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This paper presents the finite element algorithm and results of dynamical analysis of cracked plate subjected to moving oscillator
with a constant velocity and any motion orbit. There are many surveys considering the dynamic response of the plate when there
is a change in number of cracks and the stiffness of the spring k. The numerical survey results show that the effect of cracks on the
plate's vibration is significant. The results of this article can be used as a reference for calculating and designing traffic structures
such as road surface and bridge surface panels.

1. Introduction

There are several types of plate structures affected by the
vehicle load: pavement, railway system, and bridge floor, etc.
Calculating these types of structures and themeans of loading
are modeled by different kinds of forces such as force, mass,
and moving oscillators. Typically, the tracked vehicle is a
moving mass, while the wheeled vehicle is described as a
moving oscillator. Accordingly, structural dynamic analysis
under the influence of mobile loads has been considered by
many scientists. Nguyen Thai Chung and Le Pham Binh [1]
analyzed the cracked beam on the elastic foundation under
moving mass by using the finite element method (FEM).
S.R. Mohebpour and P. Malekzadeh [2], P. Malekzadeh, A.R.
Fiouz, H. Razi [3], Qinghua Song, Zhanqiang Liu, Jiahao
Shi, Yi Wan [4], Qinghua Song, Jiahao Shi, and Zhanqiang
Liu [5] presented a finite element model based on the first
order shear deformation theory to investigate the dynamic
behavior of laminated composite, FGM plates traversed by
a moving oscillator, and a moving mass. Ahmad Mamandi,
RuhollahMohsenzadeh, andMohammadH.Kargarnovin [6]
used finite element methods and Ansys software to simu-
late the nonlinear dynamic of rectangular plates subjected
to accelerated or decelerated moving load. A.R. Vosoughi,

P. Malekzadeh, and H. Razi [7] analyzed the moderately
thick laminated composite plates on the elastic foundation
subjected to moving load. G.L. Oian, S.N. Gu, J.S. Jiang [8],
andMarekKrawczuk [9] analyzed the cracked plate subjected
to dynamic loads by FEM. Yin T. and Lam H.F [10, 11] used
a new solution method for investigation of the vibration
characteristics of finite-length circular cylindrical shells with
a circumferential part-through crack with four representative
sets of boundary conditions being considered: simply sup-
ported, clamped-clamped, clamped-simply supported, and
clamped-free. Li D. H., Yang X., Qian R. L., and Xu D. [12, 13]
used the extended layermethod (XLWM) to analyze the static
reaction, free vibration, and transient response of cracked
FGM plates.

2. Finite Element Simulation
and Dominant Equations

Figure 1 shows the cracked plate under the moving oscillator
on the plate in the general coordinate system (X,Y,Z).

For finite element model formulation, the following
assumptions are made:

(i) The materials of the system are linear elastic.
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Figure 1: Cracked plate subjected to moving oscillator.

(ii) The load and pavement are not speared in the activity
duration of system.

2.1. Cracked Plate Element Subjected to Moving Oscillator

2.1.1. Cracked Plate Element Subjected to Dynamic Loads.
Plate is described by bending rectangular four-node elements
(Figure 2). Arbitrary point in the element has positions (x, y)
in global coordinate and positions (r, s) in local coordinate
[14]. We assume that the thickness of plate element ℎ is a
constant and the conditions ofMindlin–Reissner plate theory
are satisfied.

The displacement fields are written as [15]

u (x, y, z, t) = u0 (x, y, t) + z𝜃y (x, y, t) ,
v (x, y, z, t) = v0 (x, y, t) − z𝜃x (x, y, t) ,
w (x, y, z, t) = w0 (x, y, t) ,

(1)

where u0, v0, w0 are the displacements of the mid plane and𝜃x, 𝜃y are rotations of normal about, respectively, the y and x
axes.

The strain vector is presented in the form

{𝜀p} = {{𝜀x 𝜀y 𝛾xy} {𝛾xz 𝛾yz}}T = {{𝜀b}T {𝜀s}T}T , (2)

where

{𝜀b} = {𝜕u0𝜕x 𝜕v0𝜕y (𝜕u0𝜕y + 𝜕v0𝜕x )}
T

+ z{𝜕𝜃y𝜕x −𝜕𝜃x𝜕y (𝜕𝜃y𝜕x − 𝜕𝜃x𝜕y )}
T

= {𝜀0} + z {𝜅} ,
(3)

{𝜀s} = {𝛾xz 𝛾yz}T = {𝜕w0𝜕x + 𝜃y 𝜕w0𝜕y − 𝜃x}
T , (4)

{𝜅} = {kx ky kxy}T
= {𝜕𝜃y𝜕x −𝜕𝜃x𝜕y (𝜕𝜃y𝜕x − 𝜕𝜃x𝜕y )}

T . (5)

The constitutive equation can be written as

{𝜎} = {{𝜎b}{𝜎s}} = [ [D
b] [0][0] [Ds] ]{{𝜀

b}{𝛾s}} , (6)

where {𝜎b} is stress vector without shear deformation:

{𝜎b} = {{{{{{{
𝜎x𝜎y𝜏xy
}}}}}}}
= E1 − ]2

[[[[
[

1 ] 0
] 1 0
0 0 1 − ]2

]]]]
]
{{{{{{{
𝜀x𝜀y𝛾xy
}}}}}}}

= [Db] {𝜀b} = [Db] ({𝜀0} + z {𝜅}) ,
(7)

{𝜎s} is stress vector of shear stress:
{𝜎s} = {𝜏xz𝜏yz} = G{𝛾xz𝛾yz} =

E2 (1 + ]) [
1 0
0 1]{

𝛾xz𝛾yz}
= [Ds] {𝜀s} ,

(8)

with E being elasticmodulus of longitudinal deformation and
] being Poisson ratio.

Using (7) and (8), the components of internal force vector{Fif } are determined as

{Mx My Mxy}T = ∫h/2

−h/2
z
{{{{{{{
𝜎x𝜎y𝜏xy
}}}}}}}
dz

= [Db] ∫h/2

−h/2
z ({𝜀0} + z {𝜅}) dz

= h312 [Db] {𝜅} ,
{Qx Qy}T = ∫h/2

−h/2
[Ds] {𝜀s} dz = 𝛼h [Ds] {𝜀s} ,

(9)

so that one obtains

{Fif} = [Dcs] {𝜀cs} , (10)

where [Dcs] = [ (h3/12)[Db] [0][0] 𝛼h[Ds] ]- strain matrix,

{𝜀cs} = {kx ky kxy 𝛾xz 𝛾yz}T is the vector of curvatures
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Figure 2: Model of 4-node plate element and the coordinate system.

and shear strains, and 𝛼 is the shear strain correction factor,
usually equal to 𝛼 = 5/6.

According to the FEM procedure, the displacement of a
point of the element is represented as [14, 16]

w = 4∑
i=1
Niwi,

𝜃x = 4∑
i=1
Ni𝜃xi,

𝜃y = 4∑
i=1
Ni𝜃yi,

(11)

where wi, 𝜃xi, 𝜃yi are displacements w, 𝜃x, 𝜃y at ith node,
respectively, and Ni are shape functions, which allows us to
obtain

{𝜀cs}e = [B] {q}e = 4∑
i=1
[Bi] {qi} , (12)

where [B]e is a matrix for the internal force determination,
and {q}e = {{q1}T {q2}T {q3}T {q4}T}Te is a vector of the
node displacement, with {qi} = {wi 𝜃xi 𝜃yi}T, (i = 1,2,3,4).

Substituting (12) into (10) leads to

{Fif} = 4∑
i=1
[DcsBi] {qi} , (13)

where [DcsBi] = [DcsBi]b + [DcsBi]s , (14)

[DcsBi]b, [DcsBi]s are matrices corresponding to bending
moment and shear force, respectively, [10, 11].

The dynamic equation of plate element can be derived by
using Hamilton’s principle [14, 17]:

𝛿∫t2

t1
[Te − Πe] dt = 0, (15)

where Te, Πe are kinetic energy and total potential energy of
the element, respectively.

The kinetic energy of the element level is defined as [14]

Πe = 12 ∫Ae

{Fif}T
e
[Dcs] {Fif}

e
dAe − ∫

Ae

wpdAe

= 12 {q}Te [K0]e {q}e − {q}Te {f}e ,
(16)

with [K0]e = ∫Ae
[B]T[Dcs][B]dAe, {f}e = ∫Ae

[N]TpdAe being
stiffness matrix and node loading vector of the element,
respectively, [N] is mode shape function matrix of element,
p is pressure of intensity, w = [N]{q}e, and Ae is the surface
area of the plate elements.

Kinetic energy Te of element is determined by [14]

Te = 12 ∫Ve

𝜌 {u̇}Te {u̇}e dVe

= 12 {q̇}Te (∫Ve

𝜌 [N]T [N] dVe) {q̇}e
= 12 {q̇}Te [M0]e {q̇}e ,

(17)

where [M0]e = ∫Ve
𝜌[N]T[N]dVe - mass matrix, 𝜌 - mass

density and {q̇}e-velocity vector.
Substituting (16) and (17) into (15), the dynamic matrix

equation of the plate element without damping can be written
as

[M0]e {q̈}e + [K0]e {q}e = {f}e . (18)

In the case of cracked plate element, the stiffness matrix[Kc]e of the element can be written as [8, 18]

[Kc]e = [T]T [C𝑓]−1 [T] , (19)

where [T] is the transformationmatrix, given in Appendix A,[C𝑓] = [C𝑓0 ] + [C𝑓1 ] in which [C𝑓0 ] is the flexibility matrix
of the noncracked element, given in Appendix B, and [C𝑓1 ] is
the flexibility matrix due to the presence of the crack, given
in Appendix C [8].

Now, the dynamic matrix equations of the cracked plate
element subjected to dynamic loads become

[M0]e {q̈}e + [Kc]e {q}e = {f}e . (20)

2.1.2. Cracked Plate Element Subjected to Moving Oscillator.
The force of the moving oscillator on the plate at the time t is
determined as follows:

R (t) = (−m1 d2w (x, y, t)dt2
−m2ü − (m1 +m2) g

+Q (t))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 x=𝜉y=𝜂

,
(21)
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where g is acceleration due to gravity, ü is acceleration of the
mass m2, and d2w(x, y, t)/dt2 = ẅ is acceleration of the plate
at the force set point given by

d2w
dt2

= (𝜕2w𝜕x2 ẋ2 + 𝜕
2w𝜕y2 ẏ2 + 𝜕

2w𝜕t2 + 2 𝜕
2w𝜕x𝜕y ẋẏ

+ 2ẋ 𝜕2w𝜕x𝜕t + 2ẏ 𝜕
2w𝜕y𝜕t + ẍ𝜕w𝜕x + ÿ𝜕w𝜕y ) .

(22)

Substituting w = [N]{q}e into (22) yields
d2w
dt2

= ([Nxx] ẋ2 {q}e + [Nyy] ẏ2 {q}e + [N] {q̈}e
+ 2ẋẏ [Nxy] {q}e + 2ẋ [Nx] {q̇}e + 2ẏ [Ny] {q̇}e
+ ẍ [Nx] {q}e + ÿ [Ny] {q}e) ,

(23)

where [Nx] = 𝜕[N]/𝜕x, [Nxx] = 𝜕2[N]/𝜕x2, [Nxy] =𝜕2[N]/𝜕x𝜕y, [Ny] = 𝜕[N]/𝜕y, [Nyy] = 𝜕2[N]/𝜕y2, ẋ, ẏ and ẍ, ÿ
are the velocity and acceleration of the loads along x, y axes,
respectively.

By substituting (23) into (22), the force of the moving
oscillator on the plate at the time t can be written as

R (t) = Q (t) −m1 [N] {q̈}e − 2m1 (ẋ [Nx] + ẏ [Ny])
⋅ {q̇}e −m1 ([Nxx] ẋ2 + [Nyy] ẏ2 + 2ẋẏ [Nxy]
+ ẍ [Nx] + ÿ [Ny]) {q}e −m2ü − (m1 +m2) g.

(24)

Concentrated force (24) is described by the uniformly
distributed load as follows [12–14]:

p (x, y, t) = 𝛿 (x − 𝜉) 𝛿 (y − 𝜂)R (x, y, t) , (25)

where 𝛿(.) is the Dirac’s delta function, and
∫∞
−∞
𝛿 (x − a) 𝑓 (𝑥) dx = 𝑓 (𝑎) , (26)

∫b

a
𝛿 (x − 𝜉) 𝑓 (𝑥) dx =

{{{{{{{{{

0 if 𝜉 < a < b

𝑓 (𝜉) if a < 𝜉 < b

0 if a < b < 𝜉.
(27)

Substituting (24) into (25) leads to

p = Q𝛿 (x − 𝜉) 𝛿 (y − 𝜂) −m1 [N] 𝛿 (x − 𝜉) 𝛿 (y − 𝜂)
⋅ {q̈}e − 2m1 (ẋ [Nx] + ẏ [Ny]) 𝛿 (x − 𝜉) 𝛿 (y − 𝜂)
⋅ {q̇}e
−m1([Nxx] ẋ2 + [Nyy] ẏ2 + 2ẋẏ [Nxy] +

+ẍ [Nx] + ÿ [Ny] )𝛿 (x
− 𝜉) 𝛿 (y − 𝜂) {q}e −m2ü𝛿 (x − 𝜉) 𝛿 (y − 𝜂) − (m1
+m2) g𝛿 (x − 𝜉) 𝛿 (y − 𝜂) .

(28)

The element nodal load vector is [14]

{f}e = ∫b

0
∫a

0
[N]T p (x, y, t) dxdy

= ∫b

0
∫a

0
[N]T 𝛿 (x − 𝜉) 𝛿 (y − 𝜂)R (x, y, t) dxdy.

(29)

Substituting (28) into (29) leads to the nodal load vector
equation

{f}e = {P}e − [Mm1

p ]e {q̈}e − [Mm2

p ]e ü − [Cp]e {q̇}e
− [Kp]e {q}e ,

(30)

where

{P (t)}e = [N (𝜉, 𝜂)]T (Q − (m1 +m2) g) , (31)

[Mm1

p ]e = m1 [N (𝜉, 𝜂)]T [N (𝜉, 𝜂)] , (32)

[Mm2

p ]e = m2 [N (𝜉, 𝜂)]T , (33)

[Cp]e = 2m1 [N (𝜉, 𝜂)]T (ẋ [Nx (𝜉, 𝜂)]
+ ẏ [Ny (𝜉, 𝜂)]) , (34)

[Kp]e = m1 [N (𝜉, 𝜂)]T ([Nxx (𝜉, 𝜂)] ẋ2
+ [Nyy (𝜉, 𝜂)] ẏ2 + 2ẋẏ [Nxy (𝜉, 𝜂)] + ẍ [Nx (𝜉, 𝜂)]
+ ÿ [Ny (𝜉, 𝜂)]) ,

(35)

Substituting (30) into (20) leads to the dynamic equation
of the cracked plate element subjected to moving oscillator,
which is

([M0]e + [Mm1

p ]e) {q̈}e + [Mm2

p ]e ü + [Cp]e {q̇}e
+ ([Kc]e + [Kp]e) {q}e = {P}e .

(36)

The dynamic equation of mass m2 can be written as

m2ü + cu̇ + ku − c [N] {q̇}e − k [N] {q}e = Q (t) , (37)

By combining (1) and (2), the dynamic system of equa-
tions of the cracked plate and mass m2 are presented as
follows:

([M0]e + [Mm1

p ]e) {q̈}e + [Mm2

p ]e ü + [Cp]e {q̇}e
+ ([Kc]e + [Kp]e) {q}e = {P}e

m2ü + cu̇ + ku − c [N] {q̇}e − k [N] {q}e = Q (t) ,
(38)
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Table 1: The extreme value at the points A and B.

Case of load wmax
A ẅmax

A 𝜎max
intA 𝜎max

intB[cm] [m/s2] [N/m2] [N/m2]
MO 1.012 13.217 1.364×107 10.536×107
MM 1.122 42.4458 4.434x107 15.748x107

Or

[[M0]e + [Mm1

p ]e [Mm2

p ]e[0] m2
]{{q̈}e

ü
}

+ [ [Cp]e [0]
−c [N] c

]{{q̇}e
u̇
}

+ [[Kc]e + [Kp]e [0]−k [N] k
]{{q}e

u
} = { {P}e

Q (t)} .
(39)

2.2. Governing Differential Equations for Total System. By
assembling all elements matrices and nodal force vectors, the
governing equations of motions of the total system can be
derived as

[[M0] + [Mm1

p ] [Mm2

p ][0] m2
]{{q̈}

ü
}

+ [[Cp] + [CR] [0]−c [N (𝜉, 𝜂)] c
]{{q̇}

u̇
}

+ [[K0] + [Kc] + [Kp] [0]−k [N (𝜉, 𝜂)] k
]{{q}

u
}

= { {P}
Q (t)} ,

(40)

where [M0] = ∑N0

[M0]e is the overall structural mass
matrix, [K0] = ∑N0−Nc

[K0]e is the overall structural stiffness
matrix with total uncracked elements, [Kc] = ∑Nc

[Kc]e is the
overall structural stiffnessmatrix with total cracked elements,[Mm1

p ] = ∑Nem1

[Mm1

p ]e is the overall mass matrix due to
moving mass m1, [Mm2

p ] = ∑Nem1

[Mm2

p ]e is the overall mass
matrix due to moving mass m2, [Cp] = ∑Nem1

∑[Cp]e is the
overall damping matrix due to moving mass m1, and [CR] =𝛼R[M0] + 𝛽R([K0] + [Kc]) is the overall structural damping
matrix [14, 17].

This is a linear differential equation system with time
dependence coefficient, which can be solved by using direct
integrationNewmark’s method. AMATLAB program named
Cracked Plates Moving 2019 was conducted to solve (40).

3. Numerical Analysis

We consider a rectangular cracked plate with size L =
3.0 m, W = 1.6 m, thickness h = 0.025 m, crack length
Wcr = 0.5 m, and it appears in the middle of the plate

Moving Oscillator
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W
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m
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Figure 3: Dynamic vertical response at point A of the plate.

(Figure 1). Material parameters of the plate: Young Modulus
E = 2.0x1011 N/m2, Poisson coefficient ] = 0.28, density𝜌 = 7800 kg/m3. The boundary condition of the plate
is SFSF (simply support, free/ simply support, free). The
moving oscillator has mass m1 = 300 kg connected with
m2 = 200 kg via spring with stiffness k = 1.5x105 N/m and
damping element with resistance coefficient, c = 4.5x103
Ns/m, and k and c are parallel. Moving oscillator moves
at velocity v = 10 m/s along the centerline y = W/2 of the
plate.

The results of the vibration of the plate subjected to
moving oscillator (MO) and the effect of moving mass (MM)
(M = m1 + m2 = 500 kg) are shown in Table 1 and Figures 3,
4, 5, and 6, in which the “int” symbol represents the intensity
value (stress intensity and train intensity).

Comment: Compared to the case of cracked plate sub-
jected to moving oscillator, the case of cracked plate sub-
jected to moving mass indicates greater response of the
plate. Therefore, the destructive capacity of the structure is
greater.

3.1. The Effect of the Number of Cracks. To evaluate the effect
of the number of cracks on vibration of cracked plate under
moving oscillator, the three cases were investigated: Case 1:
the plate has one crack in the middle (X = L/2, the basic
problem); Case 2: the plate has one crack in the middle and
one same size crack at X = L/4; Case 3: the plate has 3 cracks
at X = L/4, L/2, 3Lp/4. The results of the vibration of the plate
are shown in Table 2 and Figures 7, 8, 9, and 10.
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Table 2: The extreme value at the points A and B.

Case wmax
A ẅmax

A 𝜎max
intA 𝜎max

intB[cm] [m/s2] [N/m2] [N/m2]
1 1.012 13.217 1.364x107 10.536×107
2 1.029 33.814 2.053x107 10.177×107
3 1.066 33.821 2.062x107 10.265×107
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Figure 4: Vertical acceleration response at point A of the plate.
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Figure 5: Stress response at points A and B of the plate.

Comment: Strain, displacement, stress, and acceleration
at point A increase as the number of cracks increases, but
these values fluctuate at the crack edge, sometimes increase
and sometimes decrease.
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Figure 6: Strain response at points A and B of the plate.
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Figure 7: Dynamic vertical response at point A of the plate with
different numbers of cracks.

3.2. The Effect of the Stiffness of the Spring k. To evaluate the
effect of k hardness in the oscillation system on the response
of the system, the authors examine the problemwhen k varies
from 1x105 N/m to 9.0x105 N/m. Response of the system at
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Figure 8: Vertical acceleration response at point A of the plate with
different numbers of cracks.
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Figure 9: Stress response at point B of the plate with different
numbers of cracks.

points A and B is shown in Table 3 and Figures 11, 12, 13, 14,
15, and 16.

Comment: When the k hardness changes, the oscillation
of the system varies considerably. With the parameters of the
given plate, the displacement response, acceleration, stress,
and strain at the computed points are the greatest when k =
2.5x105 N/m.

3.3. The Effect of Loading Velocity. The authors analyzed the
dynamics of the plate with the speed of the oscillator system
varying from 6m/s to 14 m/s; the results are shown in Table 4
and Figures 17, 18, and 19.

Comment: When the speed of the oscillation system
increases, the displacement and stress of the plate decrease,
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Figure 10: Strain response at point B of the plate with different
numbers of cracks.
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Figure 11: wmax
A - k relationship.

but there is no clear rule. According to the authors, the
main reason may be due to the influence of the plate's free
vibration frequency and the moving oscillator; this is the
difference with the case of the plate subjected to moving
mass.

4. Conclusions

In the end, with the set of survey parameters, the case of
the cracked plate under the moving mass is more dangerous
than the case of moving oscillators operates. However, the
problem of texture affected by the oscillation system is
complex. In each case, a reevaluation is needed.The response
of the system depends on the interrelation between the
frequency of the stimulus and the natural frequency of the
system.

The results show that stress and strain at the crack head
are much larger than they are at other sites.These values vary
considerably when the number of cracks and k hardness are
changed.
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Table 3: The extreme value at the points A and B.

k×105 wmax
A ẅmax

A 𝜎max
intA 𝜎max

intB[N/m] [cm] [m/s2] [N/m2] [N/m2]
1.0 0.081 8.942 0.813×107 8.426×107
1.5 1.012 13.217 1.364×107 10.536×107
2.0 1.075 19.415 2.285×107 11.284×107
2.5 1.078 23.073 3.150×107 11.553×107
3.5 1.033 21.224 4.036×107 11.363×107
6.0 0.905 17.740 2.380×107 11.213×107
9.0 0.783 12.360 1.554×107 8.693×107

Table 4: The extreme value at the points A and B.

v wmax
A ẅmax

A 𝜎max
intA 𝜎max

intB[m/s] [cm] [m/s2] [N/m2] [N/m2]
6 1.211 15.429 4.352×107 16.323×107
8 1.210 13.816 2.931×107 13.124×107
10 1.012 13.217 1.364×107 10.536×107
12 0.724 10.201 0.970×107 7.718×107
14 0.537 11.897 1.137×107 6.048×107
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Figure 12: ẅmax
A - k relationship.
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Figure 13: 𝜎max
intA and 𝜎max

intB - k relationship.
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Figure 14: 𝜀max
intA and 𝜀max

intB - k relationship.
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Figure 15: Stress response at point A of the plate with different k.
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Figure 16: Stress response at point B of the plate with different k.
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Figure 17: Vertical displacement response at point A of the plate with different v.
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Figure 18: Stress response at point A of the plate with different v.
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Figure 19: Stress response at point B of the plate with different v.

Appendix

A.

The transformation matrix [T] is

[T] =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

0 2
H

0 0 0 0 0 −2
L
−11 1 0 0 0 0 0 0 00 0 0 0 0 0 −1 1 0

0 − 2
H

0 2
L

0 0 0 0 1−1 1 0 0 0 0 0 0 00 0 −1 −1 0 0 0 0 0
0 0 0 −2

L
0 2

H
0 0 −10 0 0 0 −1 −1 0 0 0

0 0 1 −1 0 0 0 0 0
0 0 0 0 0 − 2

H
0 2

L
1

0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 1 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

, (A.1)

B.

The flexibility matrix of the noncracked element [C𝑓0 ] is

[C𝑓0 ] = 12
Eh3

[[[[[[[[[[[[[[[[[[[[[[[[[[
[

4W
L0 4W3L−] ]

4L
W

𝑠𝑦𝑚
−] ] 0 4L3W−2W
L

0 −] −] 4W
L0 2W3L −] ] 0 4W3L−] ] −2L

W
0 −] ]

4L
W−] ] 0 2L3W −] ] 0 4L3W0 0 0 0 0 0 0 0 2 (1 + ]) LW

]]]]]]]]]]]]]]]]]]]]]]]]]]
]

, (B.1)

C.
The flexibility matrix due to the presence of the crack [C𝑓1 ] is

(i) Crack parallel to the x-axis of the element:

[C𝑓1 ] = 6
Eh3

[[[[[[[[[[[[[[
[

c110 00 0 0 sym0 0 0 0
c51 0 0 0 c550 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0 c99

]]]]]]]]]]]]]]
]

, (C.1)

(ii) Crack parallel to the y-axis of the element:

[C𝑓1 ] = 6
Eh3

[[[[[[[[[[[[[[[[[[[
[

00 0
0 0 c33 sym
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0
0 0 c73 0 0 0 c770 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c99

]]]]]]]]]]]]]]]]]]]
]

, (C.2)
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where

c11 = 4ΠΦ21 ∫a

−a
a (2 − 0.75a)2 𝑓2 (a) da,

c33 = 4ΠΦ21 ∫a

−a
a (−1 + 0.75a)2 𝑓2 (a) da,

c55 = 4ΠΦ21 ∫a

−a
a (−1 + 0.75a)2 𝑓2 (a) da,

c77 = 4ΠΦ21 ∫a

−a
a (2 − 0.75a)2 𝑓2 (a) da,

c99 = ΠW2Φ22 ∫a

−a
a𝑓2 (a) da,

c51 = 2ΠΦ21 ∫a

−a
a (2 − 0.75a) (−1 + 0.75a) 𝑓2 (a) da,

c73 = 2ΠΦ21 ∫a

−a
a (−1 + 0.75a) (2 − 0.75a) 𝑓2 (a) da,

𝑓 (a)
= 1.0 + 0.01876a + 0.1825a2 + 2.024a3
− 2.4316a4,

(C.3)

with a = Wcr/L when the crack is parallel to the x-axis, and
a = Wcr/W when the crack is parallel to the y-axis of the
element, andΦi (i=1,2) are correction functions given in [8].
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