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ABSTRACT
Based on a complete mathematical model, the authors set up a problem of metal plate destruction by
contacting explosive charge in highly nonlinear dynamic software AUTODYN and solved in two cases using
the Johnson–Cook and von Mises strength models. The numerical simulation results were compared with
the experimental results and showed a good fit of numerical calculations versus experiments by using the
von Mises strength model. The study also shows that the Johnson–Cook strength model, if applied unrea-
sonably, will lead to large errors, which would help to avoidmistakes in the future high speed impact study.

1. Introduction

Destruction of the sheet and metal shell by contacting explosive
charge is a problem in the field of high speed impact, which has
been studied experimentally long time ago. Recently, thanks to
the development of computer speed and software technology,
these problems have begun to be solved by numerical methods.

In [1], the numerical setup of the fully coupled Euler–
Lagrange simulations in two dimensions (fluid–structure
interaction) with good results is shown. The TNT explosive
(using the JWL equation of state) and the air (using the ideal
gas equation of state) are modeled in the Eulerian part and the
metal plate (using theMie–Gruneisen equation of state) is mod-
eled in the Lagrangian part. In order to check the applicability
of the two-dimensional (2D) approach, a 3D model has been
developed. In general, the physics of the process investigated
can be described more accurately in three dimensions, but the
resolution of the meshes cannot be chosen as fine as in 2D
due to the high computational effort in 3D. In necessary case,
in order to improve the speed and accuracy of the solution,
the explosive load was measured experimentally and then
placed on the structural surface by using the finite element code
EUROPLEXUS with the advent of erosion criteria [2]. Except
for special cases where materials are considered under the ultra-
high stress level, which can be calculated using hydrodynamic
codes, most practical applications must take into account the
effects of strength to obtain a realistic solution [3].

Early studies of Hollomon, Ludwik, and Swift show a
significant dependence of true stress on the true strain
through the strain hardening exponent (n-value) [4]–
[6]. Later, more perfect strength models have been pro-
posed [7]: Johnson–Cook model the strength behavior of
materials subjected to large strains, high strain rates and
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high temperatures; Zerilli–Armstrong in an approach seek-
ing to improve the Johnson–Cook model proposed that
each material structure type (fcc, bcc, and hcp) will have
its own constitutive behavior, depending on the disloca-
tion characteristics for that particular structure; Steinberg–
Guinan have produced expressions for the shear modulus
and yield strength as functions of effective plastic strain,
pressure and internal energy (temperature) and constants for
14 metals.

In the Johnson–Cook strength model, the dynamic yield
stressYd depends on the intensity of the plastic strain, the plastic
strain rate, and the temperature as follows [8]–[10]:

Yd =
[
A + B · (

ε
p
i
)n] (

1 +C ln epi0
)
(1 − T̄m), (1)

where
A, B,C, n,m – experimental constants;
epi0 = epi

ε̇0
– effective plastic strain rate when ε̇0 = 1 s−1;

T̄ = T−Troom
Tmelt−Troom

− homologous temperature;
T – temperature (K);
Troom – room temperature (K);
Tmelt – melting temperature (K).
The Johnson–Cook model is widely used to describe the

stress and deformation behavior under various loading condi-
tions. However, with the Johnson–Cookmodel for eachmaterial
sample, we have to determine the five experimental constantsA,
B, C,m, and n in the high strain rates range with highly special-
ized equipment [11]–[14], which are currently not available in
many laboratories.

In the approximate case, some studies now use the experi-
mental constants of the same material, but the margin of error
is rarely sufficiently evaluated.

©  Taylor & Francis Group, LLC
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Figure . von Mises yield surface.

Unlike the Johnson–Cook model, the von Mises strength
model has to determinate only the static yield stress value in sim-
ple tension testYs according to the following expression

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2Y 2

s . (2)

Figure 1 describes the cylindrical yield surface in the princi-
pal stresses space σ1, σ2, σ3 with radius

R =
√
2
3
Ys. (3)

States lying inside the cylinder are elastic. States on the sur-
face of the cylinder are plastic. Because of without taking into
account the effects of strain hardening, strain rate or thermal
softening (the static yield stress Ys is kept constant through-
out), the von Mises model was originally used to simulate
quasi-static elastic–plastic flow [15]–[17]. However, a dynamic
enhancement factor of 2 was used very successfully by Wilkins
for simulating metal cylinder tests [18].

Research of the behavior of structures under intricate load-
ings (blast loading, impact loading, etc.) is very important since

they play a necessary role in reality, especially in a war place
like Afghanistan, Syria, etc. We have some published papers
[18], [19], [21]–[27] to explore this problem, but these works
only study structures in the field of elastic without experiment
because of the high cost; this research follows the works before
to find out the behaviors of structure in the field of plastic with
experiment to show the accuracy of the theory model.

In this paper, the authors investigated the effects of von
Mises and Johnson–Cook strength models on the value of error
in numerical simulation of metal sheet destruction by contact
explosive charge. The results obtained are the basis for choosing
the strength model with the appropriate accuracy but more
simple and convenient in material identification.

2. Mathematical model

The physical model of the interaction problem between the
explosive and the steel plate is shown in Figure 2. We consider
the explosive block (1) in a cylindrical form, flattened at the
two ends, with diameter d and height L, placed in contact with

Figure . The physical model of the problem. : explosive; : steel plate; : shelf; : air environment; : detonator.
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a steel plate (2), which is cylindrical, has diameter �, and has
thickness B.

For detonating, a detonator (4) is placed on the free side of
the explosive charge. The entire explosive–steel plate structure
is placed in the infinite air environment (3).

When the explosive explodes, the detonation wave hits the
front of the plate, the compressive wave enters the metal sheet
material, and the reflected wave enters the detonation product
medium. Under the effect of compressive waves at high velocity,
thematerial undergoes elastic deformation and plastic deforma-
tion, leading to the formation of a concave funnel on the front;
this process can be considered as an adiabatic process with a
large part of the deformation work transformed into heat, and
the material is heated to high temperatures (hundreds of degree
Celsius). When the compressive wave travels to the free sur-
face, the rarefaction wave is formed and reversed into the metal
material, whichmakes the backingmaterial tensile. If the tensile
stress σ 1 exceeds the limit of the tensile stress σ P, the material is
pulled off, producing a collapsing funnel at the back. Theoreti-
cal and empirical evidence suggests that if the energy density of
the sheet is large enough, the collapsing funnel goes deep into
the plate, meets with the concave funnel, and creates a hole [3],
[28].

2.1. The partial differential equations

Some basic assumptions are as follows:
1. Explosive is homogeneous in chemical composition and

physical properties.
The metal sheet material is homogeneous, isotropic,
durable, and compressed.

2. Gravity effects are ignored onmaterials when interacting
and moving.

The partial differential equations describe propagation of
explosive, motion, stress state, deformation state of the envi-
ronment in Lagrange variable for axial symmetry case, which
consist of mass conservation equations, momentum conser-
vation equations, energy conservation equations, equations of
relativity, equations for determining the mechanical nature of
materials, equation of state and kinematics equations. The axis
of symmetry is the x-axis, the dots represent the derivative, and
the θ subscript is the symbol that is perpendicular to the oxy
plane [7]. Equation (4) consists of 23 basic equations with 23
unknowns:

x, y: the two projection components of Euler coor-
dinate vector in x, y axes;

vx, vy: the two projection components of velocity
vector in x, y axes;

εxx, εyy, εθθ , εxy: the four projection components of strain ten-
sor;

σxx, σyy, σθθ , σxy: the four projection components of stress ten-
sor;

Sxx, Syy, Sθθ , Sxy: the four projection components of deviatoric
stress tensor;

λ: scalar quantity;
εi: strain intensity;
σi: stress intensity;

e: specific internal energy;
p, ρ,V : pressure, density, volume, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = ρ0V0
V

ρ ∂vx
∂t = ∂σxx

∂x + ∂σxy

∂y + σxy

y

ρ
∂vy
∂t = ∂σxy

∂x + ∂σyy

∂y + σyy−σθθ

y

σxx = −p+ Sxx; σyy = −p+ Syy

σθθ = −p+ Sθθ ; σxy = Sxy

ε̇xx = ∂ ẋ
∂x ; ε̇yy = ∂ ẏ

∂y

ε̇θθ = ẏ
y ; ε̇xy = 1

2

[
∂ ẋ
∂y + ∂ ẏ

∂x

]
;

Ṡxx + 2Gλ̇Sxx = 2G
[
ε̇xx − 1

3
V̇
V

]

Ṡyy + 2Gλ̇Syy = 2G
[
ε̇yy − 1

3
V̇
V

]

Ṡθθ + 2Gλ̇Sθθ = 2G
[
ε̇θθ − 1

3
V̇
V

]

Ṡxy + 2Gλ̇Sxy = 2Gε̇xy

λ̇ = 3
2σ 2

i
(σxxε̇

(P)
xx + σyyε̇

(P)
yy + σθθ ε̇

(P)
θθ + σxyε̇

(P)
xy )

σi = �(εi, ε̇i, p,T, . . .)

ė = 1
ρ
(σxxε̇xx + σyyε̇yy + σθθ ε̇θθ + σxyε̇xy)

p = p(ρ, e)

ux = ux(X,Y, t ) = x(X,Y, t ) − X; uy = uy(X,Y, t )
= y(X,Y, t ) −Y

vx = ∂ux
∂t = u̇x(X,Y, t ); vy = ∂uy

∂t = u̇y(X,Y, t )

. (4)

2.2. Initial conditions

At the initial time (t = 0), we suppose that the explosive and
metal sheet materials are not affected by external forces and
standing still. We have the following initial conditions:

� State in the explosive material:

vTN
x (xi, yi, 0) = vTN

y (xi, yi, 0) = 0

ρTN (xi, yi, 0) = ρTN
0

pTN (xi, yi, 0) = pTN0
eTN (xi, yi, 0) = eTN0

εTNxx(xi, yi, 0) = εTNyy(xi, yi, 0) = 0

εTN θθ (xi, yi, 0) = εTNxy(xi, yi, 0) = 0

σ TN
xx(xi, yi, 0) = σ TN

yy(xi, yi, 0) = 0

σ TN
θθ (xi, yi, 0) = σ TN

xy(xi, yi, 0) = 0

� State in metal material:

vT
x (xi, yi, 0) = vT

y (xi, yi, 0) = 0

ρT (xi, yi, 0) = ρT
0

pT (xi, yi, 0) = pT0
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eT (xi, yi, 0) = eT0
εT xx(xi, yi, 0) = εT yy(xi, yi, 0) = 0

εT θθ (xi, yi, 0) = εT xy(xi, yi, 0) = 0

σ T
xx(xi, yi, 0) = σ T

yy(xi, yi, 0) = 0

σ T
θθ (xi, yi, 0) = σ T

xy(xi, yi, 0) = 0

� State in the air:

vKK
x (xi, yi, 0) = vKK

y (xi, yi, 0) = 0

ρKK (xi, yi, 0) = ρKK
0

pKK (xi, yi, 0) = pKK0
eKK (xi, yi, 0) = eKK0

εKKxx(xi, yi, 0) = εKKyy(xi, yi, 0) = 0

εKK θθ (xi, yi, 0) = εKKxy(xi, yi, 0) = 0,

whereρTN
0 ,ρT

0 ,ρKK
0 are the density, pTN0 , pT0 , pKK0 are the pressure

and eTN0 , eT0 , eKK0 are the specific internal energy values of the
explosive, metal sheet and air at the initial time, respectively.

2.3. Boundary conditions

Boundary conditions ensure continuity at the contact surface
between materials and air ambient.

On the S1 boundary:This is the boundary between the air and
the void (nomaterial – as defined by AUTODYN) that is needed
to set the boundary conditionswithout reflection, which ensures
the expansion of detonation products when encountering this
border without reflection. This is an algorithm that saves com-
puter memory and ensures exactly the results of the problem.

On the S2, S4 boundary: Set the velocity and stress boundary
conditions.

� Velocity boundary conditions: At the same point on the
boundary, the elements of the materials have the same
velocity:

υy · n = υn · n,
where υy and υn are the velocities at the same point of the two
contact surfaces.

� Stress boundary conditions: Elements of materials at a
boundary point have the same stresses of absolute value
but vice versa, according to Newton’s third law:

(σi jy − σi jn)nj = 0,

where σi jy and σi jn are the stresses at the points on the contact
surface that have the same coordinates but fall on two surfaces,
respectively.

On the S3 boundary: Set the displacements of the points on
the S3 boundary of the plate to be always zero:

ui|S3 = 0.

Figure . Empirical configuration. : power cable; : detonator; : explosive; : steel
sample; : cover; : hole; : sand for collecting the fragments; : spherical pan; : soil;
h: detonator’s depth.

Movable boundary conditions for detonation products: Not
that r is the radius of the detonation wave surface, which has
a center at the point of detonating; u, p, and ρ are the speed,
pressure, and density of the detonation products, respectively;
D and t are the speed and time, respectively, of propagation of
the detonation wave surface, we have the following:

� When r = 0, u = 0 and when r = Dt, p = pH , u =
uH, ρ = ρH , where pH, uH , ρH are the parameters at
Chapman–Jouguet point.

� When t ≥ r0/D instead of the condition on the surface of
the impact wave, new boundary conditions appear on the
boundary of the detonation product – air.

� When r = r0, p = pKK0 , ρ = ρKK
0 (r0 is the distance from

the center of the explosion to the point of explosive-air)
and when r > r0, p = pKK, ρ = ρKK.

3. Experimental setup

Based on the mathematical model, the empirical configuration
is set up as shown in Figure 3.

Explosive specimen: Use C-4 explosives of a certain mass,
cylindrical structure with different coefficients η = L/d (L is
charge height, d is the charge diameter). The chemical compo-
sition of C-4 explosive is shown in Table 1.

Steel specimen: Experimental steel samples are made from
C45 rolled steel. Chemical composition is shown in Table 2, and
some thermal properties of this steel can be seen in item 4.

Measuring equipment: An electronic Scout Pro 200 g scale of
weighing range less than 200 g and precision 0.01 g.

After setting up the experimental configuration, we detonate
the detonator and the explosive charge, destroy the steel plate,
collect all of the fragments, and determine themass on the Scout
Pro 200 g scale.

Table . The chemical composition of C- explosive.

C- (%) RDX (%)
Diethylhexyl
sebacate (%)

Polyisobutylene
(%)

Motor oil
(%)

  . . .

Table . The chemical composition of C steel.

C steel (%) C (%) Fe (%) Mn (%) P (%) S (%) Cu (%) Si (%) Others (%)

 . . . . . . . Balance
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Figure . Schematic of the numerical model. : the air; : detonation point; : deto-
nator; : explosive charge; : steel plate. S: The boundary condition without reflec-
tion; S: The boundary condition without move.

4. Setting up and solving problems with AUTODYN
software

Because of the axial symmetry of the problem, we set up the
problem in the AUTODYN-2D environment, having an axial
symmetry as shown in Figure 4.

4.1. Building objectmodel

Steel plate model: The steel plate is cylindrical, and the form of
axial symmetry is rectangular in size (thickness × radius) =
(10mm× 45mm). It is modeled in the Lagrange grid (Lagrange
Solver option), and the grid size is (0.2 mm × 0.2 mm). The
material parameters of the C45 steel are as follows: density
ρ0 = 7870 kg/m3; initial temperature Tre f = 300K; specific
heatCV = 490 J/kg K. The parameters in the shock equation of
state are taken according to AISI 1006 steel in the AUTODYN’s
material library [18] (because C45 steel is an equivalent mate-
rial to AISI 1006 steel): Gruneisen coefficient � = 2.17; sound
speedC1 = 4569m/s; coefficient S1 = 1.49.

The parameters in the strength model of C45 steel are as fol-
lows [29], [30]:

� The von Mises strength model consists of shear mod-
ulus G = 8.0 × 107 kPa and static yield stress Ys = 421
MPa.

� The Johnson–Cook strength model consists of shear
modulus G = 8.0 × 107 kPa, melting temperature Tmel =
8.11K, and the materials constants A = 551MPa, B =
608MPa,C = 0.0134, n = 0.234 andm = 1.

Failure criteria of the steel plate are the hydrodynamic ten-
sile failure criteria; the failure pressure of C45 steel is Pmin =
−1.32GPa [29]. Use the erosion/failure option to remove ele-
ments once they meet the failure criteria.

The air model: In the form of axial symmetry, the air model
is also rectangular, covering dimensions of C45 steel plate
model and explosive charges. The air is modeled in the Euler
mesh (Euler multimaterial solver option), mesh size (0.2 mm
× 0.2 mm) with the ideal gas equation of state. Parameters
of air materials are density ρ0 = 1.225 kg/m3; adiabatic expo-
nent γ = 1.4; initial temperature T = 300K; and specific heat
CV = 717.6 J/kgK [17], [30].

The explosive charge model: The Fill option is used to insert
explosive blocks into the air model. Such explosives also are
modeled in the Euler grid with mesh size of 0.2 mm × 0.2 mm.
Cylindrical explosive charges vary in size depending on the
simulation cases, and the detonator is a Comp A-3 explosives
cylinder (Ф3.5 mm × 18 mm) weighing 1.14 g. The parameters
of explosive material are the following [3], [28]:

� The Comp A-3 explosive material: An RDX explosive is
domesticated with density ρ0 = 1650 kg/m3; Chapman–
Jouguet pressure PCJ = 3.0 × 107 kPa; detonation velocity
D = 8300m/s. The JWL equation of state includes the
following experimental coefficients: A = 611.3GPa; B =
10.65GPa; R1 = 4.4; R2 = 1.2; W = 0.32; ECJ = 8.9 ×
106 kJ/m3.

� The C-4 explosive model: The model has Den-
sity ρ0 = 1601kg/m3; Chapman–Jouguet pressure
PCJ = 2.8 × 107 kPa; detonation velocity D = 8193m/s.
The JWL equation of state includes the experimental
coefficients: A = 609.8GPa; B = 12.95GPa; R1 = 4.5;
R2 = 1.4;W = 0.25; ECJ = 9.0 × 106 kJ/m3.

4.2. Setting initial conditions

The initial conditions of the material (initial density, pressure,
etc.) are declared by the user.

4.3. Setting boundary conditions

The boundary condition without reflection S1: The flow-out
boundary is set up and assigned to the boundary S1.

The boundary condition without move S3: The horizontal
velocity of constant (vx = 0) is set up and assigned to the
boundary S3. The boundary conditions of detonation products-
explosive and detonation products-air automatically perform
when computed in the Euler multimaterial solver. The bound-
ary conditions S2 and S4 are automatically implemented by the
Euler–Lagrange couple algorithm.

4.4. Setting interactive controls

Setting Lagrange–Lagrange interactive control: The Calculate
button is clicked to calculate the interactive distance for the
Lagrange grids together.

Setting Euler–Lagrange interactive controls: The Automatic
(Polygon free) button is clicked to calculate the interactive dis-
tance for the Lagrange grid and Euler grid.

4.5. Setting detonation control

We choose the detonation type Point in the Detonation tab and
enter the coordinates of the detonation point in the free head
(on the ox axis) of the Comp A-3 explosive block.
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Table . Experimental constants for the Johnson–Cook model and von Mises
model of C steel.

TT Experimental constants Johnson–Cook model von Mises model

 A (MPa)  —
 B (MPa)  —
 Harding coefficient,C . —
 Harding exponent, n . —
 Softening exponent,m  —
 Static yield strength,Ys (MPa) — 

After setting the stop condition in the Control tab, the out-
put variable controls in theOutput tab, button Start is clicked to
begin solving the problem.

5. Results and discussion

5.1. Features of the sequence of errors when using two
different strengthmodels

As described above, for using the Johnson–Cook strength
model, five empirical constants have to be determined. For

using the von Mises model, only one experimental parameter
is required (Table 3).

In order to solve the destruction problem, failure criteria
should be determined empirically. For destruction problems of
metal sheet, both theoretical and empirical evidence suggests
that using the hydrodynamic tensile failure criteria (Pmin) is
appropriate.

However, the empirical determination of Pmin for materials at
high deformation rates is not possible in a number of laborato-
ries. Works nowadays can reference the value Pmin according to
the documents of the similar material and allow changing this
value within a certain range to obtain the required precision.

Problem using the Johnson–Cook strength model may face
large errors when it has to take all six experimental constants
according to literature (A, B, C, n, m, and Pmin), while prob-
lem using the vonMises strengthmodel just takes two constants
(Ys and Pmin). In order to select an appropriate strength model,
the authors carry out numerical simulations of both Johnson–
Cook and vonMises strengthmodels for C45 steel, 10mm thick,
C-4 explosive 20 g. Cylindrical explosive charge has a different

Figure . Destruction and fragmentation results, η = .. (a) Concave funnel. (b) Collapsing funnel. (c) Fragments.

Figure . Destruction and fragmentation results, η = .. (a) Concave funnel. (b) Collapsing funnel. (c) Fragments.
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Figure . Destruction and fragmentation results, η = .. (a) Concave funnel. (b) Collapsing funnel. (c) Fragments.

Figure . Destruction and fragmentation results, η = .. (a) Concave funnel. (b) Collapsing funnel. (c) Fragments.

structural coefficient η. Simulation results were compared with
empirical results.

First, we observe the experimental results, the images of the
destroyed surfaces of the C45 sheet (concave funnel, collapsing
funnel), and the total mass of fragments (destructionmass) with
different values of η clearly shown.

When keeping the explosive mass C-4 (20 g) and changing
the value of η to 2.0, 1.5, 1.0 and 0.5, the size of the destroyed

surface and the destructionmass increased sharply (Figures 5–8
and Table 4).

Figure 9 shows the suitability between the size of the destruc-
tion surface, the size of the holes in the numerical simulations,
and the experiment at η = 0.5. The diameter of experimental
hole is 13 mm, while the diameters of holes in the numerical
simulations are 16.5 mm (using the Johnson–Cook model) and
14.3 mm (using the von Mises model).

Table . Calculated and experimental destruction mass for C steel of  mm thickness.

Destruction mass (g)

Charge Johnson–Cook von Mises

Order Mass (g) η L (mm) d (mm) h (mm)
Thick-ness of

steel sheet (mm) Exp. value Value
Error to exp.

(%) Value
Error to exp.

(%)

  . . .   . . − . . − .
  . . .   . . − . . − .
  . . .   . . − . . − .
  .     . . . . − .
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Figure . Simulation results for  g C-, η = .. (a) Using the Johnson–Cook model. (b) Using the von Mises model.

Based on Table 4, this paper analyzed the data of two
sequences of errors from the numerical simulations using the
Johnson–Cook and von Mises models versus the same experi-
ments. The range R is calculated for the two sequences of errors
using the following formula:

R = xmax − xmin. (5)

We have

RJ−C,η = −42.7 − 2.5 = −45.2(%),

RV−M,η = −21.4 − (−12.1) = −9.3(%).

We see that the range of the sequence of errors using von
Mises model is very small compared to that using the Johnson–
Cook model. The variance s2 and the standard deviation sof the
two errors sequences are calculated according to the following
formula [19]:

s2 =
∑n

i=1 (xi − x̄)2

n − 1
. (6)

We have

s2J−C,η = 525.9; sJ−C,η = 22.9(%),

s2V−M,η = 20.4; sV−M,η = 4.5(%).

Thus, when keeping the explosive mass C-4 (20 g) and the
thickness of the steel plate, and changing the structural coef-
ficient η, the sequence of errors using the von Mises strength
model that includes range, variance and standard deviation is
much lower compared to that of errors using the Johnson–Cook
strength model.

5.2. Determination of the standard deviation of entire sets
using two strengthmodels

To determine the standard deviation of entire sets using the
two strength models, experiments and numerical simulations
are carried out for two 8-mm and 12-mm steel plates. In each
plate thickness, we changed the explosive mass and structural
coefficient η; the results are recorded in Table 5.

Using all of the data in Tables 4 and 5, we calculated the range,
variances and standard deviations of the sequence of errors,
which take into account the variation of the structural coeffi-
cient η, the thickness of the plate B, and explosive mass ω; the
results are shown in Table 6.

According to Table 6, range, variances, and standard devi-
ations of error sequence computed by using the von Mises
strength model are much smaller compared to those using the
Johnson–Cook strength model. We use the Chi-square test to
perform a variance inference for the entire set of errors when

Table . Calculated and experimental destruction mass for two C steel sheet plates of  mm and  mm thickness, respectively.

Destruction mass (g)

Explosive charge Johnson–Cook von Mises

Order Mass (g) η L (mm) d (mm) h (mm)
Thick-ness of

steel sheet (mm) Exp. value Value
Error to exp.

(%) Value Error to exp. (%)

  . . .   . . . . − .
  .     . . . . − .
  . . .   . . − . . .
  . . .   . . − . . − .
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Table . Statistical values for error sequences when computed according to different strength models.

According to the Johnson–Cook model According to the von Mises model

Order Statistical values Notation Value Notation Value

 Range, R (%) RJ−C (%) . RV−M (%) .

 Variances, S2(%2) S2J−C (%2) . S2V−M(%2) .

 Standard deviations, S(%) SJ−C (%) . SV−M(%) .

Table . The standard deviation (σ ) of entire sets.

Strength model Null hypothesis, H0 Alternative hypothesis, H1 Degree of freedom, df Chi-square,χ2 p value Outcome

von Mises σV−M = 9.4(%) σV−M < 9.4(%)  . . σV−M < 9.4(%)

Johnson–Cook σJ−C = 33.8(%) σJ−C < 33.8(%)  . . σJ−C < 33.8(%)

computed in these two models with a 95% confidence interval
(α level is 0.05) and degree of freedom (df) equal to 7 (sample
size, n = 8) [31], [32]. The results are shown in Table 7; the
standard deviation of the entire set simulated by the von Mises
model is less than 9.4%, while the standard deviation computed
using the Johnson—Cook model is less than 33.8%. Thus,
the value of standard deviation using the von Mises model is
fulfilling the error requirement in the study.

6. Conclusion

After constructing the mathematical model, the authors set
up the destruction problem of metal plate by contact explo-
sive charge in highly nonlinear dynamics software AUTODYN
and solved the problem in two cases using the Johnson–Cook
strength model (with five material constants A, B, C, n, m, and
failure critical Pmin, all were taken according to literature) and
using the von Mises strength model (with the static yield stress
Ys, that has to be determined in a simple tension test, and unique
failure critical, which was taken according to literature). The
numerical simulation results were compared with the experi-
mental results and showed the good fit of numerical calculations
versus experimental results. Statistical calculations have shown
important conclusions:

1. When the thickness of the steel plate and explosive mass
are constant, if we change the structural coefficient η, the
sequence of errors using the von Mises strength model,
which has range, variance and standard deviation, is
much lower compared to the sequence of errors using
the Johnson–Cook strength model.

2. With the 95% confidence, the standard deviation of the
entire set of errors using the vonMises strength model is
less than 9.4%, while the standard deviation of the entire
set of errors using the Johnson–Cook model is less than
33.8%. Thus, the value of standard deviation for the von
Mises model is satisfactory for the error in the study.

The conclusions drawn have important theoretical and prac-
ticalmeanings. A new approach has been opened up in the study
for the destruction of steel plates by contacting explosive charge
in particular, by high speed impact in general for a lot of metal-
lic materials having mechanical properties, such as C45 steel,
because the unique static yield stress is required to save research
costs. The results of the study also show that the Johnson–Cook
strength model, if used inappropriately, would result in large

errors; this helps to avoidmistakes in the next high speed impact
study.
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