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A variation of constant formula for Caputo 1. ~tional
stochastic differential equatio s

P.T. Anh!, T.S. Doan? and P.T. I uong?®

Abstract

We establish and prove a variation of constany "rr.ula for Caputo fractional
stochastic differential equations whose coetni =nts satisfy a standard Lips-
chitz condition. The main ingredient i.. *he proof is to use Ito’s representa-
tion theorem and the known variation of co..“tant formula for deterministic
Caputo fractional differential equat. us s a consequence, for these sys-
tems we point out the coincidenc - bety 2en the notion of classical solutions
introduced in [13] and mild solutic.»s . ~troduced in [12].

Keywords: Fractional stochas..~ diucrential equations, Classical solution,
Mild solution, Inhomogeneous linea: systems, A variation of constant
formula.

1. Introduction

Fractional differenu. ! ec aations have recently been received an increas-
ing attention dur *o their applications in a variety of disciplines such as
mechanics, physics, eic *rical engineering, control theory, etc. We refer the
interested reacer o the monographs [1, 6, 11] and the references therein for
more details.

In cont ast to “he well development in the qualitative theory of deter-
ministic ¥ act’'ona’ differential equations, there have been only a few papers
contributing '~ ae qualitative theory of stochastic differential equations in-
volvir z with a Caputo fractional time derivative and most of these articles
have 1 mited o the existence and uniqueness of solutions, see [13, 7].
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It is undoubtable that a variation of constant formula for '~terministic
fractional systems, see [8], is an important tool in the qu '**ative theory
including the stability theory and the invariant man..~¢ theory built in
[3, 4, 5]. In this paper, a stochastic version of variati .. of cu stant formula
for Caputo fractional systems whose coefficients sat’ sfy a st ndard Lipschitz
condition is established. Roughly speaking, this form 'a ir iicates that a so-
lution of nonlinear system can be given as a fixe . poi~* of the corresponding
Lyapunov-Perron operator. A direct applicatior. *. tha an explicit formula
for solutions of inhomogeneous linear fractiona. ~tocuastic differential equa-
tions is formed. Concerning more potential applicat ons, we refer the readers
to the conclusion section.

It is also worth mentioning that the esiv.“lished variation of constant
formula in this paper also points out t..~ comcidence between the notion of
classical solutions introduced in [13! and n..'d solutions introduced in [12]
for fractional stochastic differential € ue .1ous without impulsive effects in a
finite-dimensional space. It is ir ~rest. g to know whether this result can
be extended to systems involving 1. p.'<ive effects and in an infinite dimen-
sional systems. Another ques’ ... ‘< to weaken the Lipschitz assumption on
the coefficients of the systems (ci. [2]). We leave these problems as open
questions for the further rec~arch.

The paper is structv ed as ‘ollows: In Section 2, we introduce briefly
about Caputo fractional s. ~har .ic differential equations and state the main
results of the paper. Ttz first part of Section 3 is devoted to show the
result on the existe..~e and uniqueness of mild solutions (Theorem 3.2).
The main result (" heorei. 2.3) concerning a variation of constants formula
for fractional stc cha. “ic differential equations is proved in the second part
of Section 3.

2. Prelir naric. and the statement of the main results

2.1. Fracv.> .al cdculus and fractional differential equations
Le a € (0,1], [a,b] C R and x : [a,b] — RY be a measurable function

such that fab 1z(7)|| dT < oo. The Riemann—Liouwville integral operator of
or? . a 15 uefined by

1

t 00
Loy M) = / (t—7)*tz(7) dr, where I'(a) := / t*Lexp (—t) dt,
F(Oz) a 0

st [6]. The Caputo fractional derivative of order a of a function x €
Cl([a,b)) is defined by “D%, x(t) = (I.;“Dz)(t), where D = 4 is the




usual derivative. Analog to the case of integer derivative, « variation of
constant formula is used to derive an explicit solution fo' int ~ogenous lin-
ear systems involving fractional derivatives. More cow ve ely, consider an
inhomogenous linear fractional differential equation _.. a bc :nded interval
0,7]

D x(t) = Ax(t) + f(t), z(0)- = (1)

where A € R¥™4 and f : [0,7] — R? is measur: ble .n¢ bounded. Then, an
explicit formula for solution of (1) is given in the folle ving theorem and its
proof can be found in [8].

Theorem 2.1 (A variation of constant “~rmu’~ _or Caputo fractional dif-
ferential equations). The unique solution of ) on [0,T] is given by

£(t) = Ea(t*A)n + /0 (t— " o ((t — 1) A)f(r) dr,

L oo k b V. 0 k
where EQ(Z) = Zk:() m’ L. a\ )= Zkzo m'

2.2. Fractional stochastic differc, *ial equation and the main results

Consider a Caputo fractional stochastic differential equation (for short
Caputo fsde) of order o ¢ (3,1) on a bounded interval [0, T of the following
form aw
W? (2)
where (W})ic(0,00) 8 @ su ~dard scalar Brownian motion on an underlying
complete filterec pi. hability space (Q, F,F := {Fi}ic,00), P), A € R
and b,o : [0,71  R% — R? are measurable functions satisfying the following
conditions:

UD§.X()=AX(t)+b(t,X (1)) +o(t, X (1))

(H1) Ther: exists »» > 0 such that for all 2,y € R t € [0, 7]

Lo(t, ) = b(t,y)|| + llo(t, 2) —a(t,y)l| < Lz —yl|

(H2) ;7 1b(-,0)||? dr < oo, esssup, (o g1 | (7, 0)|| < oo.

For e ch t € [0,00), let X; := L2(Q, 7, P) denote the space of all mean
squ. e .tegrable functions f : Q — R with || f||ms := VE(||f]|2). A process
¢ . ™ ) = L%, F,P) is said to be F-adapted if £(¢t) € X, for all ¢ > 0.
17w, we recall the notion of classical solution of Caputo fsde, see e.g. [13,
p. 209] and [7].




Definition 2.2 (Classical solution of Caputo fsde). For eall n € Xo, a
F-adapted process X is called a solution of (2) with t'ie 1-**ial condition
X (0) = n if the following equality holds for ¢ € [0, T]

X(t) = n+ ﬁ fot(t — 7)Y AX(T) + AT, X 7)) dT

1 t a—1 . (3)
+@f0(t—7) o(r, X (7)) dv.,

It was proved in [7] that for any n € X, tl ere exis s a unique solution
which is denoted by ¢(t,n7) of (3). In the “llowir  main result of this
paper, we establish a variation of constant forn. la for (2) which gives a
special presentation of the solution ¢(,n).

Theorem 2.3 (A variation of constant formu.~ for Caputo fsde). Let n € X
arbitrary. Then, the following stateme, -

pt:n) = Ea(t"A)n + Jot=7)" 71 E it = 7)*A)b(r, (7)) d
+ f() (t - T)ailEa,a((t - T/QA)O—(Ta (,0(7', 77)) dWT
holds for all t € [0,T].
Remark 2.4. (i) If the nois. w. {2 vanishes, i.e. o(t, X(t)) = 0, then
(4) becomes the variation of cons. nt formula for deterministic fractional
differential equations (cf. ™ ~arem 2.1). (ii) Note that E1(M) = Ey 1 (M) =
eM for M € R¥4, Letti-.g a — 1, (4) formally becomes

(4)

t t
oltn) = eyt [ et o(r ) dr + / =D AG (1, (1, 1)) AWy,
¢ 0

which is a variatior of co.. *.int formula for solutions of stochastic differential
equation

do )= (AX(t) +b(t, X (t))) dt + o(t, X (t)) dWy,
see [9, Theore.. .1].

As an «pp’.cation of the preceding theorem, we obtain an explicit repre-
sentation ¢ he colution of inhomogeneous linear fsde of the form

AWy

—, X(0)=mn. 5
W x@) = )
Cr.ullary 2.5. Suppose that b € L2([0,T],R9), o € L>°([0, T],R?), where
T > 0. 1%en, the explicit solution for (5) on [0,T] is given by

CD8 X (t) = AX () +b(t) + o (t)

X() = Ba(t“A)y+ /0 (t— 1) B n((t — 7)* A)b(r) dr
+/ (t —7)* ' Eau((t — 7)*A)o () dW;.
0
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3. Proof of the main results

We will fix the following notions through this sectior Le  R* ne endowed
with the standard Euclidean norm. For T > 0, let H2(10, 1 | R%) denote the
space of all processes & which are measurable, F7 adapt d, where Fp :=
{Ft}ieo,m, and satisfies that ||€||lg2 := supg<i<r [|§1)|lms -~ 00. Obviously,
(H2([0, T],R?), || - ||lg2) is a Banach space.

3.1. Existence and uniqueness of mild solutic ~s

We are now recalling the notion of mild solutic 1s of (2), see [12].

Definition 3.1 (Mild solutions of Capute fsdes). A F-adapted process Y
is called a mild solution of (2) with th~ =% __ condition Y (0) = n if the
following equality holds for ¢ € [0, T]

Y(t) = Ba(t*A)n+ [j(t—1)* 1 Laal(t — T)*A)b(1,Y (1)) dr

¢ _ (6)
+ fo (t—7) By 0t T)%A)o(1,Y (1)) dW;.

Now, we establish a result o.. the existence and uniqueness of mild so-
lutions for equation (2). In this result, we require that the coefficients of
the system satisfy (H1) -ad (."2). The main ingredient of the proof is to
introduce a suitable weig~ted n rm (cf. [7]). Note that in [12], a result of
the existence and uni‘,ueness  mild solutions for a larger class of systems
was also given. How ver the assumption of the coefficients of these systems
is stronger than (F 1) an' (12).

Theorem 3.2 (£xisic “ce and uniqueness of mild solutions). Suppose that
(H1) and (H2 nc'd. For any n € X, there exists a unique mild solution Y
of (2) satisf, ~q 7 (0) = n, which is denoted by (t,n).

Proof. Le’ H2 [0,T],R?) := {¢ € H([0,T],RY) : £(0) = n}. Define the cor-
responding way inov-Perron operator T, : HZ([0,T],R?) — H2([0,T],R%)
by

Ty 70 = Bo(t® A+ [t — 1) Egol(t — 7)*A)b(1,Y (1)) dr
it = T) Bt — T)*A)o (1, Y (7)) AW

I' i~ easy to see that operator 7, is well-defined. To complete the proof, it
- sufficient to show that 7, is contractive with respect to a suitable metric




on H%([O,T],Rd). For this purpose, let H2([0,7],R%) be en. wed with a
weighted norm || - ||, where v > 0, defined as follows

el = sup | EUEOI2)

for all € ~ r%(10,.7,RY). 7
tefo,] \| Era—1(7t2271) (10,27, R%) (7)

Obviously, two norms ||| g2 and ||-||, are equivaler* ..., (H2([0,T],R%), ||-
|,) is also a Banach space. Therefore, the set ' 4([0 1| RY) with the metric
induced by || - ||y is complete. By compactn=ss of [0 /] and continuity of
the function t — E, o (t*A), there exists M7 := 1 ~Xe(o,1) | Eaa(t*A)| > 0.
Choose and fix a positive constant v such at
r2a 1)

!

2L*MZ(T +1) < 1. (8)

Now, by definition of 7y, (H1), Ito’s isomet. - and M7 we have
2

ITX0 =Ty Ol < 222 2] ) (=0 IX e - V)l dar

- v t
&) / (t =72 2| X (r) ~ Y (1) dr.
0

Using Holder inequality, v htain that

ms

t
ITaX (1) = TyY () |s < 222M2 T + 1)/ (t=7)* 72X (1) = Y (1) |5 dr.
0

Hence, by definition ~f I'- ||, we have

[T X ) = To2 (8)]13ss
L;2a—1( ,+2a—1)

Jo(t = 7)?* 2Byqy (727! dr
E2a71(7t2a71)

< 22N AT+ X - Y3

Note that for .l ¢t >0

. t
i‘ (2a/ - 1)/0 (t — 7)20_2E2a—1 (77-2a71) dr < Fon_q (,-YtZa—l),

see [7, Temm a 5]. Thus,

I'2a0 — 1
L= x vy,

17,5 Y, < \/ 2L2MA(T + 1)
v} .ch together with (8) implies that 7, is contractive on HZ ([0, T ],R%). By
cc “traction mapping principle, 7, has a unique fixed point and the proof is
complete. ]




3.2. Proof of Theorem 2.3
By virtue of Theorem 3.2, to prove Theorem 2.3 it ‘s sv ...‘ent to show
that
o(t,n) =v¢(t,n)  forallne Xo,t -V, T (9)

For a clearer presentation, we give here the motivat.u anc the structure of
this proof:

Using the Ito’s representation theorem, for ar: fw ction f € Xp there
exists a unique adapted process = € HZ([0, 71, R? ,uch that f = Ef +
Jo E(1) dW;, see e.g. [10, Theorem 4.3.3]. Then, v prove (9) it is sufficient
to show that the following statement

/

<s0(t777)70+ /OT 2(7) dWT> = \"/)(t,n),c-i- /OT 2(7) dWT>

holds for all C € RY and = € H?(2 I',R%). To do this, we establish
in Proposition 3.5 an estimate o. :/\w\;,n) —(t,n),C+ [, E(1) dWT>‘.
Before going to state and pror~ this ~stimate, we need a preparatory result
in which we examine the compoi. nts of the above term, i.e. we estimate

HE(W, D= vites [ &) awn)| where e g € B (0,7, R)

Define functions x¢, ¢, 6 p.cr Xemes Reme [0, T] — R? by
T
Xeo el = Eplt,n) <c+ | e dWT), (10)
0
T
cen (t) = Eb(t,(t,n)) <c+/0 &(r) alVVT>7 (11)
T
n (D) = Ed(tn) (c+ | e dWT), (12)
0
T
Senelt) = Eb(t, b(t.m)) <c+ [ e dWT>. (13)

R amar: 3.3. In the proof of the existence and uniqueness of classical so-
lu fon ard mild solution, we have o(-,7),%(-,n) € H2([0,T],R%). Thus,
Ve m oy g mer Xém,er Re e 18 measurable and bounded on [0, 7.




Lemma 3.4. For allt € [0,T], the following statements hola.
) = cEL(t“A)En
(t = 7)" Baa((t — 7)*A) (ke et) + EE( )o(r, o(m,m))) dr, (14)
Xeme(T) = ¢ Ea(t"A)En
(

t—7)"Eya((t —7)%A) (//4\3577]70(7') + R 7)o T, U(T, 77))) dr. (15)

Proof. Since ¢(t,n) is a solution of (2) it follows t. at

1

ftn) =0 + o /0 (t — 7)Y (A= 1)+ b(r, (7)) dr

1 /t g
+ = t— Al (T, n)) AW
o Lo )

Taking product of both sides of the 1. ~ceding equality with ¢+ fOT &(r) dW,
and then taking the expectati~ of L th sides give that

[t = )" (Axeel(r) + remel)) dr

Xeaell) = Byt g 1

+]_“(1p) « lgtrf- ) lo(r, o(r,m)) de/OTf(T) dWT>'

Using Ito’s isometrv, v.~ obt.iin that

X{,n,c(t) = th"
+F(104) / (t - 7)* N AXene(T) + Feme(T) + EE(T)a (T, o(T,7))) dr.

In the oth .r words, x¢,5.(t) is the solution of the following fractional differ-
ential equ.*imn

COf () = Ax(t) + repe(t) +EE@)a(t o(t,m),  2(0) = cEn.

Tb- | by .. cue of Remark 3.3 and Theorem 2.1, the equality (14) is verified.
Noxt, by Definition 3.1 we have

) = Eo(t*An+ /0 (t —7)* ' Eqa((t — 1)*A)b(1, ¥ (7,n)) dr
+ / (t = 7)2 LB a((t — 7)* A)o(r, (7, ) AW
0

8




Taking product of both sides of the above equality with ¢ + | 5 (1) dW-
and then taking the expectation of both sides give that

t
Renel) = ¢ Ba(t*A)En + / (t = 1) Baal(t — 7" A)ig,, o(r) dr
0

t T
([ =2 Bl (e = 1 ot vtr. ) [ sy ).
0 0
Thus, by Ito’s isometry (15) is proved. O

Proposition 3.5. Let Mr := max,c(o 1) | Ea,o(t" V). Then, for any C €
RY and = € H2([0,T],R?) we have

‘<90(t, n) —¥(t,n),C + /OT =(7) ”‘WT\)i\
20—1

T T
< 2dMTL2 C+/ (1) a,

/ lo(rm) — (7 m)|2 dr

|«

t
C+ /0 E(r 2 /0 (t = 72| (7,m) — 0, )| b

Il ms

+2d M3 L*

Proof. Let C = (c1,...,¢)t »ud Z = (&1,...,&9)T, where & € H2([0, T], R),
¢; € R. Then,

o(t, ) —b(t,n),C + TE(T) dW,
( f, =)

< \lr!<¢ztn —i(t,n),ci + /& dW>
# wr’id_: E(p(t,n) —¢(t.n)) <0i+/0T5z‘(T) dWr) 2

= w d Z HX&JLCZ Xélan»cz( )H2 (16)

N xt, we are estimating || x¢, n.e: (t) — X¢;n.e: (). In light of Lemma 3.4, we
a. rive at

t
el = Rema (0l < MT/O (t = 1) kg mes (7) = Ry ()] dr
t
ML /0 (t = 7)) mslleo(ry 1) — (7, 7) lms d7

9




Consequently, applying Holder inequality yields that

IN

IA

[IXeim.c:(t) = Xeme: (D)

' :
MT </ (t 2a 2 dT) (/ ||K’§1777751 7€i77716i (" \||2 dT)

O :
warr / &I df) ( /0 (t= P2 0) = ()l o)

1
jﬂa 1 N 5
My [ 3 ([ e () = R 1P 0

watrt ([ el )(// ptr) = bl )

On the other hand, by definition of  ar a1 » we have for all 7 € [0, T]

ke m.c: (T) = Regne (T

_ zi: < (. o(rm)) — :fiw(T,n)),<c,~+/0T§i(T) dWT>>

T
Ci—‘r/ fi(T) AW,
0

2

IN

L2lo(r,m) — ¢ =m)||*

2
)
ms

where we use (H1) tc 2t cair the preceding inequality. Thus,

< QM%]‘— —
f

||X£i,"770i T Xeo “01”2

2a—1
¢ + / fz

+.MP L2 / 1€ (7)1 7ss dT/O( )22 2|7, m) = (7, m)|7s dr,

/ lo(r,m) — ()2 dr

which coget! er with (16) implies that

< 2dMZLA

2

1/ () — T
| o(t,n) w(t,n)70+/0 =( )dWT>
T
c+ [ e

t
ML us )2 dr /0 (t = )22y ) — () I

jﬁa—l
2c

2 t
a /0 lo(rsm) — w(rm)|2 dr

10




Furthermore, by Ito’s isometry

T 2 T t
Hc+ [ emram,| =i+ [ el dr> [ le@lR, dn
0 ms 0 0
which completes the proof. ]

Proof of Theorem 2.3. Let T* := inf{t € [0,T" : ¢'c,:) # ¥(t,n)}. Then,
it is sufficient to show that T = T. Suppo<e wue cc itrary, ie. T* < T.
Choose and fix an arbitrary ¢ > 0 satisfing the 1. "owing inequality

T2a—1 S a- |
6+ 2dMyI 4=
10" = >

2d M3 L* <1 (17)
To lead a contradiction, we show that ¢(t,:,) = ¢(t,n) for all t € [T*, T*+4].
For this purpose, choose and fix an aru- .. ~y ¢t € [T, T* + §]. Using Ito’s
representation theorem, there exists a « ique C; € R? and & € H?([0,t], RY)
such that o(t,1) —¥(t,n) = Cy + ', Z*(1) dW,. We extend & to the whole
interval [0,T] by letting &/ (7) — 0 fo. all 7 € (¢,T)]. For such a &, we have

Thus, using Propositica 3.6 [~ C' = Cy, E = & we obtain that

-~

= ||(P(t7 77) - w(tv 77)”12115

ms

T
Cor [ gt
0

T2cx—1 t
et m) =t = 24MPL? — /T le(,n) — (7, m) |2 dT

t
2dMBL / (t = 1) 2p () — ()| I

T*

Consequently,

sup  [l(t,m) — vt m)|As

cE[T* T*+5)
T2a—1
2AMPL? 0 sup |le(t,n) —(t )]s
te[T*,T*+4]
520471
+2d M7 L? sup [t m) — ¥(t,m)|As

20 = 1yepre 7o 40)
2 a choice of § as in (17), we have sup,cip« 1«45 (¢, n) — ¥ (¢, 0)[lms = 0.
Th 3 leads to a contradiction and the proof is complete. ]

11




4. Conclusion

In this paper, a variation of constant formula for toc’.astic fractional
differential equations of order a € (%, 1) is established. .™is formula is a
natural extension of the one for fractional differentie = equa. ons and stochas-
tic differential equations. In the forthcoming paper we ar ply this formula
to achieve a linearized stability theory for stoct astic tractional differential
equations.
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