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a b s t r a c t 

If two adjacent links of a flexible robot are connected via a revolute joint or a fixed pris- 

matic joint, the relative motion of the next link will depend on both the joint motion and 

the elastic displacement of the distal end of the previous link. However, if the two adjacent 

links are connected via a sliding prismatic joint, the relative motion of the next link will 

depend additionally on the elastic deformation distributed along the previous link. There- 

fore, formulation of the motion equations for a multi-link flexible robot consisting of the 

revolute joints, the fixed prismatic joints and the sliding prismatic joints is challenging. In 

this study, the finite element kinematic and dynamic formulation was successfully devel- 

oped and validated for the flexible robot, in which a transformation matrix is proposed to 

describe the kinematics of both the joint motion and the link deformation. Additionally, a 

new recursive formulation of the dynamic equations is introduced. As compared with the 

previous methods, the time complexity of the formulation is reduced by O(2 η), where η is 

the number of finite elements on all links. The numerical examples and experiments were 

implemented to validate the proposed kinematic and dynamic modelling method. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Industrial robots can be categorized as the rigid or flexible ones. The traditional rigid robots have been widely used in

various industries. Today, there has been an emerging need to develop the flexible robots to meet well more and more

sophisticated requirements, especially in manufacturing industries. The flexible robots have outstanding advantages over the

traditional rigid ones, with a lower overall mass, smaller actuators, lower energy consumptions, and a greater payload-to-

manipulator-weight ratio, taking the advantages of the latest advancements in robotics, design and manufacturing, as well

as the material engineering. The control algorithms of rigid robots are insufficient when they come to flexible ones; and the

mathematical modeling process for the flexible robots is much more complex, especially when working on the nonlinear

control issues, and the dynamic modeling and analysis of multi-link flexible robots. Moreover, formulations of the motion

equations for a multi-link flexible robot consisting of the revolute joints, the fixed prismatic joints and the sliding prismatic

joints are always challenging. 

Fig. 1 shows the revolute joint ( Fig. 1 a), the fixed prismatic joint ( Fig. 1 b) and the sliding prismatic joint ( Fig. 1 c) that are

usually used in robot architectures. The fixed prismatic joint implies that it is fixed to the previous link i − 1 , the current link
∗ Corresponding author. 
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Nomenclature 

R revolute joint 

P a sliding prismatic joint 

P b fixed prismatic joint 

n total number of links 

i index of a link ( i = 1 ÷ n ) 

l i length of a link i 

n i total number of elements of a link i 

j index of element of a link i ( j = 1 ÷ n i ) 

l ie length of elements of a link i 

γ i angle between a link i − 1 and a link i 

a i rear part of a link i 

d i variable of a prismatic joint i connecting a link i − 1 and a link i 

θ i variable of a revolute joint i connecting a link i − 1 and a link i 

O i ≡ ( O i X i Y i Z i ) local coordinate system attached to a link i 

O 0 ≡ ( O 0 X 0 Y 0 Z 0 ) reference coordinate system fixed to the base (link 0). 

u (i )( 2 j+1 ) flexural displacement at the common junction of elements j and j + 1 of a link i 

u (i )( 2 j+2 ) flexural slope at the common junction of elements j and j + 1 of a link i 

u ( i −1 )( 2 k +1 ) flexural displacement at the distal node of a sliding element k of a link i − 1 currently through the 

sliding prismatic joint i ( P a ) 

u ( i −1 )( 2 k +2 ) flexural slope at the distal node of a sliding element k of a link i − 1 currently through the joint i 

( P a ) 

u ( i −1 )( 2 n i −1 +1 ) flexural displacement at the distal end of a link i − 1 

u ( i −1 )( 2 n i −1 +2 ) flexural slope at the distal end of a link i − 1 

u ( i −1 ) f flexural displacement at the nominal articulation point between a link i − 1 and a link i . 

u ( i −1 ) s flexural slope at the nominal articulation point between a link i − 1 and a link i . 

x a point on the element j of a link i 

φm 

(x ) , m = 1 ÷ 4 shape functions 

S vector of shape functions 

S ij elemental vector of shape functions 

w ij ( x ) flexural displacement at the point x on the element j of a link i 

r ij ( x ) vector from O i to the point x on the element j of a link i 

r 0 ij ( x ) vector from O 0 to the point x on the element j of a link i 

�( i −1 ) i transformation matrix describing the motion of a flexible link i relative to a flexible link i − 1 

H ( i −1 ) i transformation matrix describing the motion of a rigid link i relative to a rigid link i − 1 

m i uniform density (mass per meter) of a link i 

E Young’s modulus 

I i moment of inertia of a link i 

M global mass matrix of the system 

M ij elemental mass matrix for the element j of a link i 

K global stiffness matrix of the system 

K ij elemental stiffness matrix for the element j of a link i 

p i variable of a joint i 

p ij vector of elastic displacements and slopes of the element j of a link i 

κ i vector of elastic displacements and slopes of a link i 

q vector of generalized coordinates of the system 

F vector of applied torques/forces of the system 

i slides through the joint, and the length of the current link i varies with respect to time. In contrast, the sliding prismatic

joint is fixed to the current link i , both the joint and the link translate relatively to the previous link i − 1 , and the length

of the previous link i − 1 varies. 

Generally, the kinematics of a flexible link i depends much on which kind of joints connecting the link i with the previous

link i − 1 . For the case in which the two links are connected by a revolute or a fixed prismatic joint ( Fig. 1 a, b), the relative

motion of the link i depends on the motion of the joint i and the elastic deformation at the distal end of the previous link

i − 1 . Nevertheless, in the case of sliding prismatic joint ( Fig. 1 c), the motion of the link i does not depend on the elastic

deformation at the distal end of the link i − 1 , it depends on the elastic deformation of the sliding element on the link i − 1 .

This element varies along the length of the link i − 1 , with respect to time. For the cases in which the revolute joint and the

sliding prismatic joint ( Fig. 1 a, c), it is usually assumed that the elastic displacements at the first node of the first element



C.A. My, D.X. Bien and C.H. Le et al. / Mechanism and Machine Theory 134 (2019) 267–288 269 

Fig. 1. Three types of joints for the multi-link flexible robots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the link i equal to zero. However, for the case in which the fixed prismatic joint ( Fig. 1 b), the element of zero elastic

deformation is the sliding element of the link i through the fixed prismatic joint. Obviously, the elasticity effects of links

associated with the use of the three joint types should be taken into accounts when working on the kinematic and dynamic

modeling for a general flexible robot that consists of all three joint types. 

Decades ago, the dynamic modeling and analysis of multi-link flexible robots have been well documented

[47,71,9,12,65,32,53,79,22,6,19,75,37,85,44] . There have also been attempts to generalize the kinematic and dynamic mod-

eling problems for the multi-link flexible robots, and most of these investigations focus on the multi-link flexible robots

consisting of all revolute joints. There were also studies considering the use of the prismatic joints for the flexible robots;

however, these studies mainly focused on the robot with one or two links only. Wang and Wei [81] and Al-Bedoor and

Khulief [5] investigated the dynamics of a sliding flexible link through a fixed prismatic joint. Ju et al. [33] , Yuh and Young

[84] and Pan et al. [67] developed the modeling for a two-link flexible robot with a fixed prismatic joint. Korayem et al.

[47] addressed the dynamic modelling of a multi-link flexible robot, of which each link rotates and reciprocates through

a fixed prismatic joint. Wang and Mills [82] studied a parallel robot that has the flexible links with the sliding prismatic

joints. Khadem and Pirmohammadi [37] formulated the dynamic equations for a multi-link flexible robot consisting of the

sliding prismatic joints as well. 

Although the dynamic modelling of the flexible robot that consists of the sliding prismatic joints ( Fig. 1 c) has been

considered in the researches by Khadem and Pirmohammadi [37] , Ju et al. [33] , and Wang and Mills [82] , the flexible

deformation of the sliding link, along which the prismatic joint slides, has been overlooked. In particular, little attention has

been paid to the kinematic and dynamic modelling of the multi-link flexible robots that have simultaneously the revolute

joints, the fixed prismatic joints and the sliding prismatic joints. Notice that combinations of different types of joints provide

the flexibilities in design and additional functions for the multi-link robots, to help meeting well the additional technical

requirements and expanding the scope of applications for the multi-link robots. 

Basically, the flexible robots are the continuous dynamical systems which are often characterized by an infinite number

of degrees of freedom and are governed by the nonlinear coupled differential equations; and the exact solution of such

systems is not practical. In order to formulate the dynamic equations, the continuous dynamical systems are usually dis-
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Table 1 

A summary of the related work and key references about the dynamic modeling and analysis of the flexible robots. 

Topics Related work and key references 

One link flexible robot [52,26,27,34,81,80,50,5,59,78,33,69] 

Two link flexible robot [65,55,67,84,2,8,11,29,35,38,63,7] 

Multi-link flexible robot [12,79,32,47,9,22,6,53,19,75,37,85,44,71,49,45,46] 

Newton-Euler’s equations – based approach [1,14,65,32,81,84,13,9,16,38] 

Lagrange’s equations - based approach [15,12,65,53,79,34,55,18,53,67,7,22,80,5,78,19,75,85,2,8,71,31,64,20,76,21,59,29] 

Kane’s equations - based approach [6,63] 

Gibbs-Appell’s equations - based approach [37,47,44–46] 

Hamilton’s equations - based approach [69,33] 

Finite element method - based formulation [23,68,32,65,78,4,58,35,36,5,67,82,79,28,30] 

Assumed mode method – based formulation [31,64,20,12,22,53,19,75,85,71,80,76,55,2,8,21,59,29,37,47,33,74,51] 

Implementation of flexible robots and 

experiments 

[61,47,57,73,66,83,43] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cretized by using two main methods, including (i) the Assumed Modes Method (AMM) and (ii) Finite Elements Method

(FEM). Theodore and Ghosal [77] and Dwivedy and Eberhard [24] showed that the main drawback of AMM is the difficulty

in finding the modes for links with the non-regular cross sections and the multi-link robots, and FEM normally requires

fewer computations; therefore, FEM lends itself ideally suited for the modeling of multi-links flexible robots. Practically,

FEM has been utilized by many authors for the dynamic formulation of flexible robots [23,68,32,65,78,4,58,35,36,5,67,82,79] .

In this approach, each link of a robot is divided into the finite beam elements of the same length. The kinetic energy and

the potential energy of each element are calculated to formulate the elemental mass and stiffness matrices correspondingly.

Unfortunately, the elemental mass and stiffness matrix are usually calculated in terms of the nodal coordinates. With re-

spect to the order of entries in some global vectors of the generalized coordinates, the index of the last four rows and the

last four columns of each elemental matrix is different from that of the other elemental matrices. Moreover, the elemental

matrices corresponding to elements on different links have different sizes. Therefore, constructions of the global mass and

stiffness matrices of governing equations usually require the complex computational procedures and transformations for as-

sembling the elemental mass and stiffness matrices respectively. Furthermore, in the case that the flexible robot consists of

the sliding and fixed prismatic joints, a construction of the global mass and stiffness matrices is even more complex since

the boundary conditions vary with respect to time. 

The above raised critical issues and problems lead to the motivations of developing a new kinematic and dynamic formu-

lation for the multi-link flexible robots. In this paper, a new kinematic modelling method for a planar n-link flexible robot

that consists of the revolute, fixed prismatic and sliding prismatic joints is presented and discussed. A new homogeneous

transformation matrix is addressed to describe the kinematics of both the joint motion and the link deformation. Since the

proposed matrix is given in a general form, it is therefore applicable to modelling of any planar flexible robots. In addition,

a new recursive formulation of dynamics for the flexible robots is also presented. Based on the finite element—Lagrangian

approach, all the elemental mass and stiffness matrices are transformed and expressed explicitly and globally with respect

to the entire generalized coordinates. Consequently, the global mass and stiffness matrices are formulated by summing over

all the elemental mass and stiffness matrices of the same size respectively. By using the symbolic computing syntaxes avail-

able in the symbolic computing environments, the formulation can be implemented in a simplified and efficient manner.

The proposed method in this study is more efficient and useful, especially when compared to the common methods which

use the complex schemes for assembling the global mass and stiffness matrices. In order to present validations of the newly

developed and proposed dynamic modelling method for multi-link flexible robots, the numerical examples and experiments

are implemented. 

The rest of the paper is organized as follows. Section 2 presents a brief literature review, especially the related work

as foundations for the study. Sections 3 and 4 present the kinematics, dynamics and numerical examples of the dynamic

analysis of a multi-link flexible robot respectively. Section 5 presents the experiments for validation of the forward dynamic

analysis results based on the proposed dynamic modelling method. Finally, the summary and conclusions are presented in

Section 6 . 

2. A brief literature review and related work 

In recent decades, a great deal of work has been devoted to the dynamic modeling and analysis of flexible robots. The

comprehensive literature reviews of the flexible robot dynamics and control were presented by Theodore and Ghosa [77] ,

Dwivedy and Eberhard [25] , Benosman and Le Vey [10] , Rahimi and Nazemizadeh [70] , Kiang et al. [40] , Sayahkarajy et al.

[72] , Lochan and Subudhi [54] , and Alandoli et al. [3] . Table 1 presents the summary of the related work and key references

about the dynamic modeling and analysis of the flexible robots. 

The contents and a number of the research about the one-link flexible robot dynamics are huge. The Lagrange’s equations

were used by Kalker and Olsder [34] and Li and Sankar [51] to derive the equations of motion of flexible robot and driven

mechanisms with flexible links. The dynamic equations were derived by Wang and Vidyasagar [80] for a class of multilink

manipulators with the last link flexible. Kwon and Book [50] reported a method to solve the inverse dynamic problem in
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time domain. Al-Bedoor and Khulief [5] and Tokhi et al. [78] emphasized on the finite element formulation of dynamic

equations, and Ju et al. [33] and Marghitu and Diaconescu [59] utilized AMM for the dynamic modelling. 

There has been a lot of effort s working on the dynamic modeling and analysis of two-link flexible robots. However, most

of these studies focused on the flexible robots with two revolute joints. Pan et al. [67] investigated the modeling of the

flexible robot with the fixed prismatic joints, in which the axial shortening effect of the link was taken into accounts. Yuh

and Young [84] studied a beam that has a rotational and translational motion, in which the time-varying partial differential

equation and the boundary conditions were derived to describe the lateral deflection of the beam. 

Recently, there has been a number of studies that focus on the dynamic modeling and analysis of the multi-link flexible

robots and the related robotic mechanisms. However, most of these studies emphasised on the flexible robots with the

use of the revolute joints. As discussed and mentioned in Section 1 , there was a few studies [48,37] that proposed the

methods for modeling of a multi-link flexible robot that uses the prismatic joints. However, the study done by Korayem

et al. [47] only considered the case in which each arm link of the given length rotates and reciprocates through a rigid joint.

The work done by Khadem and Pirmohammadi [37] focused on the sliding prismatic joint; however, the elasticity effects

that involve in the time-varying value of a link length, associated with the use of all types of the prismatic joint, have

not been investigated. Basically, the generalized methods and techniques for the kinematic and dynamical modelling of the

flexible robot that consists of the revolute, fixed prismatic and sliding prismatic joints have not been well studied. 

Apart from the works investigating different architectures of flexible robot, there has also been a wide spectrum of stud-

ies focusing on various analytical approaches, incorporated with FEM or AMM, for the dynamic modelling of the multi-link

flexible robot as shown in Table 1 . As previously mentioned, FEM has been applied for decades to model and analyse com-

plex structural engineering problems. Using FEM, Jonker [32] addressed the Newton Euler dynamic model for the flexible

robot using the rotary joins, with the use of separate rigid body displacements and actual deformations to describe the

current state of a finite element. In FEM, the behavior of the elasticity of a flexible robot arm is observed on a rigid body

motion in which the elastic deformation is then superimposed. FEM was also used for the dynamic modelling applications.

Du et al. [23] presented the general nonlinear dynamics model which was developed for three-dimensional (3D) flexible

robots. Each link is discretized by the finite elements with its inertia lumped at the nodes of each element. Naganathan

and Soni [65] investigated the coupling effects of kinematics and flexibility in the flexible robots. Augustynek and Adamiec-

ójcik [9] studied the mechanism with the flexible beam-like links which use the revolute joints. Usoro et al. [79] used

the Lagrangian approach for the mathematical modeling of the lightweight flexible robots. Pan et al. [67] developed a gen-

eral dynamic model for design and control of the flexible robots which use the prismatic joints. Tokhi et al. [78] presented

the theoretical and experimental investigations into the dynamic modelling and characterisation of a flexible robotic sys-

tem. Al-Bedoor and Khulief [5] formulated the dynamic model of a sliding link with a prismatic joint. Wang and Mills

[82] presented a finite element – Lagrangian formualtion of dynamic equations for a flexible-link planar parallel platform.

By using FEM and Kane’s equations, Amirouche and Xie [6] addressed a matrix formulation of the dynamical equations for

the flexible multibody systems. Heidari et al. [30] investigated a nonlinear finite element model for the dynamic analysis

of three-dimensional flexible link manipulators, in which both the geometric elastic nonlinearity and the foreshortening ef-

fects are considered. The use of FEM approach for the dynamic modelling of flexible multibody systems was discussed by

Geradin and Cardona [28] . Lochan et al. [54] discussed advantages of FEM in dynamic modelling of a flexible robot, and it

was showed that the main advantage of FEM over the other methods is that the connections in FEM are supposed to be

clamped free, with at least two modes shape per link. Another advantage of FEM over analytical solution methods is that it

is capable of handling nonlinear conditions easily. FEM can also handle irregularities in the structure and mixed boundary

conditions. Meanwhile, AMM has long been applied as well for the dynamic modelling and analysis of the flexible robots, in

which the link elasticity is usually modelled by a truncated finite modal series, in terms of the spatial mode eigenfunctions

and time-varying mode amplitudes. In particular, Shafei and Shafei [74] have employed AMM approach for the dynamic

modeling of the oblique impact of a multi-flexible-link robotic manipulator. It is noted that the dynamic modelling of the

flexible robots also needs to be considered when working on the control law design. Matsuno et al. [62] analysed the AM –

Lagrangian dynamic model to develop the closed-loop feedback control laws for a single link flexible robot. Bolandi and Es-

maeilzadeh [11] presented an exact tip trajectory tracking control of a flexible robot, based on the tip position and the strain

gauge measurements through the nonlinear control design. Based on Hamilton’s eqautions, Zhang et al. [86] formulated the

dynamic equations to control vibrations of the one-link flexible robot. 

For validation of the dynamic modelling and the control design, there has been a number of researches conducting exper-

iments on actual flexible robots. Massoud et al. [61] , Korayem et al. [47] , Cannon and Schmitz [17] and Luo [57] designed and

conducted experiments for one link flexible robot. Experiments for multi-link flexible robots were implemented by Shafei

and Korayem [73] , Nagaraj et al. [66] , Yim et al. [83] , and Korayem and Dehkordi [43] . In particular, Korayem and Dehkordi

[43] presented experiments for a mobile manipulator, with two flexible links and revolute–prismatic joints to demonstrate

the performance of a dynamic model formulated by themself. 

3. Kinematics of a planar flexible robot 

In this section, the kinematic model of a multi-link flexible robot is formulated and analysed. Specifically, let us consider

the case of a planar flexible robot consisting of n links and n joints. It is assumed that the elastic deformation of a link is

small. Each link is treated as an assemblage of a finite number of beam elements. 
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Fig. 2. A generalized schematic of an arbitrary pair of flexible links: a nominal & actual configuration. 

Table 2 

Joint variables and parameters of a link. 

Joint Type χ i ϑi u ( i −1 ) s u ( i −1 ) f a i Note 

R l i −1 θ ∗
i 

u ( i −1 )( 2 n i −1 +2 ) u ( i −1 )( 2 n i −1 +1 ) 0 ( ∗): joint variable 

P a d ∗
i 

γ i u ( i −1 )( 2 k +2 ) u ( i −1 )( 2 k +1 ) 0 k ∈ { 1 , 2 , 3 , ..., n i −1 } 
P b l i −1 γ i u ( i −1 )( 2 n i −1 +2 ) u ( i −1 )( 2 n i −1 +1 ) d ∗

i 
− l i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 presents a generalized schematic of an arbitrary pair of flexible links of a planar flexible robot, with an arbitrary

couple of links, namely link i − 1 and link i . A link i − 1 connects with a link i by a joint i which can be the following

three joint types: Revolute joints ( R ), Sliding prismatic joints ( P a ) and Fixed prismatic joints ( P b ). The link i with a length

l i is divided into n i elements of the equal length l ie . Each element j of the link i (element ij ) has two nodes. Each node

has a flexural displacement and a flexural slope. For the element ij , p i j = [ u (i )2 j−1 u (i )2 j u (i )2 j+1 u (i )2 j+2 ] T is the

vector of the flexural displacement and flexural slope. In Fig. 2 , u ( i −1 ) f and u ( i −1 ) s are the flexural displacement and slope

at the nominal articulation point between two links. If the joint i is a revolute joint or a fixed prismatic joint, the point

is at the distal end of link i − 1 , and u ( i −1 ) f = u ( i −1 )( 2 n i −1 +1 ) and u ( i −1 ) s = u ( i −1 )( 2 n i −1 +2 ) . If the joint i is a sliding prismatic

joint, the point is at the distal end of the sliding element k of the link i − 1 through the joint, and u ( i −1 ) f = u ( i −1 )( 2 k +1 ) and

u ( i −1 ) s = u ( i −1 )( 2 k +2 ) . 

Let us define O i ≡ ( O i X i Y i Z i ) as the local coordinate system attached to the link i , where the origin O i is fixed to the

proximal end of the link i and the axis X i points in the direction of the link i . Similarly, O i −1 ≡ ( O i −1 X i −1 Y i −1 Z i −1 ) is defined

for the link i − 1 . O 0 ≡ ( O 0 X 0 Y 0 Z 0 ) is the reference coordinate system fixed to the base. 

Lemma: The general homogeneous transformation matrix �( i −1 ) i describing the kinematics of both the motion of a joint

i and the deformation of a link i − 1 can be written in the following form: 

�( i −1 ) i = 

⎡ 

⎢ ⎣ 

cos 
(
ϑ i + u ( i −1 ) s 

)
− sin 

(
ϑ i + u ( i −1 ) s 

)
0 χi + a i cos 

(
ϑ i + u ( i −1 ) s 

)
sin 

(
ϑ i + u ( i −1 ) s 

)
cos 

(
ϑ i + u ( i −1 ) s 

)
0 u ( i −1 ) f + a i sin 

(
ϑ i + u ( i −1 ) s 

)
0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

, (1) 

where χ i , ϑi , u ( i −1 ) s , u ( i −1 ) f , and a i are symbolic notations representing the joint variables and parameters according to the

joint types as shown in Table 2 . 

Proof: In order to obtain the coordinate system O i X i Y i Z i , from O i −1 X i −1 Y i −1 Z i −1 , the following translations and rotations

are performed. 

(i) A pure translation of the coordinate system O i −1 along χ i in the direction X i −1 . The translating distance χ i will be

the joint variable d i , if the joint i is a sliding prismatic joint. Otherwise, χ i is the length l i −1 of the link i − 1 . The

homogeneous transformation matrix characterizing this transformation is denoted as T ( χ ). 
i 
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(ii) A translation of O i −1 , at the previous location, a long u ( i −1 ) f in the direction Y i −1 . If the joint i is a sliding prismatic

joint, the translating distance u ( i −1 ) f will be the flexural displacement u ( i −1 )( 2 k +1 ) calculated at the distal node of

an element k of the link i − 1 . At a time instance, this element currently slides inside the joint i . Otherwise, it is

equal to the flexural displacement at the tip of the link i − 1 , u ( i −1 )( 2 n i −1 +1 ) . The homogeneous transformation matrix

describing this translation is denoted as T ( u ( i −1 ) f ) . 

It is noted that, since the small elastic deformations are assumed, the translation (ii) is also assumed to be carried out

before the next rotation (iii). 

(i) A rotation of O i −1 , at the previous location, around Z i −1 . If the joint i is a sliding prismatic joint, the rotation angle

u ( i −1 ) s will be the flexural slope u ( i −1 )( 2 k +2 ) calculated at the distal node of the element k of the link i − 1 . At a time

instance, this element currently slides inside the joint i . Otherwise, it is equal to the flexural slope at the tip of the

link i − 1 , u ( i −1 )( 2 n i −1 +2 ) The homogeneous transformation matrix representing this rotation is R ( u ( i −1 ) s ) . 

(ii) A rotation of O i −1 , at the previous location, around Z i −1 . If the joint i is a revolute joint, the rotation angle ϑi will be

the joint variable θ i . Otherwise, it is the geometric angle γ i between the link i − 1 and the link i . The homogeneous

transformation matrix is R ( ϑi ). 

(iii) A translation of O i −1 , at the previous location, back to the proximal end of the link i . If the joint i is a fixed prismatic

joint, a i = d i − l i , where d i is the joint variable. Otherwise, it is assumed that a i = 0 . The homogeneous transformation

matrix is T ( a i ). 

Consequently, the cumulative transformation matrix is calculated as follows: 

�( i −1 ) i = T ( χi ) T 

(
u ( i −1 ) f 

)
R 

(
u ( i −1 ) s 

)
R ( ϑ i ) T ( a i ) 

�( i −1 ) i = 

⎡ 

⎢ ⎣ 

cos 
(
ϑ i + u ( i −1 ) s 

)
− sin 

(
ϑ i + u ( i −1 ) s 

)
0 χi + a i cos 

(
ϑ i + u ( i −1 ) s 

)
sin 

(
ϑ i + u ( i −1 ) s 

)
cos 

(
ϑ i + u ( i −1 ) s 

)
0 u ( i −1 ) f + a i sin 

(
ϑ i + u ( i −1 ) s 

)
0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

. (2)

By using the matrices �( i −1 ) i , the kinematics of the flexible arm can be systematically determined. Given a value of x,

x ∈ [0, l ie ], on the element j of the link i , in the local frame O i , the point r ij ( x ) can be determined as follows: 

r i j ( x ) = 

⎡ 

⎢ ⎣ 

( j − 1 ) l ie + x 
w i j ( x ) 

0 

1 

⎤ 

⎥ ⎦ 

, (3)

where the flexural displacement at the point x is determined as follows: 

w i j ( x ) = 

∑ 4 

m =1 
φm 

( x ) u ( i ) ( 2 j−2+ m ) . (4)

By using the transformation matrices �( i −1 ) i ( i = 1 ÷ n ), in the reference frame O 0 , the vector r 0 ij ( x ) can be calculated as

follows: 

r 0 i j ( x ) = �0 i r i j ( x ) , (5)

where 

�0 i = �01 �12 ... �( i −1 ) i . (6)

To demonstrate the kinematic modelling as proposed, all nine (3 2 ) feasible configurations of a generalized two-link flex-

ible robot that consists of all three joint types are presented in details in Appendix. For all configurations, the proposed

transformation matrix is applied to describe the kinematics of the robots. The position of the distal end of the first link and

the arm tip are calculated for both the flexible robot and the rigid robot of the same geometric parameters. The following

are the main summaries from the above calculations and analyses: (a) if the elastic deformation of the links is ignored,

the kinematic behavior of a flexible robot and the corresponding rigid robot will be the same; (b) applying the proposed

matrix, a kinematic modelling process for a flexible robot is quite familiar and common in the field of robotics; and (c) the

proposed matrix is applicable to any planar flexible robots. 

4. Dynamics of a planar flexible robot 

In this section, the dynamic modelling of the general planar flexible robot is presented. The equations of motion are

written by applying the Lagrangian formulation. Particularly, two new recursive formulations are introduced to formulate

the global mass and stiffness matrices respectively. 

In the formulation of the global mass matrix, the velocity of a mass point on an arbitrary element of a link i is calculated

via Jacobian matrix and the generalized velocities. The elemental kinetic energy is thus calculated and expressed in terms
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of the entire generalized velocities. Hence, the number of rows and the number of columns of every elemental mass matrix

equals to the number of the generalized coordinates. 

In the formulation of the global stiffness matrix, a vector of extended shape functions is defined. The size of this vector

equals to the size of the vector of generalized coordinates. The flexural displacement of a point on an arbitrary element of

a link i can be calculated via the defined vector. Thus, the elemental potential energy is expressed in terms of the entire

generalized coordinates, and the number of rows and the number of columns of every elemental stiffness matrix equals to

the number of the generalized coordinates. 

Consequently, the global mass and stiffness matrices can be formulated by summing over all the elemental mass and

stiffness matrices of the same size, respectively. 

Based on the Finite Elements – Lagrangian approach, the equation of motions for the flexible robot can be expressed as

follows: 

M ( q ) ̈q + C 

(
q , ˙ q 

)
˙ q + Kq + G ( q ) = F . (7) 

The equation is written with respect to the global vector of the generalized coordinates, q =
[ t p 1 κT 

1 
p 2 κT 

2 
... p n κT 

n ] 
T 

, where p i is variable of a joint i , and κi = [ u (i )1 u (i )2 ... u (i )( 2 n i +1 ) u (i )( 2 n i +2 ) ] T is 

the vector of the elastic displacements of all elements on a link i . 

The vector q includes n joint variables p 1 , p 2 , ..., p n and 

∑ n 
i =1 ( 2 n i + 2 ) are the total nodal displacements and slopes of all

elements on all links. Thus, the size of q is ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) × 1 . 

F = [ 
τ1 0 ... 0 ︸ ︷︷ ︸ 

2 n 1 +2 

... τn 0 ... 0 ︸ ︷︷ ︸ 
2 n n +2 

] T is the vector of the applied forces/torques imposing on n joints. 

The size of the global matrices M, C and K is ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) × ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) . 

4.1. Recursive formulation of the global mass matrix 

Consider an element j of a link i , the kinetic energy of the element is computed as follows: 

T i j = 

1 

2 

∫ l ie 

0 

m i ̇ r 
T 
0 i j ̇ r 0 i j dx. (8) 

In the reference frame, the velocity of the mass point located at r 0 ij ( x ) can be computed as follows: 

˙ r 0 i j = 

∂ r 0 i j 

∂q 

˙ q . (9) 

Thus, 

T i j = 

1 

2 

˙ q 

T 

⎛ 

⎝ 

l ie ∫ 
0 

m i J 
T 
i j J i j dx 

⎞ 

⎠ ˙ q = 

1 

2 

˙ q 

T M i j ̇ q , (10) 

where Jacobian matrix is presented as follows: 

J i j = 

∂ r 0 i j 

∂q 

. (11) 

Consequently, the elemental mass matrix for an element j of a link i can be written as follows: 

M i j = [ m sp ] i j = 

l ie ∫ 
0 

m i J 
T 
i j J i j dx. (12) 

The size of matrix M ij is ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) × ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) . 

The indexes are presented as follows: s, p = 1 ÷ ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) . 

It is noted that for all s and p from ( i + 2 j − 1 + 

∑ i −1 
u =1 ( 2 n u + 2 ) ) to ( i + 2 j + 1 + 

∑ i −1 
u =1 ( 2 n u + 2 ) ) , 

m sp = 

m i l ie 
420 

⎡ 

⎢ ⎣ 

156 22 l ie 54 −13 l ie 
22 l ie 4 l 2 

ie 
13 l ie −3 l 2 

ie 

54 13 l ie 156 −22 l ie 
−13 l ie −3 l 2 

ie 
−22 l ie 4 l 2 

ie 

⎤ 

⎥ ⎦ 

(13) 

The total kinetic energy of the robot system is presented as follows: 

T = 

∑ n 

i =1 

∑ n i 

j=1 
T i j = 

1 

2 

˙ q 

T M ̇ q 

T . (14) 

Finally, the global mass matrix is obtained as follows: 

M = 

∑ n 

i =1 

∑ n i 

j=1 
M i j . (15) 
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Fig. 3. A flowchart of the algorithm for formulation of the global mass and stiffness matrices. 

 

 

 

 

 

 

 

The recursive algorithm for the symbolic formulation of the global mass matrix M is shown in Fig. 3 . The inputs of the

formulation are the number of links n , the number of finite elements on the links n 1 , n 2 , ... n n , and the other parameters of

the robot system. The global matrices are initiated as zero matrices. For every element j of a link i , the position vector r 0 ij ( x )

is determined with Eq (5) , the Jacobian J 
i j 

is implemented with Eq (11) , and the elemental mass matrix M ij is calculated

with Eq (12) . For all elements on all links, the above steps are recursively looped to archive all M ij . Finally, the global matrix

M is obtained with Eq (15) . 

Notice that the symbolic formulation of M ij and M can be effectively im plemented by using a few syntaxes in the sym-

bolic computing environments. For example, in Maple, a software developed by Waterloo Maple, two syntaxes Jacobian and

int are needed for the Jacobian matrix formulation, J i j = 

∂ r 0 i j 

∂q 
, and the integration M i j = 

l ie ∫ 
0 

m i J 
T 
i j 

J i j dx , respectively. 
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4.2. Recursive formulation of the global stiffness matrix 

The elastic potential energy of element j of link i is calculated as: 

P i j = 

1 

2 

∫ l ie 

0 

E I i 

(
∂ 2 w i j ( x ) 

∂ x 2 

)2 

dx (16) 

Based on the vector of shape functions S = [ φ1 (x ) φ2 (x ) φ3 (x ) φ4 (x ) ] T , the following notation S ij (the vector

of extended shape functions) is defined as an elemental vector of shape functions, which corresponds to an element j on a

link i . The size of S ij equals to the size of q : 

S i j = 

[ 

0 ... 0 ︸ ︷︷ ︸ 
( i +2 j−2+ ∑ i −1 

u =1 ( 2 n u +2 ) ) 

S T 0 ... 0 

] T 

( n + 
∑ n 

i =1 ( 2 n i +2 ) ) ×1 

(17) 

The flexural displacement w ij ( x ) expressed in Eq (4) is now recalculated with the following equation: 

w i j ( x ) = S T i j q (18) 

Substituting Eq (18) into Eq (16) yields the following result: 

P i j = 

1 

2 

∫ l ie 

0 

E I i 

(
∂ 2 S T 

i j 

∂ x 2 
q 

)2 

dx, (19) 

U i j = 

(
∂ 2 S T 

i j 

∂ x 2 

)
(20) 

Thus, 

P i j = 

1 

2 

q 

T 

(
E I i 

∫ l ie 

0 

U 

T 
i j U i j dx 

)
q = 

1 

2 

q 

T K i j q (21) 

Consequently, the elemental stiffness matrix for element j of link i can be written as: 

K i j = [ k sp ] i j = E I i 

∫ l ie 

0 

U 

T 
i j U i j dx (22) 

The size of matrix K ij is ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) × ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) , and the indexes s, p = 1 ÷ ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) . 

The total elastic potential energy of the robot is calculated as follows: 

P = 

∑ n 

i =1 

∑ n i 

j=1 
P i j = 

1 

2 

q 

T Kq (23) 

Finally, the global stiffness matrix can be calculated as follows: 

K = 

n ∑ 

i =1 

n i ∑ 

j=1 

K i j (24) 

The matrices K and K ij have the same size of ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) × ( n + 

∑ n 
i =1 ( 2 n i + 2 ) ) . 

It is noted that, for all 

s or p / ∈ 

[ ( 

i + 2 j − 1 + 

i −1 ∑ 

u =1 

( 2 n u + 2 ) 

) 

, 

( 

i + 2 j + 1 + 

i −1 ∑ 

u =1 

( 2 n u + 2 ) 

) ] 

, (25) 

the corresponding entries in matrix K ij are equal to zero, k sp = 0 . This is because w ij ( x ) calculated via Eq (18) depends only

on four nodal elastic displacements at the two nodes of an element j on a link i . 

For all s and p ∈ 

[ ( 

i + 2 j − 1 + 

i −1 ∑ 

u =1 

( 2 n u + 2 ) 

) 

, 

( 

i + 2 j + 1 + 

i −1 ∑ 

u =1 

( 2 n u + 2 ) 

) ] 

, (26) 

the corresponding entries k sp are the following constants: 

k sp = 

E I i 

l 3 
ie 

⎡ 

⎢ ⎣ 

12 6 l ie −12 6 l ie 
6 l ie 4 l 2 

ie 
−6 l ie 2 l 2 

ie 

−12 −6 l ie 12 −6 l ie 
6 l ie 2 l 2 

ie 
−6 l ie 4 l 2 

ie 

⎤ 

⎥ ⎦ 

(27) 

Similar to the symbolic formulation of the global mass matrix, the recursive algorithm for the formulation of K ij and K

is shown in Fig. 3 , and it can be implemented effectively in the symbolic computing environments. 
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Table 3 

Structural parameters and the inputs of applied forces/torques for simulation and analysis. 

Parameters of models C P a R C R P b 

Length of Link 1 (m) l 1 = 0 . 2 l 1 = 0 . 2 

Mass of Link 1 (kg) m 1 = 1 . 4 m 1 = 3 . 9 

Angle between links (rad) γ1 = 

π/ 2 γ2 = 0 

Mass of payload (g) m t = 100 m t = 100 

Length of Link 2 (m) l 2 = 0 . 8 l 2 = 0 . 8 

Number of elements of Link 2 n = 3 n = 5 

Cross section area of Link 2 (m 

2 ) A = 1 . 2 × 10 −4 A = 4 . 5 × 10 −5 

Mass density of Link 2 (kg/m 

3 ) ρ = 7850 ρ = 7850 

Mass per meter of Link 2 (kg/m) m 2 = ρ.A = 0 . 942 m 2 = ρ.A = 0 . 35 

Young’s modulus (N/m 

2 ) E = 2 × 10 10 E = 2 × 10 10 

Inertial moment of a cross section (m 

4 ) I = 9 × 10 −11 I = 8 . 44 × 10 −12 

Applied forces/torques Bang-Bang rule Bang-Bang rule 

Simulation time (sec) 10 20 
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4.3. Boundary conditions 

Since a link i is connected with the previous one via a revolute joint or a sliding prismatic joint, it is assumed that

the elastic displacements at the first node of the first element of the link i vanishes ( u (i )1 = u (i )2 = 0 ). Therefore, such the

entries u ( i )1 and u ( i )2 in a vector q are eliminated. The corresponding rows and columns in M, C, K are removed. This is a

fixed boundary condition. 

In the case that a link i is connected with the previous one via a fixed prismatic joint, it is assumed that the elastic

displacements of the element k that currently slides inside the joint vanishes. The value of k changes with respect to time.

This is a time dependent boundary condition which is implemented in the dynamic analysis process. 

In the case that a link i is connected with the previous one via a sliding prismatic joint, the elastic displacements

u ( i −1 )( 2 k +1 ) and u ( i −1 )( 2 k +2 ) of the element k on link i − 1 that currently slides inside the joint is considered as the elastic

displacements of the nominal articulation point between a link i − 1 and a link i . This is also a time dependent boundary

condition. 

4.5. Numerical examples of the dynamic analysis 

In this study, two robot configurations C P a R and C R P b with the last link flexible are modelled and simulated. The first robot

 P a R is a two-joints arm in which the first joint is a sliding prismatic joint P a , and the second one is a revolute joint R . The

second robot C R P b is a two-joints arm that consists of a revolute joint R and a fixed prismatic joint P b . Simulation of both the

robots of different prismatic joint sequence is to demonstrate more clearly the flexibility effect of the last link. In the first

robot C P a R , the last link is connected with the previous one via a revolute joint, meanwhile in the second robot C R P b , the

last link is connected with the previous link via a prismatic joint. Structural parameters of the two robots and the inputs of

applied forces/torques are shown in Table 3 . 

To demonstrate the flexibility effect, the simulation results of the flexible robots are compared to that of the rigid robot

of the same parameters. 

The simulation results are shown in Figs. 5–9 . With the input of Bang-bang applied torque/force presented in Fig. 4 , the

time evolution of the joint displacements for both the flexible robots and rigid robots are shown in Fig. 5 . After 0.5 s, the

dynamic behavior of a system mainly depends on their inertia. The flexural displacements and slopes at the end-effectors

are illustrated in Fig. 6 . Figs 7 –9 present the trajectories of the endpoint of the robotic arm. The calculation results show

the deviation between the trajectories of the flexible and rigid robots. 

5. Experiments for validation of the forward dynamic analysis results 

The experiments were designed and conducted for validation of the forward dynamic analysis results based on the pro-

posed dynamic modelling method. 

A prototype of a robot and experimental set-ups are shown in Figs. 10 and 11 . The system includes a robot, a payload, two

flex sensors of 4.5-inch FSL0095-103-ST, one motor GB 37-3530 DC 12 V, one NEMA 17 stepper motor 200 steps/rev 12 V and

two rotary encoders LPD3806-600BM-G5-24V-2P-AB. A Terminal Board STM32 F407/417 is used as the main board of the

control system of the robot. The STM32F407/417 offers the performance of the Cortex TM -M4 core (with floating point unit)

running at 168 MHz. The control program is written in KeilC programming language. The readings of the experiments are

displayed in Labview software. The robot is constructed with two joints. The first joint is a prismatic joint that is actuated

by the motor (1) through the lead screw (2) . The second joint is a revolute joint driven by the motor (4) . The robot is

supposed to operates in the horizontal plane. The two flex sensors FSL0095-103-ST 112.24 mm in length are adhered to the

surface and towards both ends of the flexible link. The input voltage of the sensors is 4.98 V , the maximum resistance of

the sensors is110 k �. Notice that there have been some types of sensors such as the accelerometer [39,60] and the strain
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Fig. 4. The Bang-bang applied force/torque. 

Fig. 5. The joint displacements of the flexible robots and the rigid robots. 

 

 

 

 

 

 

 

 

 

 

 

gauge [57] that could be used as alternatives to the flex sensor for measuring the elastic deflection of the link. However, the

bend sensors have been widely used in various applications, since it is a low cost, and it is easy to use. It does not need

complicated signal processing because the bend angle of the sensor is proportional to the output signal of the displacement

sensing module. 

Structural parameters of the robot are given in Table 2 , except some parameters were changed as L 1 = 0 . 005(m ) ; L 2 =
0 . 3(m ) ;m t = 20(g) ; A = 2 × 10 −5 ( m 

2 ) . 

The Bang-bang inputs of the applied force/torque are given in Fig. 12 , of which the values were transformed into the

voltage and pulse signals for the motors. The displacement of the joints by the experiments and by the simulation are

shown in Fig. 13 . In the steady state, the deviation between the experimental value and the computational value is about

2.5% of the magnitude. 

Fig. 14 presents the flexural displacement at the second node of the first element of a link 2, and the flexural displace-

ment at the arm tip. Fig. 15 shows the deviation between the computational value and the experimental value of both the

flexural displacements mentioned in Fig. 14 . It can be seen that the shape and the value of the simulation curves and the

experimental readings are well matching, which shows a good validation of the proposed dynamic modelling and analysis

results. 
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Fig. 6. The flexural displacement and slope at the end-effector. 

Fig. 7. A trajectory of the end-effector in the OX axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Discussions and conclusions 

There are different studies of using FEM to formulate the dynamic equations of the flexible robots. Based on the La-

grangian formulation, the dynamic equations are derived for (i) One revolute joint flexible robot [78,4] ; and [58] , (ii) Two

link manipulator consisting of two revolute joints [35,36] , (iii) One link flexible robot with one fixed prismatic joint ( [5] ; and

[67] ), (iv) Sliding prismatic joints of a parallel robot [82] , (v) Multi-link robots [79] . Meanwhile, based on the Newton Euler

method, Jonker [32] and Naganathan and Soni [65] addressed the finite element formulations of the dynamic equations, in

which the elemental matrices were derived with respect to the nodal degrees of freedom. 

It should be noticed that, in parallel with the reviewed studies using FEM to formulate the dynamic equations for the

flexible robots, there have also been researches using AMM to formulate recursively the dynamic equations for multibody

systems and special flexible robotic systems. Lugris et al. [56] approximated the elastic displacements at a node in a flexible

body of a multibody system by using a linear combination of static and dynamic deformation modes with respect to modal

amplitudes. Kim and Haug [41,42] used AMM to proposed a recursive formulation for flexible multibody dynamics. By using

AMM incorporated with Gibbs-Appell formulation, Korayem and Shafei [45,46] derived recursively the dynamic equations for

some complex flexible robotic systems: the N-viscoelastic manipulators and the N-viscoelastic link manipulators mounted

on a mobile platform. Meanwhile, Korayem et al. [49] investigated the dynamic formulation for the mobile manipulator with

elastic joints. 
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Fig. 8. A trajectory of the end-effector in the OY axis. 

Fig. 9. The deviation between the trajectories of the flexible robot and the rigid one. 

Fig. 10. A prototype of a planar flexible robot for the experimental work: (1) DC motor, (2) Lead screw, (3) Rotary encoder 1, (4) Step motor, (5) Flex 

sensor, (6) Rotary encoder 2, (7) Flexible link. 
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Fig. 11. A block diagram of the experimental setup for validation of the forward dynamic analysis results. 

Fig. 12. The applied force/torque for the experiment. 

Fig. 13. The joint displacements. (a): A displacement of the prismatic joint. (b): A displacement of the revolute joint. 
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Fig. 14. The flexural displacement at the second node of the first element of a link 2 and at the arm tip. 

Fig. 15. A deviation between the computational value and the experimental value of both the flexural displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is clearly seen that most of the previous finite element methods of the dynamic modelling did emphasize on the

specific configurations of a flexible robot that consists of one or two links. Although Usoro et al. [79] , Jonker [32] and

Naganathan and Soni [65] developed the dynamic formulation for a multi-link robot, it is only used for the case of the robot

that consists of all revolute joints. In this study, the kinematic and dynamic modelling was successfully investigated for the

case of a multi-link flexible robot that consists of the revolute joints, the fixed prismatic joints and the sliding prismatic

joints. The use of the multiple types of joints for a multi-link robot allows to maximise the flexibility in the design and

functionality of a robot, to meet well more complex technical requirements and customer need. 

In the previously proposed dynamic modelling methods, each elemental matrix is usually expressed in terms of four

nodal elastic deformations of the corresponding element. Thus, the index of the last four rows and the last four columns of

each elemental matrix is different from that of the other elemental matrices. The global matrices must be assembled from all

elemental matrices. Assembling the global mass and stiffness matrices from total 2 η elemental mass and stiffness matrices

involves a computational procedure with the time complexity of O(2 η). This because the computational procedure requires

at least two computational loops with a time complexity of O(2 η) for assembling the global mass and stiffness matrices.

In the dynamic modelling method of this study, such the complex procedure is not required. The global mass and stiffness

matrices are effectively computed by summing all over elemental mass and stiffness matrices of the same size, respectively.

The symbolic formulation is presented in a general and compact form that is ready for the symbolic programming. It is even

more efficient for the cases in which a large number of the finite elements on the links is considered. 

In conclusions, a new kinematic and dynamic modelling method of a multi-link planar flexible robot is successfully de-

veloped. Based on the Finite Element - Lagrangian approach, the kinematic modeling issues of the robot are generalized,

taking into accounts the flexibility effects of links. For the arbitrary pair of the links, a new definition of the local coordinate
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system that is attached to each link is introduced. In addition, a new transformation matrix that describes the kinematics

of both the motion of the joint and the deformation of the links was well addressed and discussed in details. It is shown

that the proposed transformation matrix in this study is applicable to work on the dynamic modelling of any planar flexible

robots. The additional contribution of this study is that a recursive symbolic formulation of the dynamic equations is newly

introduced to the field of robotics. In comparison to the previously proposed methods, the time complexity of the formu-

lation is reduced by O(2 η), where η is the number of beam elements on the links. Furthermore, it was well demonstrated

that the proposed dynamic modelling formulation can be implemented in a simplified and efficient manner, by using the

symbolic computing syntaxes that are available in the symbolic and numeric computing environments such as MATLAB and

Maple. Finally, the numerical examples and experiments were implemented to validate the proposed dynamic modelling

method; and it clearly shows a close match about the results between the simulation and the experiment. 
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Appendix 

Kinematics of nine configurations of the general two link flexible robot that consists of three types of joints 

1. Schematic diagrams of the mechanisms of the robot 
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2. The transformation matrices of the robot 

�01 �12 

RR �01 = 

⎡ 

⎢ ⎣ 

cos θ1 − sin θ1 0 0 

sin θ1 cos θ1 0 0 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

�12 = 

⎡ 

⎢ ⎣ 

cos ( θ2 + u 1( 2 n 1 +2 ) ) − sin ( θ2 + u 1( 2 n 1 +2 ) ) 0 l 1 
sin ( θ2 + u 1( 2 n 1 +2 ) ) cos ( θ2 + u 1( 2 n 1 +2 ) ) 0 u 1( 2 n 1 +1 ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

RPa �01 = 

⎡ 

⎢ ⎣ 

cos θ1 − sin θ1 0 0 

sin θ1 cos θ1 0 0 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

�12 = 

⎡ 

⎢ ⎣ 

cos ( γ2 + u 1( 2 k +2 ) ) − sin ( γ2 + u 1( 2 k +2 ) ) 0 d 2 
sin ( γ2 + u 1( 2 k +2 ) ) cos ( γ2 + u 1( 2 k +2 ) ) 0 u 1( 2 k +1 ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

RPb �01 = 

⎡ 

⎢ ⎣ 

cos θ1 − sin θ1 0 0 

sin θ1 cos θ1 0 0 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

�12 = 

⎡ 

⎢ ⎣ 

cos ( γ2 + u 1( 2 n 1 +2 ) ) − sin ( γ2 + u 1( 2 n 1 +2 ) ) 0 l 1 + a 2 cos ( γ2 + u 1( 2 n 1 +2 ) ) 

sin ( γ2 + u 1( 2 n 1 +2 ) ) cos ( γ2 + u 1( 2 n 1 +2 ) ) 0 u 1( 2 n 1 +1 ) + a 2 sin ( γ2 + u 1( 2 n 1 +2 ) ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

a 2 = d 2 − l 2 

PaR �01 = 

⎡ 

⎢ ⎣ 

cos γ1 − sin γ1 0 d 1 
sin γ1 cos γ1 0 0 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

�12 = 

⎡ 

⎢ ⎣ 

cos ( θ2 + u 1( 2 n 1 +2 ) ) − sin ( θ2 + u 1( 2 n 1 +2 ) ) 0 l 1 
sin ( θ2 + u 1( 2 n 1 +2 ) ) cos ( θ2 + u 1( 2 n 1 +2 ) ) 0 u 1( 2 n 1 +1 ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

P aP a �01 = 

⎡ 

⎢ ⎣ 

cos γ1 − sin γ1 0 d 1 
sin γ1 cos γ1 0 0 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

�12 = 

⎡ 

⎢ ⎣ 

cos ( γ2 + u 1( 2 k +2 ) ) − sin ( γ2 + u 1( 2 k +2 ) ) 0 d 2 
sin ( γ2 + u 1( 2 k +2 ) ) cos ( γ2 + u 1( 2 k +2 ) ) 0 u 1( 2 k +1 ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

PaPb �01 = 

⎡ 

⎢ ⎣ 

cos γ1 − sin γ1 0 d 1 
sin γ1 cos γ1 0 0 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

�12 = 

⎡ 

⎢ ⎣ 

cos ( γ2 + u 1( 2 n 1 +2 ) ) − sin ( γ2 + u 1( 2 n 1 +2 ) ) 0 l 1 + a 2 cos ( γ2 + u 1( 2 n 1 +2 ) ) 

sin ( γ2 + u 1( 2 n 1 +2 ) ) cos ( γ2 + u 1( 2 n 1 +2 ) ) 0 u 1( 2 n 1 +1 ) + a 2 sin ( γ2 + u 1( 2 n 1 +2 ) ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

a 2 = d 2 − l 2 

PbR 
�01 = 

⎡ 

⎢ ⎣ 

cos γ1 − sin γ1 0 a 1 cos γ1 

sin γ1 cos γ1 0 a 1 sin γ1 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

a 1 = ( d 1 − l 1 ) 

�12 = 

⎡ 

⎢ ⎣ 

cos ( θ2 + u 1( 2 n 1 +2 ) ) − sin ( θ2 + u 1( 2 n 1 +2 ) ) 0 l 1 
sin ( θ2 + u 1( 2 n 1 +2 ) ) cos ( θ2 + u 1( 2 n 1 +2 ) ) 0 u 1( 2 n 1 +1 ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

PbPa 
�01 = 

⎡ 

⎢ ⎣ 

cos γ1 − sin γ1 0 a 1 cos γ1 

sin γ1 cos γ1 0 a 1 sin γ1 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

a 1 = ( d 1 − l 1 ) 

�12 = 

⎡ 

⎢ ⎣ 

cos ( γ2 + u 1( 2 k +2 ) ) − sin ( γ2 + u 1( 2 k +2 ) ) 0 d 2 
sin ( γ2 + u 1( 2 k +2 ) ) cos ( γ2 + u 1( 2 k +2 ) ) 0 u 1( 2 k +1 ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

P bP b
�01 = 

⎡ 

⎢ ⎣ 

cos γ1 − sin γ1 0 a 1 cos γ1 

sin γ1 cos γ1 0 a 1 sin γ1 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

a 1 = ( d 1 − l 1 ) 

�12 = 

⎡ 

⎢ ⎣ 

cos ( γ2 + u 1( 2 n 1 +2 ) ) − sin ( γ2 + u 1( 2 n 1 +2 ) ) 0 l 1 + a 2 cos ( γ2 + u 1( 2 n 1 +2 ) ) 

sin ( γ2 + u 1( 2 n 1 +2 ) ) cos ( γ2 + u 1( 2 n 1 +2 ) ) 0 u 1( 2 n 1 +1 ) + a 2 sin ( γ2 + u 1( 2 n 1 +2 ) ) 

0 0 1 0 

0 0 0 1 

⎤ 

⎥ ⎦ 

a 2 = d 2 − l 2 

3. The position of the distal end of the first link of a robot 

In the following table, the position of the endpoint of the first link for both the flexible robot and the rigid robot is

determined. It is shown that if the flexible deformation is neglected, the kinematics of the first link of both the robots will

be the same. 

Rigid robot Flexible robot 

RR ;
RPa ;
RPb 

r 01 = 

[
L 1 cos θ1 

L 1 sin θ1 

]
r 01 = 

[
L 1 cos θ1 − u 1( 2 n 1 +1 ) sin θ1 

L 1 sin θ1 + u 1( 2 n 1 +1 ) cos θ1 

]
PaR ;
P aP a ;
PaPb 

r 01 = 

[
L 1 cos γ1 + d 1 

L 1 sin γ1 

]
r 01 = 

[
L 1 cos γ1 + d 1 − u 1( 2 n 1 +1 ) sin γ1 

L 1 sin γ1 + u 1( 2 n 1 +1 ) cos γ1 

]
PbR ;
PbPa ;
P bP b 

r 01 = 

[
d 1 cos γ1 

d 1 sin γ1 

]
r 01 = 

[
d 1 cos γ1 − u 1( 2 n 1 +1 ) sin γ1 

d 1 sin γ1 + u 1( 2 n 1 +1 ) cos γ1 

]
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4. The position of the end-effector of a robot 

Rigid Robot Flexible Robot 

RR r 0 E = 

[
L 1 cos θ1 + L 2 cos ( θ1 + θ2 ) 

L 1 sin θ1 + L 2 sin ( θ1 + θ2 ) 

]
r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

L 1 cos θ1 − u 1( 2 n 1 +1 ) sin θ1 + L 2 cos ( θ1 + θ2 + u 1( 2 n 1 +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( θ1 + θ2 + u 1( 2 n 1 +2 ) ) 

L 1 sin θ1 + u 1( 2 n 1 +1 ) cos θ1 + L 2 sin ( θ1 + θ2 + u 1( 2 n 1 +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( θ1 + θ2 + u 1( 2 n 1 +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

RPa r 0 E = 

[
d 2 cos θ1 + L 2 cos ( θ1 + γ2 ) 

d 2 sin θ1 + L 2 sin ( θ1 + γ2 ) 

]
r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 2 cos θ1 − u 1( 2 k +1 ) sin θ1 + L 2 cos ( θ1 + γ2 + u 1( 2 k +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( θ1 + γ2 + u 1( 2 k +2 ) ) 

d 2 sin θ1 + u 1( 2 k +1 ) cos θ1 + L 2 sin ( θ1 + γ2 + u 1( 2 k +2 ) ) 

+ u 2( 2 n 2 +1 ) sin ( θ1 + γ2 + u 1( 2 k +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

RPb r 0 E = 

[
L 1 cos θ1 + d 2 cos ( θ1 + γ2 ) 

L 1 sin θ1 + d 2 sin ( θ1 + γ2 ) 

]
r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

L 1 cos θ1 − u 1( 2 n 1 +1 ) sin θ1 + d 2 cos ( θ1 + γ2 + u 1( 2 n 1 +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( θ1 + γ2 + u 1( 2 n 1 +2 ) ) 

L 1 sin θ1 + u 1( 2 n 1 +1 ) cos θ1 + d 2 sin ( θ1 + γ2 + u 1( 2 n 1 +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( θ1 + γ2 + u 1( 2 n 1 +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

PaR r 0 E = 

⎡ 

⎢ ⎣ 

d 1 + L 1 cos γ1 

+ L 2 cos ( γ1 + θ2 ) 

L 1 sin γ1 + L 2 sin ( γ1 + θ2 ) 

⎤ 

⎥ ⎦ 

r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 1 + L 1 cos γ1 − u 1( 2 n 1 +1 ) sin γ1 + L 2 cos ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

L 1 sin γ1 + u 1( 2 n 1 +1 ) cos γ1 + L 2 sin ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

P aP a r 0 E = 

⎡ 

⎢ ⎣ 

d 1 + d 2 cos γ1 

+ L 2 cos ( γ1 + γ2 ) 

d 2 sin γ1 + L 2 sin ( γ1 + γ2 ) 

⎤ 

⎥ ⎦ 

r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 1 + d 2 cos γ1 − u 1( 2 k +1 ) sin γ1 + L 2 cos ( γ1 + γ2 + u 1( 2 k +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( γ1 + γ2 + u 1( 2 k +2 ) ) 

d 2 sin γ1 + u 1( 2 k +1 ) cos γ1 + L 2 sin ( γ1 + γ2 + u 1( 2 k +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( γ1 + γ2 + u 1( 2 k +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

PaPb r 0 E = 

⎡ 

⎢ ⎣ 

d 1 + L 1 cos γ1 

+ d 2 cos ( γ1 + γ2 ) 

L 1 sin γ1 + d 2 sin ( γ1 + γ2 ) 

⎤ 

⎥ ⎦ 

r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 1 + L 1 cos γ1 − u 1( 2 n 1 +1 ) sin γ1 + d 2 cos ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

L 1 sin γ1 + u 1( 2 n 1 +1 ) cos γ1 + d 2 sin ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

PbR r 0 E = 

[
d 1 cos γ1 + L 2 cos ( γ1 + θ2 ) 

d 1 sin γ1 + L 2 sin ( γ1 + θ2 ) 

]
r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 1 cos γ1 − u 1( 2 n 1 +1 ) sin γ1 + L 2 cos ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

d 1 sin γ1 + u 1( 2 n 1 +1 ) cos γ1 + L 2 sin ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( γ1 + θ2 + u 1( 2 n 1 +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

PbPa r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

( d 1 − L 1 + d 2 ) cos γ1 

+ L 2 cos ( γ1 + γ2 ) 

( d 1 − L 1 + d 2 ) sin γ1 

+ L 2 sin ( γ1 + γ2 ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

( d 1 − L 1 + d 2 ) cos γ1 − u 1( 2 k +1 ) sin γ1 + L 2 cos ( γ1 + γ2 + u 1( 2 k +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( γ1 + γ2 + u 1( 2 k +2 ) ) 

( d 1 − L 1 + d 2 ) sin γ1 + u 1( 2 k +1 ) cos γ1 + L 2 sin ( γ1 + γ2 + u 1( 2 k +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( γ1 + γ2 + u 1( 2 k +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 

P bP b r 0 E = 

[
d 1 cos γ1 + d 2 cos ( γ1 + γ2 ) 

d 1 sin γ1 + d 2 sin ( γ1 + γ2 ) 

]
r 0 E = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

d 1 cos γ1 − u 1( 2 n 1 +1 ) sin γ1 + d 2 cos ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

−u 2( 2 n 2 +1 ) sin ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

d 1 sin γ1 + u 1( 2 n 1 +1 ) cos γ1 + d 2 sin ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

+ u 2( 2 n 2 +1 ) cos ( γ1 + γ2 + u 1( 2 n 1 +2 ) ) 

⎤ 

⎥ ⎥ ⎥ ⎦ 
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