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A B S T R A C T

As the main material for industrial production, the TFe content of iron ore determines the grade and quality of
iron ore. The existing methods for measuring the TFe content of iron ore either have large errors or take a long
time. Therefore, this paper proposes a method for detecting TFe content of iron ore based on IPSO-TELM (two
hidden layer extreme learning machine optimized by the improved particle swarm optimization) algorithm using
visible-infrared spectroscopy. The IPSO (improved particle swarm optimization) is used to optimize the first
hidden layer parameters and the number of the hidden layer nodes in the TELM network. We first obtained iron
ore samples from the Anshan mining area. Then, measured the spectral data through the spectral analysis in-
strument and spectral features are analyzed by PCA (principal component analysis). Finally, we applied the
IPSO-TELM algorithm to establish a detection model for TFe. Experiments shows that the IPSO-TELM model has
higher detection accuracy and better generalization ability than the TELM and PSO-TELM models. Compared
with traditional chemical analysis methods and instrumental analysis methods, this method has great advantages
in economy, speed and accuracy.

1. Introduction

The determination of TFe content of iron ore will have a direct
impact on process costs and economic benefits. The existing method for
determining the TFe content of iron ore has chemical analysis method
and instrumental analysis method [1,2]. The chemical analysis method
is also called titration analysis. The sample pretreatment process is
complicated and the process is long, which is difficult to meet the re-
quirements of modern production for rapid analysis. The instrumental
analysis method has the advantages of fast detection speed, but the
complex matrix of iron ore is easy to influence the measurement, how
to reduce the interference of complex matrix as much as possible, and
improve the accuracy of instrument detection, involving the pre-pro-
cessing of the samples and the optimization of the instrumental analysis
software, which are still to be further improved. Therefore, finding a
method for quickly and accurately detecting the TFe content of iron ore
is of great significance for the rational exploitation and utilization of
iron ore.

Spectral analysis method is an analytical method for determining
the structure and chemical composition of a substance by using the
principles and experimental methods of spectroscopy. Due to its fast

analysis speed, simple operation and high sensitivity, it has been widely
used in many aspects [3–7]. Owing to the complex content of chemical
elements in iron ore, oxides such as silicon, magnesium and calcium
have an effect on the spectral data of iron ore. Therefore, the visible and
infrared spectral data of iron ore often contain many chemical in-
formation unrelated to the detection of iron ore TFe content, which
makes the iron ore spectral data dimension high, information re-
dundancy, correlation. Direct modeling will make the input data di-
mension too high and the model structure complex, so it is necessary to
reduce the dimensionality of the iron ore spectral data.

The main idea of Principal Component Analysis [8] (PCA) is to
transform high-dimensional raw data from high-dimensional space to
low-dimensional space through linear transformation, and construct a
new set of variables to replace the original variables. Principal com-
ponent analysis is a basic mathematical analysis method, and its prac-
tical application is very extensive [9–11]. Therefore, this paper uses
principal component analysis to reduce the spectral data of iron ore.

In recent years, due to the advantages of efficient learning and
general adaptation of machine learning models, the use of machine
learning for material discovery and design has received more and more
attention, and has made great improvements in terms of time efficiency
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and prediction accuracy. Literature [12] outlines typical patterns and
basic procedures for applying machine learning in materials science. It
also gives an introduction to the application of machine learning in
material property prediction, new material discovery and other fields,
and discusses machine learning related issues in materials science.
Literature [13] for the research and development of lithium-ion bat-
teries, expounding the theory and multi-scale modeling and simulation
as a supplement to the experimental work, can greatly help to make up
for some of the current experimental and technical gaps, and predict the
path-independent characteristics. In [14], topological and regression
analysis was used to predict the Tg of the AsxSel−x glass system,
achieving a higher precision prediction.

The Extreme Learning Machine [15] (ELM) as an artificial neural
network algorithm in machine learning has the advantages of fast
computing speed and strong generalization ability, and has been widely
studied and applied in recent years [16–19]. However, since the ELM
randomly selects the input weight and the hidden layer bias, the ac-
curacy of the ELM is generally low. In order to achieve the desired
accuracy improvement, BY Qu proposed a two hidden layer extreme
learning machine (TELM) algorithm [20], is effectively improve the
accuracy of the ELM algorithm. Due to the high dimensional and non-
linear characteristics of the iron ore spectral data matrix and the ad-
vantages of the TELM network, this paper uses the TELM algorithm to
establish the TFe content detection model of iron ore based on the
spectral data of iron ore.

The TELM algorithm proposed in [20] randomly selects the input
weight matrix and the hidden layer deviation vector of the first hidden
layer, and there will be some weights and deviations of 0, which will
cause TELM to require a large number of hidden layer nodes to achieve
the desired results and there will be large differences in each run. The
Particle Swarm Optimization (PSO) algorithm is a global optimization
algorithm proposed by Dr. Eberhart and Dr. Kennedy in 1995 [21]. It
has been paid attention to by many scholars, and new achievements
have been made in the performance improvement and analysis of al-
gorithms, and widely used in many fields [22–25]. In 2006, Xu and Shu
proposed an extreme learning machine based on particle swarm opti-
mization (PSO-ELM) [26]. To improve the performance of the algo-
rithm, Fei Han improved the PSO-ELM and improved the generalization
ability of PSO-ELM by considering the norm of the output weight matrix

[27]. However, the above improved method does not consider the se-
lection of the number of nodes in the hidden layer of the ELM neural
network. Li and Chen [28] introduced the mutation operator to opti-
mize the number of hidden layer nodes, enhanced the diversity of the
population, and improved the convergence speed of the algorithm, but
its generalization ability was poor.

The above improved methods are based on the single hidden layer
extreme learning machine neural network structure, the accuracy needs
to be improved. Therefore, this paper uses the improved particle swarm
optimization (IPSO) algorithm to optimize the TELM network. Firstly, a
linearly decreasing inertia weight is introduced for the particle swarm
optimization algorithm. Secondly, in the particle update process, not
only the norm of the output weight is considered, but also the idea of
mutation is used to change the length of the particle. It is possible to
find the optimal number of hidden layer nodes while optimizing the
first hidden layer parameters of the TELM neural network. This method
improves the convergence speed of the algorithm while improving the
generalization ability. The spectral data of iron ore was processed by
the two hidden layer extreme learning machine neural network opti-
mized by the improved particle swarm optimization algorithm (IPSO-
TELM) to obtain the model for measuring TFe content of iron ore. The
experimental results show that the proposed IPSO-TELM algorithm has
advantages in terms of average accuracy and generalization ability
compared with the traditional TELM model and the PSO-ELM model.

The rest of this paper is organized as follows: Section 2 introduces
the process of sample preparation and spectral testing. Section 3 pre-
sents a brief review of the basic concepts of ELM, TELM and PSO and
two hidden layer extreme learning machine based on improved particle
swarm optimization is put forward. Section 4 reports and analyzes the
experimental results, and finally, Section 5 summarizes key conclusions
of the present study.

2. Sample preparation and spectral testing

Liaoning Anshan iron ore district is one of the major iron ore dis-
tricts in China. The iron ore is widely distributed and has large reserves.
Therefore, this study selected the Anshan mining area as an experi-
mental area, collected iron ore samples on site, and milled the collected
samples for spectral testing of iron ore, the process of processing the

Fig. 1. The process of processing the sample.
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sample is shown in Fig. 1.
The SVC HR-1024 ground spectrometer from Spectra Vista, USA was

used as an experimental instrument. The instrument has a spectral
range of 350–2500 nm, built-in memory: 500 scans, weight: 3 kg,
number of channels: 1024, spectral resolution: (FWHM≦ 8.5 nm)
1000–1850 nm, minimum integration time: 1ms.

In this experiment, a total of 123 iron ore samples were collected,
including 91 haematite and 32 magnetite. Firstly, the exact TFe content
of iron ore is obtained by chemical test. The TFe content of haematite is
between 11.4% and 37.52%, the magnetite has a TFe content of
27.12–66.83%, and the sample size is evenly distributed.

The experimental sample was subjected to a spectral test with an
instrument scan time of 1 s/time, and the probe of the spectrometer was
300mm from the surface of the iron ore powder sample piece and
perpendicular to the surface of the sample piece. In order to reduce the
influence of aerosol and solar radiation propagation paths during the
experiment, the spectral test time is controlled during the day from
10:00 to 14:00, and the sky is clear and cloudless. Each sample was
subjected to five spectral tests using a spectrometer (SVC HR-1024),
and the spectral data results were averaged as spectral data of the
sample. After the spectrum test is completed, the spectral data of the
test is subjected to data pre-processing such as gross error elimination
and band fitting, and the spectrum of the iron ore experimental sample
is obtained. Figs. 2 and 3 are spectral plots of haematite and magnetite,
respectively.

Iron ore spectral data is a set of high-dimensional, nonlinear data
matrices, the artificial neural network has strong adaptability when
dealing with nonlinear and highly coupled data samples. As an algo-
rithm of artificial neural network, extreme learning machine has the
characteristics of fast computing speed and strong generalization
ability. TELM has improved on the basis of ELM and improved the
accuracy of the algorithm. Therefore, this paper uses the principle of
TELM neural network combined with the principle of spectroscopy,
collects data, builds models, and conducts prediction experiments.

3. Model establishment

3.1. Extreme learning machine

The Extreme Learning Machine algorithm was proposed by
Professor Huang Guangbin of Nanyang Technological University. This
algorithm is a supervised learning algorithm for SLFNs (a feedforward
neural network with a single hidden layer). The main idea is: the weight
parameter between the input layer and the hidden layer, and the offset

vector parameter on the hidden layer are determined once, and only
one minimum norm least squares problem needs to be solved.
Therefore, the algorithm has the advantages of less training parameters
and very fast speed. Later, Professor Huang did more research on this
basis, for example, extending ELM to the complex domain and pro-
posing an online timing algorithm based on ELM.

For a single hidden layer neural network, assume that there are N
arbitrary data x t( , )i i , = ⋯ ∈x x x x R[ ]i i i in

T n
1 2 , = ⋯ ∈t t t t R[ ]i i i im

T m
1 2 .

The output of a single hidden layer neural network with L hidden layer
nodes can be expressed as:

∑ = = ⋯
=

β G ω b x δ j N( , , ) 1, 2, ,
i

L

i i i j j
1 (1)

where = ⋯ω ω ω ω[ ]i i i in
T

1 2 is the weight vector connecting the i-th
hidden neuron and input neurons. βi is the weight vector connecting the
i-th hidden neuron and output neurons, and bi is the bias of the i-th
hidden neuron. G x( ) represents the output of hidden layer neurons, for
the additive hidden nodes = +G ω b x g ω x b( , , ) ( · )i i j i j i .

The goal of single hidden layer neural network learning is to
minimize the error of the output, which can be expressed as:

∑ ∥ − ∥ =
=

o t 0
j

N

j j
1 (2)

That is, there are βi, Wi and bi such that

∑ = = ⋯
=

β G ω b x t j N( , , ) 1, 2, ,
i

L

i i i j j
1 (3)

Can be expressed in a matrix as:

=Hβ T (4)

where H is the output matrix of hidden layer, β is the output weight
matrix of the hidden layer, and T is the expected output.
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The traditional ELM algorithm randomly selects input weights and
hidden biases. Training this network is equivalent to solving the least-
squares solution of linear system: =Hβ T .Fig. 2. Spectral curve of haematite samples.

Fig. 3. Spectral curve of magnetite samples.
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∥ − ∥Min Hβ T:
ω b β, , (7)

Prof. Huang has proved that the minimum value of the least-squares
solution of the linear system is as follows:

̂ = +β H T (8)

where +H is the Moore-Penrose generalized inverse of H , and the
minimum of the least squares solution of =Hβ T is unique.

3.2. Tow hidden layer extreme learning machine

The two hidden layer extreme learning machine (TELM) is a two
hidden layer network structure proposed by Qu to improve the accu-
racy of ELM. The algorithm adds a hidden layer to the single hidden
layer ELM network. The network structure is formed by connecting the
input layer, two intermediate layers (hidden layers), and the output
layer. Each network layer has an indefinite number of neuron nodes,
and the neurons between the layers are all connected together. And
using a novel method to calculate parameters related to the second
hidden layer (the connection weight between the first and second
hidden layers and the bias of the second hidden layer), the method
inherits the characteristics of the ELM algorithm randomly selecting the
first hidden layer parameters, and effectively improves the accuracy of
the ELM algorithm.

Assume that the TELM neural network has N training sample data
x t( , )i i . Where = ⋯ ∈x x x x R[ ]i i i in

T n
1 2 , = ⋯ ∈t t t t R[ ]i i i im

T m
1 2 . And

assume that all hidden layers in the TELM model contain the same
number of hidden layer neuron nodes and activation functions.

First, consider the two hidden layers of TELM as ELM neural net-
works with a single hidden layer, so that the output of the hidden layer
can be obtained:

= +H g WX B( ) (9)

From Section 3.1 and Eq. (8), the weight matrix between the hidden
layer and the output layer can be obtained:

= +β H T (10)

Now, the second hidden layer is added to the TELM neural network,
and the neural network structure with two hidden layers is restored,
and the two hidden layers are fully connected. The predicted output of
the second hidden layer can be obtained:

= +H g W H B( )1 1 1 (11)

where W1 is the weight matrix between the first hidden layer and the
second hidden layer, and B1 is the threshold of the second hidden layer.

The expected output of the second hidden layer is:

=∗
+H Tβ1 (12)

where +β is the generalized inverse matrix of β.
In order to satisfy the predicted output of the final hidden layer

infinitely close to the expected output, let = ∗H H1 1 .
Assuming the matrix =W B W[ ]HE 1 1 , the weight W1 and threshold of

the second hidden layer B1 can be solved:

= −
∗

+B g H H( )HE E
1

1 (13)

where +HE is the generalized inverse matrix of the matrix =H H[1 ]E
T ,

1 represents a vector with Q elements, and each element is 1, and −g x( )1

is the inverse of the activation function g x( ).
When the weight parameter W1 and the threshold parameter B1 of

the second hidden layer are all solved, the predicted output H2 of the
second hidden layer may be updated:

= + =H g W H B g W H( ) ( )HE E2 1 1 (14)

Therefore, the output matrix β of the hidden layer can be updated
to:

= +β H Tnew 2 (15)

Finally, the final neural network output f x( ) can be obtained:

=f x H β( ) new2 (16)

3.3. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a global optimization algo-
rithm proposed by Kennedy and Eberhart. It is a kind of group in-
telligence algorithm designed by simulating the predation behavior of
birds. Suppose there is only one piece of food in the area (that is, the
optimal solution in the optimization problem), and the task of the flock
is to find this food source. In the whole process of searching, the birds
pass each other's information to let other birds know their position.
Through such cooperation, they can judge whether they find the op-
timal solution and also pass the information of the optimal solution to
entire flock of birds, eventually, the entire flock of birds can gather
around the food source, finding the optimal solution.

The particle swarm optimization algorithm is implemented as fol-
lows. In a group, each bird is abstracted as a particle and is extended to
the N -dimensional space. The location of particle i in the N -dimen-
sional space is = ⋯X X X X( , , )i i i iN1 2 . The speed of the particle's flight is

= ⋯V V V V( , , , )i i i N1 2 i , = ⋯i m1, 2, , . Each particle has a fitness value
determined by the objective function.

In each iteration, the particle passes through the best position
= ⋯pbest pbest pbest pbest( , , , )i i i N1 2 i that the particle itself goes through

and the best position = ⋯gbest gbest gbest gbest( , , , )i i i N1 2 i that the entire
population passes through. The process continuously update the speed
and position according to Eqs. (17) and (18).

= + − + −+V ωV c r pbest X c r gbest X( ) ( )i
k

i
k

i i
k

i i
k1

1 1 2 2 (17)

= ++X X Vi
k

i
k

i
k1 (18)

where k is the current number of iterations, c1 and c2 are learning
factors, and ω is the inertia weight.

3.4. Two hidden layer extreme learning machine based on improved particle
swarm optimization

The TELM algorithm inherits the characteristics of the single hidden
layer extreme learning machine, and randomly gives the first layer
hidden layer parameters (input weights and thresholds). This may re-
sult in some parameters being zero, and the parameters of the second
hidden layer of the TELM network and the output weight matrix of the
network are calculated based on the parameters of the first hidden
layer. Therefore, randomly selecting the first hidden layer parameter of
TELM will increase the number of hidden layer nodes, resulting in
slower response speed and generalization ability of TELM for the test
set. The choice of hidden layer nodes will directly affect the structure of
the network and affect the performance of the TELM network.
However, in the TELM algorithm, the number of hidden layer nodes of
the network is selected empirically. Therefore, it is necessary to find a
way to optimize the first hidden layer parameters of TELM and the
number of nodes in the network hidden layer.

In this paper, the improved particle swarm optimization algorithm
is used to optimize the input weight matrix and the deviation vector of
the first hidden layer and the number of hidden layer nodes of the
TELM network. The specific details of the algorithm are as follows:

First, initialize the particle population. The length of each particle in
the population is = +D L n·( 1), n is the number of input layer neurons,
and L is the number of hidden layer nodes. Each particle in the swarm is
composed of a set of input weights and hidden biases:

=
⎡

⎣

⎢
⎢
⎢

⋯
⋮ ⋮ ⋮ ⋮

⋯
⋯

⎤

⎦

⎥
⎥
⎥

P

ω ω ω

ω ω ω
b b b

L

n n nL

L

11 12 1

1 2

1 2

. All components in the particle are randomly
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initialized within the range of −[ 1, 1].
Second, in order to avoid overfitting the TELM, using the root mean

square error RMSE of the verification set as the fitness value of each
particle.

Third, in the traditional PSO algorithm’s structure, the inertia
weight is a fixed value. It has been proved that although PSO with the
constant inertia weight ω has faster convergence speed, it tends to fall
into local optimum in later periods [29]. This paper uses the linearly
decreasing inertia weight to improve the PSO optimization perfor-
mance.

= − −ω k ω ω ω k T( ) ( )· /start start end max (19)

where =ω 0.9start , =ω 0.4end , k is the current number of iterations
and Tmax is the maximum number of iterations. At the beginning of the
iteration, the inertia weight is larger to ensure the global search ability
of the algorithm, and the inertia weight of the iteration is smaller. As a
result the algorithm can effectively perform more accurate local opti-
mization.

Fourth, The smaller the output matrix norm of a neural network, the
better its generalization ability [30,31], Therefore, in order to improve
the generalization capability of the TELM, in the iterative process, the
individual extreme position and the outlier of the group extreme posi-
tion are updated. This paper considers not only the fitness value of the
particle but also the output matrix norm of the TELM network. Use the
formulae (20) and (21) to update individual best position and global
best position of all particles.

= ⎧
⎨⎩

> ∥ ∥ < ∥ ∥
P

P f P f P and ωo ωo
P else

( ) ( )
ib

i ib i P P

ib

i ib

(20)

= ⎧
⎨⎩

> ∥ ∥ < ∥ ∥
P

P f P f P and ωo ωo
P else

( ) ( )
g

i g i P P

g

i g

(21)

where f P( )i , f P( )ib and f P( )g are the corresponding fitness values for the
i-th particle, the best position of the i-th particle and the global best
position of all particles, respectively. ωoPi, ωoPib and ωoPg are the cor-
responding output weights that are set the input weights and deviation
vectors of the first hidden layer of TEML as the i-th particle, the best
position of the i-th particle and the global best position of all particle,
respectively.

Fifth, in order to find the optimal number of hidden layer nodes, this
paper introduces the idea of mutation in the update process of particles,
changes the length of the particles in each update process, and then
changes the number of hidden layer nodes of the TELM. Change the
number of hidden layer nodes according to Eq. (22).

= + −+L L rand[1 ( ( ) 1/2)]t t1 (22)

where Lt and +Lt 1 are the number of hidden layer nodes for the t-th and
( +t 1)-th iterations, respectively.

Sixth, update the speed and position of the particles. By changing
the number n of hidden layer nodes in the ELM network, the next
generation particle length of the particle group is ++L n·( 1)t 1 .

After the particle is mutated, if the length of the particle increases,
the particle velocity and position adjustment rules are as follows:

= ⎧
⎨⎩

⩽ ⩽ + ⩽ ⩽
− ⩽ ⩽

+
+ +

v i
v i k n j L
random L j L

( )
( ), 1 1 1

( 1, 1),k j
t k j

t t

t t,
1 ,

1 1 (23)

= ⎧
⎨⎩

⩽ ⩽ + ⩽ ⩽
⩽ ⩽

+
+ +

x i
x i k n j L

L j L
( )

( ), 1 1 1
0,k j

t k j
t t

t t,
1 ,

1 1 (24)

After the particle is mutated, if the particle length is shortened, the
+Lt 1-column elements of the previous generation particle velocity V i( )t

and position X i( )t are randomly selected.
After the particle is mutated, if the particle length does not change,

the particle's velocity and position are not adjusted.
Finally, the iteration is repeated until the maximum number of

iterations is reached or the searched optimal position satisfies a pre-
defined minimum fitness value.

The TELM neural network optimized by the above improved par-
ticle swarm optimization algorithm has the best input weights, hidden
biases and hidden layer node number.

4. Experiment results and discussion

(1) Dimension reduction of iron ore spectral data.

The spectral data of iron ore sample obtained by the spectral test is
973-dimensional, the dimension is too high, and the data has strong
correlation. Therefore, the obtained spectral data is reduced by prin-
cipal component analysis (PCA). Take the dimension of its principal
component as 5 so that the cumulative contribution rate reaches 99.9%,
(Fig. 4 shows the contribution rate of each principal component) and
use it as the input of the network. Therefore, the initial data is con-
verted from the matrix structure of ×973 123 to the matrix structure of

×5 123, which greatly facilitates the establishment of experimental
models and saves training time.

(2) Classification of iron ore samples.

Before establishing the iron content detection model, in order to
facilitate the establishment of iron content detection models for each
type of iron ore, it is first necessary to classify iron ore. In this paper,
ELM, BP, SVM and RF are used to establish the classification model of
iron ore. For each model, the 10-fold cross-validation method is used to
test the performance of the model.123 iron ore samples were randomly
divided into 10 parts, 9 of which were taken as a training set and 1 as a
test set. The average of the accuracy of the 10 results is used as an
estimate of the accuracy of the classification model. And the model is
compared from the classification accuracy of the model and the time
consumption of the model. The results are shown in Table 1.

It can be seen from Table 1 that the classification accuracy of ELM is
96.86%, which is the highest classification accuracy among all models.
The classification accuracy rate of BP is 96.67%, which is similar to the

Fig. 4. Principal component contribution rate of the spectral data.

Table 1
Test accuracy of different classification models.

Model type Time consuming (s) accuracy

SVM 2.2599 s 92.31%
BP 0.1376 s 96.67%
ELM 0.0353 s 96.86%
RF 0.0536 s 96.73%
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accuracy of ELM, but the training time of this model is much longer
than that used by ELM. Therefore, ELM is selected as the classification
model of iron ore. Fig. 5 shows the classification results for a set of test
sets in the ten-fold cross-validation of the ELM classification model.

(3) TFe content detection model

Based on the above classification results, the TFe content detection
models of magnetite and hematite were established respectively.
Firstly, ELM, BP, TELM and RF were used to establish the TFe content
detection models of different ores. Due the number of samples is small,
in order to make full use of the existing data sets to test the effect of the
algorithm, this paper uses a cross-validation method. 10 times cross
validation and 4 times cross validation were used for haematite and
magnetite, respectively. Tables 2 and 3 give the test results of different
models, and compare the models from three aspects: time consumption,
root mean square error (RMSE) and correlation coefficient (R).

It can be seen from Tables 2 and 3 that the root-square error of
TELM is the smallest among all models, and the correlation is also the
best. Therefore, TELM is used as the detection model of TFe.

In order to verify the feasibility of the IPSO-TELM proposed in this
paper, this paper uses TELM, PSO-TELM and IPSO-TELM to establish
the prediction model of TFe content of haematite and magnetite re-
spectively. The number of hidden layer nodes of TELM and PSO-TELM
is the optimal case for multiple trials, and the activation function of the
network uses = + −f x e( ) 1/(1 )x . The population size and maximum
number of iterations of the particle swarm algorithm are set to 40 and
50, respectively, based on experience. Huang [32] has proved that the
acceleration factor has a value range of (0.5, 3.0) and (0.5, 3.5) can
more effectively avoid premature convergence and increase stability to
the network. Therefore, the acceleration coefficient of particle swarm
optimization algorithm =c1 2, =c2 2.

The performance of the established TFe content of iron ore detection
model was evaluated by comparing the mean square error of the test
set, the number of hidden layer nodes, the prediction time, and the
output matrix norm.

The simulations of this experiment were carried out in the en-
vironment of MATLAB R2016a. Figs. 6 and 7 show the results of one
cross-validation of the TFe content models of haematite and magnetite
TELM, PSO-TELM and IPSO-TELM. Tables 4 and 5 list the performance
of TELM, PSO-TELM and IPSO-TELM from four aspects: root mean
square error (RMSE) of the test set, time consumption of the model,
number of hidden layer nodes of the network, correlation coefficient
(R) and norm of output weight. The specific analysis results are as
follows:

First, for the TFe content of haematite detection model, the number
of hidden layer nodes required for PSO-TELM and IPSO-TELM is 18,
while the number of hidden layer nodes required for TELM is 28. For
the TFe content of magnetite detection model, the number of hidden
layer nodes required for PSO-TELM and IPSO-TELM is 8, and the

Fig. 5. Classification results of iron ore test set.

Table 2
Test results of TFe content detection model of magnetite.

Model type Time consuming (s) RMSE R

TELM 0.0042 s 2.2235 0.9580
BP 0.8510 s 2.8591 0.9478
ELM 0.0033 s 2.6385 0.9566
RF 0.0824 s 5.7139 0.9224

Table 3
Test results of TFe content detection model of haematite.

Model type Time consuming (s) RMSE R

TELM 0.0191 s 1.9857 0.9178
BP 0.3291 s 2.2016 0.8616
ELM 0.0037 s 2.2798 0.8833
RF 0.0890 s 2.5772 0.7644

Fig. 6. Output of haematite test set.

Fig. 7. Output of magnetite test set.
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number of hidden layer nodes required for TELM is 18. Compared
with TELM, PSO-TELM and IPSO-TELM can get smaller prediction
errors with fewer hidden layer nodes, which shows that PSO-TELM
and IPSO-TELM can achieve better prediction results with a simpler
network structure.
Second, the training time of PSO-TELM and IPSO-TELM is sig-
nificantly larger than the training time of TELM, and the time spent
is mainly used to find the optimal input weight and deviation vector.
Since IPSO-TELM optimizes the hidden layer nodes, the running
speed of the algorithm is improved compared to PSO-TELM.
Third, from the norm of the output weight matrix, the output matrix
norm of IPSO-TELM is significantly smaller than the output matrix
norm of PSO-TELM and TELM, indicating that IPSO-TELM has better
generalization performance.
Finally, from the root mean square error of the test set, compared
with TELM and PSO-TELM, the root mean square error of the IPSO-
TELM test set is smaller, which can more accurately detect the TFe
content of iron ore. And from the correlation coefficient, compared
with TELM and PSO-TELM, the correlation coefficient of the IPSO-
TELM model is closer to 1, which can better fit the true value.

Table 6 gives the chemical analysis method, instrumental analysis
method and the proposed method based on iron ore spectral data and
IPSO-TELM network, which compares the detection accuracy, detection
time and detection cost. It can be seen that the instrument analysis
method has low detection precision, and the chemical test method has
high precision but high cost and long time. The method based on
spectral data and IPSO-TELM algorithm for detecting TFe content of
iron ore in this paper is shorter in time, lower in cost and higher in
prediction accuracy, which can meet the needs of industrial production.

In summary, the proposed model for detecting TFe content of iron
ore based on spectral data is a modified two-implicit layer extreme
learning machine with improved particle swarm optimization algo-
rithm with optimal input weight matrix, bias vector and hidden layer
nodes. The generalization ability is better than that of TELM and PSO-
TELM, which runs faster than PSO-TELM, and the prediction accuracy is
higher than that of TELM and PSO-TELM. Compared with the tradi-
tional instrumental analysis method, the method has simple operation
and high precision, and the detection speed is fast and the cost is low
compared with the chemical analysis method.

5. Conclusion

In this paper, a detection model of TFe content in iron ore based on
spectral data and IPSO-TELM network is proposed, and the iron ore
samples collected on site for model verification. First, 123 iron ore
samples were collected, and perform spectral tests on them to obtain
corresponding spectral data and principal component analysis was used
for dimensionality reduction. Then the classification of iron ore by ELM
network shows that the classification accuracy of the method can reach
100%, which can replace the traditional manual classification method.
The TFe content detection model was established by using TELM and
PSO-TELM respectively for the classified haematite and magnetite. In
order to further improve the detection accuracy and the generalization
ability of the model, the IPSO-TELM model proposed in this paper. The
experimental results show that the IPSO-TELM model can accurately
detect the TFe content of iron ore. Compared with the performance of
the TELM and PSO-TELM models, it is concluded that the IPSO-TELM
network can better detect the TFe content of iron ore and has better
generalization ability. Compared with the traditional TFe content de-
tection method for iron ore, the model based on spectral data and IPSO-
TELM network has the advantages of high precision, fast detection
speed and low cost, which provides a new method for the detection of
TFe content in iron ore.
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