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A B S T R A C T

In this work, the structure, electronic properties, and the Schottky barrier of the van der Waals heterostructure
(vdWH) based on graphene and gallium sulfide (GaS) have been theoretically considered using density func-
tional theory. We found that the graphene/GaS vdWH keeps the extraordinary intrinsic properties of both the
graphene and GaS monolayer. Moreover, an n-type Schottky contact with a small Schottky barrier of 0.51 eV was
formed in the ground state of the heterostructure. Especially, our results demonstrated that applying an electric
gating can tune effectively the Schottky barrier and contact types. The transformations from the n-type Schottky
contact to the p-type one and from the Schottky to the Ohmic contacts were observed in the vdWH under electric
gating. These results propose a great potential for the van der Waals heterostructure in future nanoelectronic and
optoelectronic devices.

1. Introduction

Recently, graphene-like two-dimensional (2D) materials are being
intensively considered because of their extraordinary electronic, optical
and transport properties, which are suitable for designing high-perfor-
mance devices in nanoelectronics and optoelectronics [1–3]. Graphene
is well-known as a 2D sp2–hybridized carbon material. It has been
widely focused due to its remarkable properties and fascinating po-
tential applications [4,5]. However, graphene has a zero band gap,
which has restricted its wide application, for instance in high-speed
electronic devices [6]. To date, many potential 2D materials such as
transition metal dichalcogenides [7–10], phosphorene [11–14], layered
group–III monochalcogenides [15–17] have been investigated widely
because of their remarkable physical properties and promising appli-
cations for nano- and optoelectronic devices. Among these, monolayer
GaS, a stable class of 2D metal dichalcogenides, has recently been
synthesized experimentally by the vapor–solid method [18], opening its
fascinating applications. Soon after, theoretical investigation from first-
principles calculations have shown that monolayer GaS is a semi-
conductor with an indirect band gap of 2.48 eV/3.19 eV, given from
PBE/HSE06 calculations [19]. These investigations make monolayer
GaS promising candidate in future electronic devices such as field-effect
transistors (FETs) [20].

More recently, van der Waals heterostructures (vdWHs) based on
graphene and other 2D materials layer by layer are being considered
widely. Especially, many graphene–vdWHs such as graphene/MoS2
[21,22], graphene/GaSe [23,24] and so on, have been realized ex-
perimentally. For instance, Roy et al. [21] demonstrated photodetectors
based on the graphene/MoS2 heterostructure with a high responsivity
of 5× 108 AW−1 at room temperature. Lu et al. [25] demonstrated that
high gain and fast photoresponse can be achieved simultaneously in the
graphene/GaSe heterostructure, making it suitable for designing gra-
phene-based phototransistors. These findings demonstrated that the
graphene-based vdWHs can be used for designing next-generation na-
nodevices. At the same time, the physical properties of different gra-
phene-based vdWHs, such as graphene/MoS2 [26], graphene/phos-
phorene [27,28], graphene/GaSe [29,30] and so on, have been already
investigated theoretically. One can observe that in these graphene-
based vdWHs, the graphene layer is bonded to 2D materials by the
weak vdW interactions and without any dangling bonds. Thus, their
intrinsic electronic properties are preserved in the vdWHs. Moreover, it
can be seen that these graphene-based vdWHs show many more new
interesting properties, which are ideal properties to be applied in na-
noelectronics and optoelectronics.

To date, the combination of the graphene and other layered
group–III monochalcogenides such as graphene/InSe [31–33],
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graphene/GaSe [25,29,30] has received considerable interest in both
theoretical and experimental studies. All these findings suggest that
stacking the graphene layer on top of another layered group–III
monochalcogenides into vdWHs provides an effective way to design
novel compounds with promising properties. This motivates us to
consider the combinations between graphene and layered group-III
monochalcogenide GaS monolayer, and also to check whether they can
form a stable graphene/GaS vdWH and what interesting electronic
properties it can provide as well as the effect of an electric gating.
Therefore, in this work, we have a bold idea to construct an ultra-thin
graphene/GaS vdWH by means of density functional theory (DFT). We
then investigate the electronic properties and Schottky contact of the
graphene/GaS vdWH without and with applied electric gating.

2. Computational model and methods

In the present study, first-principles calculations based on DFT
method, which is implemented in Quantum Espresso package [34], are
used to perform the geometric optimization and electronic properties
calculations. The projected augmented wave (PAW) method [35],
Perdew, Burke, and Ernzerhof (PBE) [36] parametric of the generalized
gradient approximation (GGA) were used to describe the exchange-
correction functional. For the long vdW bonding in the vdWH, we opt
for Grimme's DFT-D2 method, which has been applied to describe the
long-range weak vdW interaction [37]. The energy cut-off was set to
500 eV, and 10× 10×1 k-point grid is selected in the Brillouin zone
(BZ) integration. Each geometric optimization was performed when the
total energy and the forces are converged to be 106 eV and 10−3 eV/Å,
respectively. In addition, we used a large vacuum layer thickness of
20 Å along the z direction to break the interactions between adjacent
layers.

3. Results and discussion

Before designing the graphene/GaS vdWH, we first check the crystal
structure and electronic properties of the individual pristine graphene
and monolayer GaS. In Fig. 1, we display the atomic structures and
band structures of pristine graphene and GaS monolayer at the ground
state. It indicates that the lattice constant of the graphene and GaS
monolayer, respectively, is 2.461 Å and 3.585 Å, which are in good
agreement with previous calculations [17,38]. In addition, it is shown
that graphene has a zero band gap in its pristine form, revealing its
metallic character, as illustrated in Fig. 1(b). Unlike graphene, the GaS
monolayer is a semiconductor with an indirect band gap of 2.56 eV.
This band gap of the GaS monolayer shown in Fig. 1(d) is formed by the
conduction band minimum (CBM) at the Γ point and the valence band
maximum (VBM) at the Γ–M path.

We now design an ultra-thin G/GaS vdWH by stacking the G layer
on top of the monolayer GaS layer-by-layer, as shown in Fig. 2(a and b).
To design this vdWH, we use a (2×2) supercell of monolayer GaS,
containing 8 gallium atoms and 8 sulfide atoms, and a (3× 3) supercell
of the G, containing 18 carbon atoms. In addition, we also considered
the G/GaS vdWH with a 30° twist angle by rotating the upper G layer
30° about the z direction with the under layer GaS fixed, but the cal-
culated binding energy is much larger than that of without rotation. It is
well known that the lower value of the binding energy, the more stable
structure of the heterostructure. Hence, in this work, we only choose
the most stable structure as an object of the concrete research. In such
G/GaS vdWH, one carbon atom is located directly above the gallium
atom, and another one is located above the sulfide atom. After geo-
metric optimization, we can obtain the interlayer spacing between the
G layer and the GaS layer, that is 3.356 Å. Interestingly, this value of the
interlayer spacing is similar to that of other graphene-based vdWHs,
such as graphene/GaSe [24,30,39], graphene/SnS2 [40], graphene/
GaN [28,41], which are the typical representatives of the graphene-
based vdWHs. So, it indicates that the weak vdW interactions are

dominated between the G layer and GaS monolayer in the hetero-
structure.

In order to verify the structural stability, the binding energy per
carbon atom (BE/C) in the graphene/GaS vdWH as a function of the
interlayer spacings is also calculated as follows:
Eb=(EH− EG− EGaS)∕N, where EH, EG, and EGaS respectively are the
total energy of the vdWH, freestanding graphene, and isolated GaS
monolayer. N=18 is the number of carbon atoms in the vdWH. At the
ground state, the BE/C in the vdWH is calculated to be −2.5 meV, and
it increases with increasing the interlayer spacings, as shown in
Fig. 2(c). Besides, according to the obtained equilibrium interlayer
spacing and the negligible BE/C, it is obvious that the weak vdW in-
teractions are dominated in the G/GaS vdWH, similar to other gra-
phene-based vdWHs [24,28,30,39–41].

Fig. 2(d) shows the vdWH band structure, which seems to be the
sum of that of freestanding G and monolayer GaS, as compared with
those of the pristine G and monolayer GaS shown in Fig. 1(b) and (d).
The linear dispersion at the Dirac point of the graphene is well kept in
the graphene/GaS vdWH, whereas, the monolayer GaS keeps an in-
direct semiconductor with the CBM at the Γ point and the VBM at the
Γ–M path. The nature of this behavior is due to the weak vdW inter-
action, which not strong enough to modify the energy band morphology
of graphene. Thus, the linear dispersion at the Dirac point around the
Fermi level of graphene is still preserved in the vdWH, and its Fermi
level is located exactly at the Dirac point. These results demonstrate the
intrinsic extraordinary properties, holding by graphene and GaS
monolayer are preserved in the vdWH.

Interestingly, the G/GaS vdWH represents a metal/semiconductor
heterostructure. In practice, the Schottky barrier of the metal/semi-
conductor heterostructure is an important factor in determining the
device performance. Thus, in the considered here G/GaS vdWH, it is
necessary to establish its Schottky barrier height (SBH), which can be

Fig. 1. Top and side views (a) and band structure (b) of the freestanding gra-
phene. Top and side views (c) and band structure (d) of the isolated GaS
monolayer. The Fermi level is set to be zero. The pink, dark-blue, and yellow
colors stand for carbon, gallium, and sulfide, respectively. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 2. (a) Top and (b) side views, (c) band structure of the G/GaS vdWH at the equilibrium state. (d) Binding energy per carbon atom of the G/GaS vdWH as a
function of the interlayer distance d. The pink, dark-blue, and yellow colors stand for carbon, gallium, and yellow, respectively. The Fermi level is set to be zero. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. (a) The charge density difference and (b) the
electrostatic potential of the graphene/GaS vdWH at
the equilibrium state. The red and green colors cor-
respond to the accumulation and depletion of elec-
tron densities. (For interpretation of the references to
color in this figure legend, the reader is referred to
the Web version of this article.)

Fig. 4. (a) The schematic diagram of the graphene/GaS heterostructure with the electric field applied perpendicularly to its surface. The variation of (b) the Schottky
barrier height and (c) the Fermi energy level of the graphene/GaS vdWH as a function of applied electric field.

Fig. 5. Band structures of the graphene/GaS vdWH under different strength of applied electric field of (a)−2 V/nm, (b)−1 V/nm, (c) 0 V/nm, (d) +1 V/nm, and (d)
+2 V/nm, respectively. The Fermi level is set to be zero.
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defined via the Schottky-Mott model [42]. The n-type SBH can be de-
scribed as ΦBn= ECBM− EF, where EF is the Fermi energy level. And,
the p-type SBH is ΦBp= EF− EV BM. Our results show that the vdWH
forms an n-type Schottky contact with the SBH of 0.51 eV.

In Fig. 3(a), we display the visualization of the charge density dif-
ference (CDD) to examine the charge transfer in the vdWH. The CDD in
the vdWH can be defined as: Δρ= ρH− ρG− ρGaS, where ρH, ρG, and
ρGaS respectively are the charge densities of the graphene/GaS vdWH,
graphene, and monolayer GaS. The red and green regions represent
charge accumulation and depletion in the graphene/GaS vdWH, re-
spectively. We find that the charge accumulates around the topmost
sulfide layer of the monolayer GaS, whereas the charge depletion occurs
around the graphene layer. This finding also indicates the weak vdW
interaction dominated between the graphene layer and monolayer GaS
in the vdWH. Fig. 3(b) shows the electrostatic potential in the gra-
phene/GaS vdWH and demonstrates that the GaS monolayer has a
higher electrostatic potential than that of the graphene layer, leading to
an induced built-in electric field in the vdWH. Moreover, it also sug-
gests that electrons are transferred easily from the monolayer GaS to the
graphene layer in the vdWH.

We now consider the effect of electric gating on the electronic
properties and the Schottky barrier of the heterostructure. In Fig. 4(a)
we show the schematic diagram of the applied electric gating along the
z direction of the G/GaS vdWH. The positive direction of the electric
field is defined to be the direction from the GaS monolayer to the G
layer. Fig. 4(b) displays the dependence of the SBH on the strength of
the electric gating. We find that both the SBH and contact types in the
considered vdWH could be modulated by applying a negative electric
gating. First, it is obvious that because of the change in the position of
the Fermi energy level under negative electric gating, the SBH of the n-
type and p-type also varies. For instance, the n-type SBH decreases
linearly with decreasing negative electric gating, while the p-type in-
creases. When the negative electric gating is applied, the Fermi level is
upshifted from the VBM to the CBM of the GaS part. The n-type SBH, in
this case, is heightened, while the p-type one is reduced. Thus, by ap-
plying negative electric gating, the vdWH still keeps an n-type Schottky
contact. However, when the negative electric field is larger than −3 V/
nm, a transition of the contact type from Schottky to Ohmic is observed
in such vdWH, i.e its n-type SBH is a negative value. In contrary, ap-
plying the positive electric gating results in a decrease in the p-type SBH
and in an increase in the n-type SBH, as shown in Fig. 4(b). There ap-
pears a transformation from the n-type Schottky contact to the p-type
one when applying electric gating is larger than +3 V/nm. For in-
stance, the p-type SBH of the vdWH under electric gating of 3.5 V/nm is
1.36 eV, which is larger than that of the n-type one of 1.22 eV. The
reason for these changes can be understood by analyzing the position of
the Fermi level at the equilibrium state and under the electric gating, as
shown in Fig. 4(c). We find that more electrons flow to the G layer from
the GaS monolayer, leading to the shift in the position of the Fermi level
from the VBM to the CBM.

We further calculate the band structures of the vdWH under the
different strength of the electric field, as shown in Fig. 5. As discussed
above, by applying a negative electric field, the position of the Fermi
level moves from the VBM to the CBM of the GaS monolayer in the
heterostructure, resulting in a decrease/increase in the n-type/p-type
SBH. When the applied negative electric field is larger than −3 V/nm,
the CBM of the GaS part reduces gradually and crosses the Fermi level.
The n-type SBH, in this case, becomes a negative value, leading to a
transformation in the graphene/GaS vdWH from the Schottky contact
to the Ohmic one. By applying a positive electric field, the Fermi level
shifts downwards from the CBM to the VBM, resulting in an increase/
decrease in the n-type/p-type SBH. When the strength of the positive
electric field is larger than +3 V/nm, the n-type SBH becomes larger
than that of the p-type one, leading to a transformation of the Schottky
contact from the n-type to the p-type. Therefore, these results show that
in the graphene/GaS vdWH, both the Schottky barrier (n-type and p-

type) and contact types (Schottky or Ohmic contact) can be controlled
efficiently by applying an electric field perpendicularly to the hetero-
structure surface. The reasons of the transformation of Schottky contact
(n-type and p-type) and contact types (Schottky and Ohmic contacts) in
the vdWH under electric field are the interfacial charge transfer and the
Fermi level shift. These findings could provide useful information for
designing novel high-performance Schottky devices.

4. Conclusion

In summary, we have systematically investigated the structural and
electronic properties of the graphene/GaS vdWH as well as the effect of
electric gating by using density functional theory. The interlayer dis-
tance of 3.356 Å and the negative value of the binding energy per
carbon atom in the vdWH suggest that the weak vdW interactions are
dominated between the graphene and the monolayer GaS in the het-
erostructure. Interestingly, the graphene/GaS vdWH forms an n-type
Schottky contact with the SBH of 0.52 eV at the equilibrium state. Both
the contact types and the SBH in the graphene/GaS vdWH can be in-
duced by applying the electric field, which can also effectively mod-
ulate the electronic properties of the heterostructure. When the nega-
tive electric field is larger than −3 V/nm, a transformation of the
contact types from the Schottky contact to Ohmic one are observed,
whereas when the positive electric field is larger than +3 V/nm, a
transition of the Schottky contact from the n-type to the p-type occurs.
Thus, we expect that the graphene/GaS vdWH can be considered to be a
promising alternative material for future nano- and opto-devices.
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