous mobile robot, which is equipped with wheel

encoders, GPS and compass sensors, we propose an enhanced

autonomous mobile robot localization system using the EKF.

The remainder of the paper is organized as follows. Sec-

tion II describes the background information. Section III

presents the proposed EKF sensor fusion algorithm with

the measurement vector design in three different approaches.

Section IV shows the experimental results. We conclude this

paper in Section V.

�������	�
��
��������������
�
��
�����
�
����	����
����������������
��������
�
��������������� �
���!������"����
����#

�$%&�&'�%(&$�(�&�)��)*��+���,�����
--- 33



2

II. BACKGROUND INFORMATION

A. Kinematic Model of The Mobile Robot
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Fig. 1. The global reference frame and the robot reference frame.

We can describe the pose of the mobile robot as a vector

with three elements [x, y, θ]T , as shown in Fig. 1. Assume

�SR and �SL are distances traveled by the right and left

wheels of the robot in interval time Ts, respectively. As

a result, the linear incremental displacement �S and the

orientation �θ of the robot are defined as follows:

�S =
�SL +�SR

2
; �θ =

�SR −�SL

L
(1)

where, L denotes the distance between two robot’s wheels.

For the differential drive robot, the position can be estimated

starting from a known position by integrating the movement.

Thus, after each interval time Ts, the incremental travel

distances of the robot �x and �y on the global reference

frame are:

�x = �S cos(θ +
�θ

2
); �y = �S sin(θ +

�θ

2
) (2)

Therefore, the state of the mobile robot at the time k is

governed as follows:⎡
⎣xk

yk
θk

⎤
⎦ =

⎡
⎣xk−1

yk−1

θk−1

⎤
⎦+

⎡
⎣�Sk cos(θk−1 +�θk−1/2)
�Sk sin(θk−1 +�θk−1/2)

�θk−1

⎤
⎦ (3)

Equation (3) is also known as the odometry motion model

of the mobile robot [2]. Assume, a control command of the

robot is uk = [vk, ωk]
T with the linear velocity command vk

and the angular velocity command ωk. Hence, �Sk = vk−1Ts,

and �θk−1 = Tsωk−1. Finally, we obtain the kinematic model

of the mobile robot in (4) using (3). This system model will

be used in rest of the paper.⎡
⎣xk

yk
θk

⎤
⎦ =

⎡
⎣xk−1

yk−1

θk−1

⎤
⎦+

⎡
⎣vk−1Ts cos(θk−1 + 0.5Tsωk−1)
vk−1Ts sin(θk−1 + 0.5Tsωk−1)

Tsωk−1

⎤
⎦ (4)

B. Extended Kalman Filter

Extended Kalman filter [9] is widely used in many different

applications, especially in the field of mobile robots. Let us

assume that a process has a state vector xk ∈ �n and the

state of the process is governed by the non-linear stochastic

difference equation:

xk = f(xk−1, uk,wk) (5)

with a measurement z ∈ �m, that is

zk = h(xk, vk) (6)

where, xk, zk are the state and measurement vectors in the time

step k, respectively; f is a non-linear function, that relates the

state at the previous time step k− 1 to the state at the current

time step k. It is also included a driving function uk and a

zero-mean process noise wk; h is the non-linear function that

relates the state xk to the measurement zk; wk, vk are the

random variables and represent the process and measurement

noises, respectively. They are assumed to be independent to

each other with normal probability distributions (7).

wk ∼ N(0,Qk); vk ∼ N(0,Rk); E(wk, vk) = 0 (7)

In practice of course one does not know the individual

values of the noise at each time step. However, one can

approximate the state and measurement vector without them

as follows:

x̂−k = f(x̂k−1, uk, 0) (8)

and

ẑk = h(x̂k, 0) (9)

The basic operation of the EKF filter is the same as the

linear discrete Kalman filter. Hence, the equations for the EKF

filter also fall into two phases: (i) time update equations, and

(ii) measurement update equations. The time update equations

are responsible for projecting forward the current state and

error covariance estimates in time, to obtain the a priori

estimates for the next time step. The measurement update

equations are responsible for the feedback for incorporating

a new measurement into the a priori estimate to obtain an

improved a posteriori estimation.

EKF filter time update equations:

x̂−k = f(x̂k−1, uk, 0) (10)

P−
k = FkPk−1FT

k + WkQk−1WT
k (11)

EKF filter measurement update equations:

Kk = P−
k HT

k (HkP−
k HT

k + VkRkVT
k )

−1 (12)

x̂k = x̂−k + Kk(zk − h(x̂−
k , 0)) (13)

Pk = (I − KkHk) + P−
k (14)

where, x̂−k ∈ �n is a priori state estimation at step k given

knowledge of the process prior to step k − 1; x̂k ∈ �n is a

posteriori state estimation at step k given measurement zk; P−
k

is an a priori estimation error covariance matrix; Pk is an a

posteriori estimation error covariance matrix; Qk is the process

noise covariance (the covariance of the noise associated to

the motion model); Rk is the measurement noise covariance

at step k (Note subscript allowing it to change with each

measurement); Kk is the Kalman gain; Fk and Hk are the

Jacobian matrix of partial derivatives of the function f and h
with respect to x, respectively, and computed in (15).

Fk =
∂f(xk−1, uk)

∂xk−1
; Hk =

∂h(xk)
∂xk

(15)
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Wk is the Jacobian matrix of partial derivatives of the function

f with respect to w; and Vk is the Jacobian matrix of partial

derivatives of the function h with respect to v.

Wk =
∂f(xk−1, uk)

∂w
; Vk =

∂h(xk, uk)

∂v
(16)

III. THE PROPOSED SYSTEM
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Fig. 2. The block diagram of the proposed autonomous mobile robot
localization systems based on the multiple sensor fusion methods.

In the real-world environment, the autonomous mobile

robot is equipped with a sensor system to perceive the its

surrounding environment. In the sensor system, encoder, GPS

and IMU is utilized to determine the position of the mobile

robot. However, each sensor has its own advantages and

disadvantages. Thus, to improve the accuracy of the mobile

robot localization system, we utilize the EKF to fuse the data

from aforementioned sensors. To accomplish that, we propose

a block diagram of the mobile robot localization system, as

shown in Fig. 2. As can be seen in Fig. 2, the encoder is used

in the prediction phase of the EKF filter. Whereas, the GPS

or/and compass are utilized in the correction phase.

The EKF filter linearizes the state of a system about an

estimation of the current mean and covariance. This can be

done only if the linearization errors are small in the update

time interval [10]. In our work, we assume that the sensors

frequencies are high enough, leading the time interval is short

enough. Furthermore, without loss of generality, we assume

that the process noise is non–additive and measurement noise

is the additive. Therefore, the motion model is presented in

(5). And the measurement model is presented in (17), that is

modified from (6).

zk = h(xk) + vk (17)

where, xk = [xk, yk, θk]
T is the state vector defined in (4); zk

is the measurement vector; vk ∼ N(0,Rk) is the measurement

noise with the covariance matrix Rk; uk = [vk, ωk]
T and wk ∼

N(0,Qk) in (5) are the input control vector of the robot and

the process noise with the covariance matrix Qk, respectively;

�

...
..

�. .

�������	
� ��������	

.
Fig. 3. The extended Kalman filter-based mobile robot localization system.

vk is the linear velocity and ωk is the angular velocity of the

robot; and Qk is defined in (18), as presented in [1].

Q =

[
(α1|vk|+ α2|ωk|)2 0

0 (α3|vk|+ α4|ωk|)2
]

(18)

In addition, because the measurement noise is the additive

noise, therefore equation (12) is rewritten as follows:

Kk = P−
k HT

k (HkP−
k HT

k + Rk)
−1 (19)

As a result, the EKF-based localization system for mobile

robots is shown in Fig. 3. Where, Fk is the Jacobian matrix

of partial derivatives of the function f with respect to state x
and is defined in (20), where βk−1 = θk−1 + 0.5Tsωk−1.

Fk =
∂f(xk−1, uk)

∂xk−1
=

⎡
⎣1 0 −vk−1Ts sinβk−1

0 1 vk−1Ts cosβk−1

0 0 1

⎤
⎦ (20)

In reality, the robot’s motion is subjected to noise. Leading

to the actual velocities differ from the commanded ones u =
[v, ω]T . Therefore, we will model this difference by a zero–

centered random variable with finite variance. More precisely,

let us assume the actual velocities are driven by û = u + w.[
v̂
ω̂

]
=

[
v
ω

]
+

[
ε1
ε2

]
(21)

where, w = [ε1, ε2]
T is the process noise. In other words, w

is replaced by u in (16). Thus, the Jacobian matrix W defined

in (16) is rewritten as follows:

Wk =

⎡
⎣Ts cosβk−1 −0.5vk−1T

2
s sinβk−1

Ts sinβk−1 0.5vk−1T
2
s cosβk−1

0 Ts

⎤
⎦ (22)

where, βk−1 = θk−1 + 0.5Tsωk−1. The size of matrices F
and Q depend on the structure of the mobile robot. Whereas,

the size of matrices z, H and R depend on a number of

measurements or sensors. In addition, Jacobian matrix Hk is

defined by the sensor types, that are utilized for measurement.

In this paper, we make use of encoder, GPS, compass sensors.

GPS sensor provides the position of the mobile robot (x, y).
Compass sensor measures the robot’s heading θ. Thus, the

measurement model and Jacobian matrix Hk were derived for

each sensor in the next subsections. Moreover, to eliminate

the cumulative error when using only the wheel encoders or
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TABLE I
MEAN ERROR FOR THE THREE APPROACHES

Sensors Sinusoidal Circular
trajectory trajectory

Encoder 37.4074 35.1793
Encoder + GPS 0.2303 0.2477

Encoder + Compass 0.1630 0.2032
Encoder + GPS + Compass 0.1455 0.1533

TABLE II
MEAN SQUARE ERROR FOR THE THREE APPROACHES

Sensors Sinusoidal Circular
trajectory trajectory

Encoder 6.1162 5.9312
Encoder + GPS 0.0289 0.0217

Encoder + Compass 0.0189 0.0243
Encoder + GPS + Compass 0.0081 0.0115

the dead - reckoning method, and improve the performance

of the localization system, in this paper, we propose four

approaches, including: (i) using only encoder; (ii) combining

encoder and GPS; (iii) combining encoder and compass; (iv)

combing encoder, GPS and compass.

A. Global Position Systems (GPS)

GPS sensor provides the position of the mobile robot in the

ground plane ẑk = [xk, yk]
T . Therefore, the Jacobian matrix

H is determined as follows:

HGps =
∂h(xk)
∂xk

=

[
1 0 0
0 1 0

]
(23)

B. Compass

Compass sensor is a navigation device used for determining

the direction relative to the Earths magnetic poles. Thus, it can

be utilized to measure the heading of the mobile robot. Then

the measurement vector is ẑk = θk.

HCom =
∂h(xk)
∂xk

=
[
0 0 1

]
(24)

C. Combining GPS and compass in the measurement model

Then the measurement vector is ẑk = [xk, yk, θk]
T . There-

fore, the Jacobian matrix Hk is defined as follows:

HGC =
∂h(xk)
∂xk

=

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ (25)

IV. SIMULATION RESULTS

A. Simulation Setup

To verify the usefulness of our localization system, we

have implemented and tested the proposed system in a Matlab

based simulation. In order to accomplish that, we created two

scenarios, which their sizes are 75 x 60[m2] and 55 x 40[m2],
as shown in Fig. 4(a) and Fig. 5(a), respectively. The kinematic

model of the differential drive mobile robot introduced in

Section II-A is made use of. In the first scenario, the trajectory

of the mobile robot is the sinusoidal trajectory. The initial

pose of robot is (0, 0, 0), the goal pose is (76, 32, 28), and

the traveling time is 52[s]. Whereas, the trajectory of the

robot is the circular trajectory with anti-clockwise direction in

the second scenario. The initial pose of the robot is (0, 0, 0),
the diameter of the circle is 40[m], and the traveling time is

63[s]. The maximum linear velocity and angular velocity of

the mobile robot are 2[m/s] and 0.4[rad/s], respectively, in both

scenarios. The sampling time of the EKF filter is 100 [ms].

From the equations of the process shown in Fig. 3, it

is recognizable that the efficiency of the EKF filter mainly

depends on the estimation of white Gaussian noises wk and

vk. Moreover, the noises are featured by covariance matrices

Qk and Rk respectively. Therefore, determining the values for

the parameters of Qk (18) and Rk adjudicate the quality of

the EKF filter. The covariance matrix Qk is predetermined as

constant by our experiences, as follows:

Q =

[
0.01 0
0 0.0685

]
(26)

The measurement noise vk with the covariance matrix Rk

is predefined in (27). In which, if the measurement data is

the coordinates (x, y), the covariance matrix is R(x,y), while

the measurement data are (x, y, θ), the covariance matrix is

R(x,y,θ). In addition, if the measurement signal is only the

angle θ, the covariance matrix is Rθ = 0.0685

R(x,y) =

[
1 0
0 1

]
; R(x,y,θ) =

⎡
⎣1 0 0
0 1 0
0 0 0.0685

⎤
⎦ (27)

To compare the experimental results between approaches, a

statistical data analysis of all the experiments is carried out. To

do that, the Mean Error (ME) and Mean Square Error (MSE),

which are computed in (28), are utilized in this paper.

ME =
1

n

n∑
k=1

NEk; MSE =
1

n

n∑
k=1

(NEk −ME)2 (28)

where, n is the number of samples, NE is calculated in (29).

NEk =
√
(xekf − xtrue)2 + (yekf − ytrue)2 (29)

In this study, we have collected 520000 samples in the

sinusoidal scenario and 630000 in the circular scenario.

B. Experimental Results

The experimental results of the two conducted experiments

are shown in Figs. 4, 5, Table I, and Table II. Figure 4 and

5 show the trajectories of the mobile robot, including: The

blue dash lines are the expected trajectories (ground truth);

The black dash lines are the trajectories derived from the

encoder data (the dead reckoning method); The magenta dots

are the GPS data; and The green dash lines are the estimated

trajectories of the mobile robot using our proposed localization

system. Whereas, Table I and Table II illustrate the statistical

data analysis of the two conducted experiments.

As can be seen in Figs. 4 and 5, the black dash lines

are very far from the ground truth trajectories of the mobile

robot, because the errors are accumulated over time during the

robot’s navigation. This is the weakness of the dead reckoning
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(a) Encoder and GPS (b) Encoder and Compass (c) Encoder, GPS and Compass

Fig. 4. The sinusoidal trajectories of the mobile robot in three approaches.

(a) Encoder and GPS (b) Encoder and Compass (c) Encoder, GPS and Compass

Fig. 5. The circular trajectories of the mobile robot in three approaches.

method. In contrast, the green lines are approximated to the

real robot’s trajectories in three approaches and both sinusoidal

and circular trajectories. This illustrates that, the proposed

EKF-based localization system is able to provide the higher

accuracy than the dead reckoning method. In addition, Table I

and Table II depict that using approach III the values of the

mean error and mean square error are smallest, and those

values in approach I are biggest, in both sinusoidal and circu-

lar trajectories. This indicates that, the proposed localization

system with approach III outperforms conventional system in

terms of accuracy of estimating the pose of the mobile robot

in dynamic environments.

V. CONCLUSION

We have presented an enhanced localization system for au-

tonomous mobile robots in dynamic environments using mul-

tiple sensor fusion techniques. To do that, an EKF algorithm is

utilized to fuse the data from the sensors, including the wheel

encoders, the global positioning system sensor, and the inertial

measurement unit sensor. We have conducted two experiments

corresponding with two sinusoidal and circular trajectories of

the autonomous mobile robots. The simulation results indicate

that, our proposed localization system is capable of providing

higher accuracy mobile robot’s pose than existing systems.
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