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Definition 1.1 ([8, Definition 2.24]). A point x̄ ∈ F is said to be

(i) an efficient solution to problem (MOSIP) if there exists no x ∈ F such that
f(x) ≤ f(x̄);

(ii) a weakly efficient solution to problem (MOSIP) if there exists no x ∈ F such
that f(x) < f(x̄).

Indeed, in the face of problem (MOSIP), there are many methods dealing with it;
among them, scalarization method is shown to be an important one. The relevance
of using scalarization methods to study problem (MOSIP) is that scalar problems
can have more effective means of finding optimal solutions than vector problems.
For a deeper study, the reader is referred to the books [3, 5, 8, 14] and the papers
[9, 13, 21, 24] and the references therein. In our research, we are interested in the so-
called ϵ-constraint method, which was minutely studied by Chankong and Haimes [5]
and improved by Ehrgott and Ruzika [9]; moreover, it is worth mentioning that the
ϵ-constraint method is proved to be an effective one to find efficient solutions of
a class of multiobjective optimization problems with SOS-convex polynomials; see,
[15, 18, 19] for example.

Mathematically, the ϵ-constraint method is based on a scalarization where one
of the objective functions is minimized while all the other objective functions are
bounded from above by means of additional constraints:

Minx∈F fj(x) subject to fk(x) ≦ ϵk, k ∈ M j := M \ {j},(Pj(ϵ))

where ϵ = (ϵ1, . . . , ϵm) ∈ Rm, note that the component ϵj is unrelated for prob-
lem (Pj(ϵ)), the convention involving it here will be convenient. For each j =
1, . . . ,m, let Fj(ϵ) := {x ∈ F : fk(x) ≦ ϵk, k ̸= j} be the feasible set of prob-
lem (Pj(ϵ)), which is assumed to be nonempty.

In what follows, we state the criteria of ϵ-constraint method (see [5, Theorem 4.1]
or [8, Theorem 4.5]) that will play a key role in the present paper.

Theorem 1.2. A point x̄ ∈ F is an efficient solution to problem (MOSIP) if and
only if it is an optimal solution to problem (Pj(ϵ)) for each j ∈ M, where ϵk = fk(x̄)
for k ∈ M j .

Remark 1.3. Observe that if x̄ is an efficient solution to problem (MOSIP), then
it is also an optimal solution to problem (Pj(ϵ)) for some j ∈ M ; however the
converse is not always true (actually, it was shown that if x̄ is an optimal solution to
problem (Pj(ϵ)) for some j, then x̄ is a weakly efficient solution to problem (MOSIP)
[8, Proposition 4.3]).

According to Remark 1.3, Piao et al. [24] studied necessary conditions for prob-
lems (Pj(ϵ)) and (MOSIP) under the assumption of some suitable constraint qual-
ifications. In this paper, we will propose necessary optimality condition for prob-
lem (MOSIP) by using Theorem 1.2 rather than Remark 1.3.

The rest of the paper is as follows: In Section 2, we state some preliminaries
and basic concepts in nonsmooth analysis and linear space for semi-infinite pro-
grams. We present the main results in Section 3. In the first part, we explore
a constraint qualification which is used to propose necessary optimality condition
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for problem (MOSIP), then we formulate necessary optimality conditions for prob-
lem (MOSIP) under the assumption of the proposed constraint qualification. In the
second part, a mixed type dual model, which is a little bit different from the classical
ones, for instance, see [1, 29], is established; weak duality under generalized convex-
ity and strong duality with the assumption of the proposed constraint qualification
are investigated, successively. Finally, we give our conclusions in Section 4.

2. Preliminaries

In this section, we overview briefly some notions of convex analysis and non-
smooth analysis widely used in the present paper; see [7, 25] for more details. Let
Rn denote the Euclidean space equipped with the usual Euclidean norm ∥ · ∥. The
nonnegative orthant of Rn is denoted by Rn

+.
A function ϕ : Rn → R is said to be a locally Lipschitz function if for any x ∈ Rn

there exists a positive constant K and a neighborhood N of x such that

|ϕ(y)− ϕ(z)| ≦ K∥y − z∥, ∀y, z ∈ N(x);

moreover, for a sequence (ϕt)t∈T , ϕt : Rn → R, where T is a compact index set, we
say that (ϕt)t∈T is locally Lipschitz with respect to x uniformly in t if there exists
a neighborhood N(x) and a constant K > 0 such that

|ϕt(y)− ϕt(z)| ≦ K∥y − z∥, ∀y, z ∈ N(x) and ∀t ∈ T.

2.1. Nonsmooth analysis. The generalized directional derivative of ϕ at x in the
direction d ∈ Rn in the sense of Clarke [7, Chapter 2] is defined by

ϕ◦(x; d) := lim sup
y→x
t↓0

ϕ(y + td)− ϕ(y)

t

and the Clarke subdifferential of ϕ at x, denoted by ∂cϕ(x), is

∂cϕ(x) := {u ∈ Rn : ϕ◦(x; d) ≧ ⟨u, d⟩, ∀d ∈ Rn}.

In particular, for d ∈ Rn, if limt↓0
ϕ(x+td)−ϕ(x)

t exists, then it is called the directional
derivative of ϕ at x in the direction d and is denoted by ϕ′(x; d).

Definition 2.1 ([7, Definition 2.3.4]). The function ϕ is said to be regular at x, if
ϕ′(x; d) exists and coincides with ϕ◦(x; d) for each d ∈ Rn.

For a closed subset D ⊂ Rn, the tangent cone to D at x is defined by

TD(x) := {h ∈ Rn : d◦D(x;h) = 0},

where dD denotes the distance function to D. The normal cone to D at x is defined
by

ND(x) := {u ∈ Rn : ⟨u, h⟩ ≦ 0, ∀h ∈ TD(x)}.
If in addition D is convex, the normal cone to D coincides with the one in the sense
of convex analysis:

ND(x) = {u ∈ Rn : ⟨u, y − x⟩ ≦ 0, ∀y ∈ D}.
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2.2. Linear space in semi-infinite programs. The following linear space is used
for semi-infinite programming [10]:

R(T ) := {λ = (λt)t∈T : λt = 0 for all t ∈ T but only finitely many λt ̸= 0}.

With λ ∈ R(T ), its supporting set, T (λ) = {t ∈ T : λt ̸= 0}, is a finite subset of T.

The nonnegative cone of R(T ) is denoted by:

R(T )
+ = {λ = (λt)t∈T ∈ R(T ) : λt ≧ 0, t ∈ T}.

With λ ∈ R(T ) and {zt}t∈T ⊂ Z, Z being a real linear space, we understand that∑
t∈T

λtzt =

{ ∑
t∈T (λ) λtzt if T (λ) ̸= ∅,

0 if T (λ) = ∅.

For gt, t ∈ T, ∑
t∈T

λtgt =

{ ∑
t∈T (λ) λtgt if T (λ) ̸= ∅,

0 if T (λ) = ∅.

3. Main results

In this section, we present our main results: (i) we explore a constraint qualifica-
tion that is used to propose necessary optimality condition for problem (MOSIP),
and then under the assumption of the explored constraint qualification we establish
necessary conditions for problem (MOSIP). Besides, we also study the sufficient
optimality condition for problem (MOSIP) by means of introducing the concepts of
(strictly) generalized convexity, which is different to the results in the paper [24].
(ii) We formulate a mixed type dual model due to the primal problem; weak and
strong duality are then investigated.

3.1. Optimality Conditions. First of all, we consider the following scalar opti-
mization problem in order to recall some results for a single objective optimization
problem.

Minx∈Rnf0(x) subject to x ∈ F,(P)

where f0 : Rn → R is a locally Lipschitz function, and F := {x ∈ C : gt(x) ≦ 0, t ∈
T} is the feasible set of problem (P), which is same to the one of problem (MOSIP).

Definition 3.1. Let x̄ ∈ F. We say that the following (CQ) condition for prob-
lem (P) is satisfied at x̄, if

∃d ∈ TC(x̄) : g
c
t (x̄; d) < 0, for all t ∈ I(x̄),(CQ)

where I(x̄) := {t ∈ T : gt(x̄) = 0}.

Remark 3.2. It is worth mentioning that (i) if T is finite, gt, t ∈ T are smooth func-
tions and C = Rn, the (CQ) condition coincides with the Mangasarian–Fromovitz
constraint qualification [2], i.e., there is a direction d in Rn such that ⟨∇gt(x̄), d⟩ < 0
for all t ∈ I(x̄); (ii) if T is finite and gt, t ∈ T are locally Lipschitz functions, the
(CQ) condition coincides with the condition in [11], which says that there is a
direction d in TC(x̄) satisfying gct (x̄; d) < 0 for all t ∈ I(x̄).
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According to [27, Theorems 4.1 and 4.2] (where problem (P) works on a Banach
space), we can derive the following lemma for the case of the related functions
defined on Rn, the proof was given in [24].

Lemma 3.3 ([24, 27]). Let x̄ be an optimal solution to problem (P), assume that

the (CQ) condition holds at x̄, then there exists λ ∈ R(T )
+ such that

0 ∈ ∂cf0(x̄) +
∑
t∈T

λt∂
cgt(x̄) +NC(x̄), and gt(x̄) = 0, ∀t ∈ T (λ).

The following definition, which is a modified version of the (CQ) condition for
problem (P) (see Definition 3.1), is associated to problem (Pj(ϵ)). Recall that the
feasible set of problem (Pj(ϵ)) is denoted by Fj(ϵ), observe that we have Fj(ϵ) ⊂ F
since Fj(ϵ) = F ∩ {x ∈ Rn : fk(x) ≦ ϵk, k ̸= j}.

Definition 3.4 ([17]). Let x̄ ∈ Rn, we say that the following (MCQj) condition for
problem (Pj(ϵ)) is satisfied at x̄, if

∃d ∈ TC(x̄) :

{
gct (x̄; d) < 0, for all t ∈ I(x̄),
f c
k(x̄; d) < 0, for all k ∈ Hj(x̄).

(MCQj)

where I(x̄) = {t ∈ T : gt(x̄) = 0}, Hj(x̄) = {k ∈ M j : fk(x̄) = ϵk}, I(x̄) ∩Hj(x̄) = ∅
and Ī(x̄) = I(x̄) ∪Hj(x̄).

Now, we give a KKT type optimality condition for an optimal solution to prob-
lem (Pj(ϵ)) for each j ∈ M under the fulfilment of the (MCQj) condition for each
corresponding j.

Theorem 3.5. For each given j ∈ M, let x̄ ∈ Fj(ϵ) be an optimal solution to
problem (Pj(ϵ)) and assume that the (MCQj) condition holds at x̄. Then there exist

αk ≧ 0, k ∈ M j and λ ∈ R(T )
+ such that

0 ∈ ∂cfj(x̄) +
∑
k∈Mj

αk∂
cfk(x̄) +

∑
t∈T

λt∂
cgt(x̄) +NC(x̄),(3.1)

gt(x̄) = 0, ∀ t ∈ T (λ).

Proof. For each given j ∈ M, let x̄ be an optimal solution to problem (Pj(ϵ)), then
fj(x̄) ≦ fj(x), ∀x ∈ Fj(ϵ). Without loss of generality, we assume that T ∩M j = ∅,
set

Gt(·) =
{

ft(·)− ϵt, t ∈ M j ,
gt(·), t ∈ T,

and T̄ = T ∪M j .

Since the (MCQj) condition holds at x̄ for each given j ∈ M, by applying Lemma 3.3
to the following scalar problem:

min fj(x) subject to x ∈ C, Gt(x) ≦ 0, t ∈ T̄ ,(EPj(ϵ))

there exist λ̄ ∈ R(T̄ )
+ such that

0 ∈ ∂cfj(x̄) +
∑
t∈T̄

λ̄t∂
cGt(x̄) +NC(x̄), Gt(x̄) = 0, ∀t ∈ T̄ (λ̄).

Hence 0 ∈ ∂cfj(x̄) +
∑

k∈Mj αk∂
cfk(x̄) +

∑
t∈T λt∂

cgt(x̄) + NC(x̄), where λ̄t is re-

placed by αk if t ∈ M j and by λt if t ∈ T as well as gt(x̄) = 0,∀t ∈ T (λ). □
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Remark 3.6. Note that problem (EPj(ϵ)) is equivalent to problem (Pj(ϵ)).

Below, with the aid of Theorems 1.2 and 3.5, we propose a KKT type necessary
optimality condition for an efficient solution to problem (MOSIP).

Theorem 3.7 (Necessary Condition). Let x̄ ∈ F be an efficient solution to prob-
lem (MOSIP), and assume that the (MCQj) condition holds at x̄ for each j ∈ M,

then there exist τ ∈ Rm
+ with

∑
j∈M τj = 1 and ν ∈ R(T )

+ such that

0 ∈
∑
j∈M

τj∂
cfj(x̄) +

∑
t∈T

νt∂
cgt(x̄) +NC(x̄),(3.2)

gt(x̄) = 0, ∀t ∈ T (λ).

Proof. Since x̄ is an efficient solution to problem (MOSIP), then along with the
criteria of the ϵ-constraint method (Theorem 1.2), we have x̄ is an optimal solution
to problem (Pj(ϵ)) for each j ∈ M, and x̄ ∈ Fj(ϵ) since we take ϵk = fk(x̄) in
Theorem 1.2.

On the other hand, by Theorem 3.5, there exist αk ≧ 0, k ∈ M j and λ ∈ R(T )
+

such that (3.1) holds as well as gt(x̄) = 0, ∀t ∈ T (λ). This implies that

0 ∈
∑
j∈M

τj∂
cfj(x̄) +

∑
t∈T

νt∂
cgt(x̄) +NC(x̄),

where τj =
1

1 +
∑

k∈Mj αk
, τk =

αk

1 +
∑

k∈Mj αk
, k ∈ M j , and νt =

λt

1 +
∑

k∈Mj αk
, t ∈

T.

It is easy to check that
∑

j∈M τj = 1 and
1

1 +
∑

k∈Mj αk
NC(x̄) ⊂ NC(x̄). □

It should be noted here that the (MCQj) condition is essential since the constraint
qualification in Theorem 3.7 is not for problem (MOSIP) but for problem (Pj(ϵ));
in other words, we proposed the KKT type necessary optimality condition for prob-
lem (MOSIP) via the one for problem (Pj(ϵ)).

Now, we design an example to illustrate the obtained two theorems.

Example 3.8. Consider the following nonsmooth multiobjective semi-infinite prob-
lem (MOSIP)1:

(MOSIP)1 Minimize f(x) := (f1(x), f2(x))
subject to gt(x) ≦ 0, t ∈ T,

x ∈ C,

where f1(x) = |x− 2|, f2(x) = (x− 1)2 and gt(x) = tx2− 2x, t ∈ [0, 1], C := [0, 3].
It is easy to verify that the feasible set of (MOSIP)1 is [0, 2] and its efficient solution
set is [1, 2].

Now take x̄ = 2 to be the optimal solution of both (P1(ϵ)) and (P2(ϵ)) by taking
ϵk = fk(x̄) as the statement in Theorem 1.2. Observe that both the (MCQ1)
condition and (MCQ2) condition hold. First, let us deal with j = 1 ∈ {1, 2}, that
is,

(P1(ϵ)) min f1(x)
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s.t. gt(x) ≦ 0, f2(x) ≦ ϵ2, x ∈ C,

and we have 0 ∈ [−1, 1] + 2α2 + 2λ1 + {0}, so we may get α2 = 1
4 and λ1 = 1

4 for
t = 1, λt = 0 for all t ∈ [0, 1) such that Theorem 3.5 holds for j = 1. Second, for
j = 2 ∈ {1, 2}, that is,

(P2(ϵ)) min f2(x)

s.t. gt(x) ≦ 0, f1(x) ≦ ϵ1, x ∈ C,

one has easily that 0 ∈ 2 + α1[−1, 1] + 2λ1 and we may get α1 = 3 and λ1 = 1
4 for

t = 1, λt = 0 for all t ∈ [0, 1) such that Theorem 3.5 holds for j = 2. Up to now, we
declare that Theorem 3.5 holds.

We turn to check Theorem 3.7. Let x̄ = 2 be the efficient solution of (MOSIP)1,
then x̄ = 2 solves (Pj(ϵ)) for each j ∈ {1, 2}, as we discussed above it is easy to
obtain that there exist τ = (45 ,

1
5) and ν1 = 1

5 for t = 1 and νt = 0 for all t ∈ [0, 1)

such that Theorem 3.7 holds. (or there exist τ = (14 ,
3
4) and ν1 = 1

5 for t = 1 and
νt = 0 for all t ∈ [0, 1) such that Theorem 3.7 holds.)

Before we discuss the sufficient conditions for (weakly) efficient solutions of prob-
lem (MOSIP), we would recall the concepts of (strict) generalized convexity, which
is defined in [28, Definition 3.1] by means of Clarke subdifferential, for a family of
locally Lipschitz functions; and furthermore the concepts are inspired by [6].

Definition 3.9. Let f := (f1, . . . , fm) and gT := (gt)t∈T .

(i) We say that (f, gT ) is generalized convex on C at x̄, if for any x ∈ C, z∗ ∈
∂cfj(x̄), j = 1, . . . ,m and x∗t ∈ ∂cgt(x̄), t ∈ T, there exists ω ∈ TC(x̄)
satisfying

fj(x)− fj(x̄) ≧ ⟨z∗j , ω⟩, j = 1, . . . ,m,

gt(x)− gt(x̄) ≧ ⟨x∗t , ω⟩, t ∈ T.

(ii) We say that (f, gT ) is strictly generalized convex on C at x̄, if for any x ∈
C\{x̄}, z∗ ∈ ∂cfj(x̄), j = 1, . . . ,m and x∗t ∈ ∂cgt(x̄), t ∈ T, there exists
ω ∈ TC(x̄) satisfying

fj(x)− fj(x̄) > ⟨z∗j , ω⟩, j = 1, . . . ,m,

gt(x)− gt(x̄) ≧ ⟨x∗t , ω⟩, t ∈ T.

Remark 3.10. Observe that, if C is convex and fi, i ∈ M, and gt, t ∈ T are convex
(resp., strictly convex), then (f, gT ) is generalized convex (resp., strictly generalized
convex) on C at any x̄ ∈ C with ω := x − x̄ for each x ∈ C. Furthermore, as the
authors [28] pointed that by a similar argument in [6, Example 3.2], we can show
that the class of generalized convex functions is properly larger than the one of
convex functions.

Theorem 3.11 (Sufficient Condition). Let x̄ ∈ F satisfy (3.2).

(i) If (f, gT ) is generalized convex on C at x̄, then x̄ is a weakly efficient solu-
tion.

(ii) If (f, gT ) is strictly generalized convex on C at x̄, then x̄ is an efficient
solution.
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Proof. Since x̄ ∈ F satisfies (3.2), there exist τ ∈ Rm
+ with

∑
j∈M τj = 1, ν ∈ R(T )

+

and z∗j ∈ ∂cfj(x̄), j = 1, . . . ,m, x∗t ∈ ∂cgt(x̄), t ∈ T such that

−
( ∑
j∈M

τjz
∗
j +

∑
t∈T

νtx
∗
t

)
∈ NC(x̄).(3.3)

We first show (i). Assume to the contrary that x̄ is not a weakly efficient solution,
which tells us that there exists x̂ ∈ F such that

f(x̄)− f(x̂) ∈ intRm
+ .(3.4)

By relationship between tangent cone and normal cone, and the generalized con-
vexity of (f, gT ), we deduce from (3.3) that, for such x̂, there exists ω ∈ TC(x̄) such
that

0 ≦
∑
j∈M

τj⟨z∗j , ω⟩+
∑
t∈T

νt⟨x∗t , ω⟩ ≦
∑
j∈M

τj [fj(x̂)− fj(x̄)] +
∑
t∈T

νt[gt(x̂)− gt(x̄)].

Hence, ∑
j∈M

τjfj(x̄) +
∑
t∈T

νtgt(x̄) ≦
∑
j∈M

τjfj(x̂) +
∑
t∈T

νtgt(x̂),

combining this with the facts that νtgt(x̄) = 0, and νtgt(x̂) ≦ 0 for all t ∈ T, we
conclude that ∑

j∈M
τjfj(x̄) =

∑
j∈M

τjfj(x̄) +
∑
t∈T

νtgt(x̄)

≦
∑
j∈M

τjfj(x̂) +
∑
t∈T

νtgt(x̂)

≦
∑
j∈M

τjfj(x̂).

This entails that there exists j0 ∈ M such that fj0(x̄) ≦ fj0(x̂) due to τ ∈ Rm
+\{0}.

This, along with (3.4), gives a contradiction.
Now, we prove (ii). Suppose for contradiction that x̄ is not an efficient solution.

This means that there exists x̂ ∈ F such that

f(x̄)− f(x̂) ∈ Rm
+\{0}.(3.5)

Again, by relationship between tangent cone and normal cone, and the strictly
generalized convexity of (f, gT ), we deduce from (3.3) that, for such x̂, there exists
ω ∈ TC(x̄) such that

0 ≦
∑
j∈M

τj⟨z∗j , ω⟩+
∑
t∈T

νt⟨x∗t , ω⟩ <
∑
j∈M

τj [fj(x̂)− fj(x̄)] +
∑
t∈T

νt[gt(x̂)− gt(x̄)].

Thus, ∑
j∈M

τjfj(x̄) +
∑
t∈T

νtgt(x̄) <
∑
j∈M

τjfj(x̂) +
∑
t∈T

νtgt(x̂).

Observe that νtgt(x̄) = 0, and νtgt(x̂) ≦ 0 for all t ∈ T. Therefore, we have∑
j∈M

τjfj(x̄) =
∑
j∈M

τjfj(x̄) +
∑
t∈T

νtgt(x̄)
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<
∑
j∈M

τjfj(x̂) +
∑
t∈T

νtgt(x̂)

≦
∑
j∈M

τjfj(x̂).

This implies that there exists j0 ∈ M such that fj0(x̄) < fj0(x̂). This, along with
(3.5), gives a contradiction. □

3.2. Duality Theorems. In this part, we introduce a mixed type dual problem
(MD), which combines the type of Wolfe [29] with the type of Mond–Weir [22]
dual problems. Then, we establish weak and strong duality theorems between the
corresponding ones.

(MD) Maximize f(y) +
∑
t∈T

λtgt(y)e

subject to 0 ∈
∑
j∈M

τj∂
cfj(y) +

∑
t∈T

(λt + µt)∂
cgt(y) +NC(y),

µtgt(y) ≧ 0, t ∈ T,

τ ∈ Rm
+ , τT e = 1, e = (1, . . . , 1) ∈ Rm,

(y, τ, λ, µ) ∈ C × Rm
+ × R(T )

+ × R(T )
+ .

Let us denote by G the feasible set of (MD). It is worth noting that the problem
model (MD) is a vector version of the one due to [26]. It is obvious that, for µ = 0,
the problem (MD) is equivalent to the dual of problem (MOSIP) in the sense of
Wolfe [29], denoted by (MD)W:

(MD)W Maximize f(y) +
∑
t∈T

λtgt(y)e

subject to 0 ∈
∑
j∈M

τj∂
cfj(y) +

∑
t∈T

λt∂
cgt(y) +NC(y),

τ ∈ Rm
+ , τT e = 1, e = (1, . . . , 1) ∈ Rm,

(y, τ, λ) ∈ C × Rm
+ × R(T )

+ .

For λ = 0, the problem (MD) is equivalent to the dual of problem (MOSIP) in the
sense of Mond–Weir [22], denoted by (MD)M:

(MD)M Maximize f(y)

subject to 0 ∈
∑
j∈M

τj∂
cfj(y) +

∑
t∈T

µt∂
cgt(y) +NC(y),

µtgt(y) ≧ 0, t ∈ T,

τ ∈ Rm
+ , τT e = 1, e = (1, . . . , 1) ∈ Rm,

(y, τ, µ) ∈ C × Rm
+ × R(T )

+ .

The following theorem presents weak duality relations between the primal prob-
lem (MOSIP) and the dual problem (MD).
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Theorem 3.12 (Weak Duality). Let x and (y, τ, λ, µ) be the feasible solutions of
problems (MOSIP) and (MD), respectively.

(i) If (f, gT ) is generalized convex on C at y, then f(x) ̸< f(y)+
∑

t∈T λtgt(y)e.
(ii) If (f, gT ) is strictly generalized convex on C at y, then f(x) ≰ f(y) +∑

t∈T λtgt(y)e.

Proof. Since (y, τ, λ, µ) ∈ G, there exist τ ∈ Rm
+ with

∑
j∈M τj = 1, λ, µ ∈ R(T )

+ and

z∗j ∈ ∂cfj(x̄), j = 1, . . . ,m, x∗t ∈ ∂cgt(x̄), t ∈ T such that

−
( ∑
j∈M

τjz
∗
j +

∑
t∈T

(λt + µt)x
∗
t

)
∈ NC(x̄).(3.6)

(i) Assume to the contrary that

f(x) < f(y) +
∑
t∈T

λtgt(y)e.

Hence, ⟨τ, f(x) − [f(y) +
∑

t∈T λtgt(y)e]⟩ < 0, which is equivalent to the following
inequality: ∑

j∈M
τj [fj(x)− fj(y)]−

∑
t∈T

λtgt(y) < 0.(3.7)

By relationship between tangent cone and normal cone, and the generalized convex-
ity of (f, gT ) on C at y, we deduce from (3.6) that, for such x, there exists ω ∈ TC(x̄)
such that

0 ≦
∑
j∈M

τj⟨z∗j , ω⟩+
∑
t∈T

λt⟨x∗t , ω⟩

≦
∑
j∈M

τj [fj(x)− fj(y)] +
∑
t∈T

λt[gt(x)− gt(y)].(3.8)

It follows by x ∈ F that
∑

t∈T λtgt(x̄) ≦ 0. Thus, (3.8) implies that

0 ≦
∑
j∈M

τj [fj(x)− fj(y)]−
∑
t∈T

λtgt(y).

It comes a contradiction in the view of (3.6) and (3.8).
We would leave the proof of (ii) to the reader. □

The forthcoming theorem describes strong duality relations between the primal
problem (MOSIP) and the dual problem (MD).

Theorem 3.13 (Strong Duality). Let x̄ be a weakly efficient solution to (MOSIP)
such that the (MCQj) condition is satisfied at x̄ for some j ∈ M. Then there exists

(τ̄ , λ̄, µ̄) ∈ Rm
+ ×R(T )

+ ×R(T )
+ such that (x̄, τ̄ , λ̄, µ̄) is a feasible solution of (MD) and

f(x̄) = f(x̄) +
∑

t∈T λ̄tgt(x̄)e. Furthermore,

(i) If (f, gT ) is generalized convex on C at any y, then (x̄, τ̄ , λ̄, µ̄) is a weakly
efficient solution of (MD).

(ii) If (f, gT ) is strictly generalized convex on C at any y, then (x̄, τ̄ , λ̄, µ̄) is an
efficient solution of (MD).
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Proof. Thanks to Theorem 3.7, there exist τj ∈ Rm
+ with

∑
j∈M τj = 1 and λ ∈ R(T )

+

such that

0 ∈
∑
j∈M

τj∂
cfj(x̄) +

∑
t∈T

λt∂
cgt(x̄) +NC(x̄)

⊂
∑
j∈M

τj∂
cfj(x̄) +

∑
t∈T

(λt + µt)∂
cgt(x̄) +NC(x̄),(3.9)

and (λt + µt)gt(x̄) = 0. Putting

τ̄j :=
τj∑

j∈M τj
, j = 1, . . . ,m, λ̄t :=

λt∑
j∈M τj

, µ̄t :=
µt∑

j∈M τj
, t ∈ T,

then we have τ̄j ∈ Rm
+ with

∑
j∈M τ̄j = 1, and λ̄ := (λ̄t)t∈T ∈ R(T )

+ , µ̄ := (µ̄t)t∈T ∈
R(T )
+ . Moreover, the inclusion (3.9) is still valid when τj ’s, λt’s and µt’s are replaced

by τ̄j ’s, λ̄t’s and µ̄t’s, respectively. Thus, (x̄, τ̄ , λ̄, µ̄) is a feasible solution of (MD).
In addition, since λtgt(x̄) = 0, This implies that λ̄tgt(x̄) = 0, and therefore,

f(x̄) = f(x̄) +
∑
t∈T

λ̄tgt(x̄)e.

(i) Since (f, gT ) is generalized convex on C at any y, according to (i) of Theo-
rem 3.12, we have

f(x̄) +
∑
t∈T

λ̄tgt(x̄)e = f(x̄) ̸< f(y) +
∑
t∈T

λtgt(y)e,

for any (y, τ, λ, µ) ∈ G. Thus, (x̄, τ̄ , λ̄, µ̄) is a weakly efficient solution of (MD).
(ii) Since (f, gT ) is strictly generalized convex on C at any y, according to (ii) of

Theorem 3.12, we obtain

f(x̄) +
∑
t∈T

λ̄tgt(x̄)e ≰ f(y) +
∑
t∈T

λtgt(y)e,

for any (y, τ, λ, µ) ∈ G. Hence (x̄, τ̄ , λ̄, µ̄) is an efficient solution of (MD). □

4. Conclusions

In this paper, we studied a class of multiple objective optimization problems
with an infinite number of constraints by the so-called ϵ-constraint method. We
explored a constraint qualification in order to propose necessary optimality con-
dition for problem (MOSIP). Moreover, we investigated weak and strong duality
theorems after a mixed type dual model was established. On the other hand, very
recently, Lee and Lee [20] studied robust semi-infinite multiobjective optimization
problems by another scalarization method (weight-sum method), but how to ob-
tain efficient solutions of robust semi-infinite multiobjective optimization problems
by ϵ-constraint method is also an interesting and important issue. This would be
examined in a forthcoming study.
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