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A two-layer (connected by stubs) partial composite plate is a structure with outstanding advantages which can be widely applied in
many fields of engineering such as construction, transportation, and mechanical. However, studies are scarce in the past to investigate
this type of structure.�is paper is based on the newmodified first-order shear deformation plate theory and finite element method to
develop a new four-node plate element with nine degrees of freedom per node for static bending and vibration analysis of the two-layer
composite plate. �e numerical results are compared to published data for some special cases. �e effects of some parameters such as
the boundary condition, stiffness of the connector stub, height-to-width ratio, thickness-to-thickness ratio between two layers, and
aspect ratio are also performed to investigate new numerical results of static bending and free vibration responses of this structure.

1. Introduction

Two-layer beam and plate are among the most commonly
used structures in many fields of engineering, such as
construction, transportation, and mechanical, because of
their advantages in comparison with one-layer structures;
we can see these structures in practice such as steel-
concrete composite beams and plates, layered wooden
beams and plates, and wood-concrete and timber-steel
floor structures. Some advantages of this type of com-
posite structure can be considered such as easy
manufacturing, taking advantage of the material prop-
erties of two components which made the structure. In
fact, there are many different grafting methods to man-
ufacture two-layer beams or plates; for example, two
components of a structure are sandwiched together at the
edges, using glue or connector stub to bond two parts at

the contact surface. Because of these advantages, many
researchers have focused on the mechanical analysis of
these structures.

Two-layer beam has been investigated by Foraboschi
[1, 2] using an analytical method. Kryžanowski et al. [3]
developed an analytical method to evaluate exact critical
forces of two-layer composite columns. Grognec et al. [4]
used the Timoshenko beam model for buckling analysis of
two-layer composite beams with partial interaction. He and
Yang [5, 6] presented the finite element method and higher
order beam theory for buckling and dynamic problem of
the two-layer composite beam. He et al. [7] carried out an
analytical solution for free vibration and buckling of two-
and three-layer composite beams based on a higher order
beam theory. Hozan et al. [8] analyzed a two-layer com-
posite planar beam with exact geometric and material
nonlinearities as well as the finite slip between the layers.
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Wu and coworkers [9, 10] used the 2D elasticity solution
for analysis of two-layer beams with the viscoelastic in-
terlayer and arbitrarily shaped interface. Large deformation
analysis of two-layer composite beams was studied [11].
Based on the higher order beam theory and analytical
model, Wen et al. [12] investigated the flexural response of
the two-layer composite beam. Do et al. [13] presented
static bending analysis of three-layer beams made of
functionally graded materials in the thermal environment
based on FEM and Mindlin theory. Cas et al. [14] used an
analytical method to investigate the mechanical behavior of
two-layer composite beams with interlayer slips. Ke et al.
[15] used experimental and numerical FE methods to study
local web buckling of single-coped beam connections with
the slender web.

Latham et al. [16] developed a new finite element based
on a new plate theory due to the Reissner plate theory for
static bending of two-layer plates. Foraboschi and colleagues
[17, 18] used an analytical model and experimental method
for static bending of laminated glass plates. Layered plate
with discontinuous connection was investigated by For-
aboschi [19] using the exact mathematical model replacing
discontinuous connections with a fictitious continuous
medium. Foraboschi [20, 21] also detailed the mechanical
behavior of three-layer plates using the exact mathematical
model and elasticity solution. Wu et al. [22] applied the 3D
exact solution to explore the two-layer plate bonded by
a viscoelastic interlayer. Vidal et al. [23] presented a new
approach to study the deflection and stress of the multilayer
composite plate. Alinia et al. [24] applied the numerical
nonlinear finite element method and theoretical p-Ritz
energy method to analyze inelastic buckling and post-
buckling behaviors of stocky plates under combined shear
and in-plane bending stresses.

�is paper aims to use the finite element method (FEM)
based on a new modified first-order shear deformation plate
theory (FSDT) to analyze static bending and free vibration of
the two-layer composite plate. �e proposed method shows
the simple formulations and computational efficiency. �e
accuracy and reliability of the proposed method are vali-
dated with other published results. Several numerical ex-
amples and influence of some parameters on static bending
and free vibration of the two-layer composite plate are also
investigated; these new results have significant impacts on
the use of this structure in practice.

�e organization of this paper is as follows: Section 2
presents the finite formulation of static bending and free
vibration of the two-layer composite plate based on a new
modified first-order shear deformation plate theory. New
numerical results for bending and free vibration analysis of
these plates are computed and discussed in Section 3. Some
major conclusions are given in Section 4.

2. Geometry and Theoretical Formulation

2.1. Geometry and Assumptions. �e geometry model of the
problem is a two-layer plate including two isotropic plates
which bonded together at the contact surface using con-
nector stubs, as shown in Figure 1. Two parts are of the same

size in the x−y plane with thickness hm for the bottom layer
and hn for the top layer. To avoid the repetition of similar
equations for the bottom layer and top layer, we use the
subscript m for the bottom layer, subscript n for the top
layer, and subscript st for the connector stub.

�e assumptions of the two-layer composite plate in-
clude the following: the materials of each layer are linear,
elastic, and isotropic; the displacement and rotation of the
plate are small; there is no delamination phenomenon be-
tween two layers; the deflection of the stub is in the contact
interface of two components; and the mass of the stub is
much smaller than the mass of the plate, so we assume that it
is neglected.

2.2. Discrete Finite Element Equations

2.2.1. New Modified First-Order Shear Deformation for Plate
Elements. �e basic equations of the Mindlin plate theory
are [25]
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+ ]

zψy
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in which k� 5/6 is the shear correction.
Equilibrium of moments about x- and y-axis and

transverse force leads to
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Figure 1: Geometrical notation of the two-layer plate.
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Substituting equation (1) into equation (3), we get the
following:
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(4)

where Δ � (z2/zx2) + (z2/zy2) is the Laplace differential
operator.

Assume that the total deflection consists of two parts
which are bending deflection and transverse shear, while
angles of the plate cross-sectional slope are a result of ro-
tation of pure bending and shear angles:

w � wb + ws,

ψx � φx + θx,

ψy � φy + θy,

(5)

where φx � −(zwb/zx) and φy � −(zwb/zy) are rotations
due to pure bending and θx and θy are the shear angles.

Substituting equation (5) into equation (4), we get two
differential equations:

z
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(7)

Δws � −
zθx

zx
+

zθy

zy
􏼠 􏼡. (8)

Equations (6) and (7) can be rewritten in the following
forms:

zF wb, ws( 􏼁

zx
� g1 θx, θy􏼐 􏼑,

zF wb, ws( 􏼁

zy
� g2 θx, θy􏼐 􏼑,

(9)

and their integrals per x and y read F(wb, ws) �

􏽒 g1(θx, θy) dx � 􏽒 g2(θx, θy) dy; according to the structure
of g1 and g2 in equations (6) and (7), the reasonable so-
lution is that both g1 and g2 must be set to zero; as
a consequence of that consideration, the relation between
transverse shear and bending is

ws � −
D

S
Δwb. (10)

�e total deflection is

w � wb −
D

S
Δwb. (11)

Using the new modified first-order shear deformation
theory, the displacement field of the plate can be rewritten in
the following form [26]:

u(x, y, z) � u(x, y)− zφx,

v(x, y, z) � v(x, y)− zφy,

w(x, y, z) � wb(x, y) + ws(x, y).

(12)

�e strain-displacement relations may be written as
follows [26]:
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Equation (13) can be rewritten in the matrix form as
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and
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γ �
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⎧⎪⎪⎪⎪⎨
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2.2.2. Finite Element Formulations. �e plate is discretized
using the quadrilateral four-node element, as shown
in Figure 2. Each node has nine degrees of freedom in-
cluding four axial, one transversal, and four rotational
displacements.

�e element nodal displacement vector can be given as

q � q1 q2 q3 q4􏼈 􏼉
T
, (17)

where

qj � um
j vm

j un
j vn

j wj φm
xj φm

yj φn
xj φn

yj􏽮 􏽯
T
, j � 1, 4.

(18)

�e nodal displacement vector of each component is

qi � q1i q2i q3i q4i􏼈 􏼉
T
, i � m, n, (19)

where

qji � ui
j vi

j wj φi
xj φi

yj􏽮 􏽯
T
, j � 1, 4, i � m, n. (20)

In equations (18) and (20), u, v, and w are, respectively,
the x− andy-axis displacements and transversal displace-
ment and φx and φy denote the bending rotations of the
x− andy− axis, respectively.

�e static bending deflection wb is assumed in a poly-
nomial form. �en, the transverse shear ws and bending
rotations φx and φy are calculated using the above equa-
tions, while the axial displacements u and v are approxi-
mated using Lagrangian shape functions.

�e displacements u and v may be approximated as

u � 􏽘
4

j�1
Njuj,

v � 􏽘

4

j�1
Njvj,

(21)

where

Nj �
1
4

1− ξjξ􏼐 􏼑 1− ηjη􏼐 􏼑, j � 1, 4. (22)

�e bending deflection wb is approximated using
a polynomial form as

wbi � Pbiai, i � m, n, (23)

where ai is a vector of polynomial coefficients and

Pbi � 1, ξ, η, ξ2, ξη, η2, ξ3, ξ2η, ξη2, η3, ξ3η, ξη3􏽨 􏽩, i � m, n,

(24)

where ξ � (2x− a)/a, η � (2y− b)/b. According to equation
(10), the transverse shear is given by

wsi � −
Di

Si

Δwbi � Psiai, (25)

where

Psi � − 0, 0, 0, 2αi, 0, 2βi, 6αiξ, 2αiη, 2βiξ, 6βiη, 6αiξη, 6βiξη􏼂 􏼃,

i � m, n,

(26)

in which αi � (4Di/Sia
2), β � (4Di/Sib

2).
�e total static deflection of the plate is

wi � wbi + wsi � Pbi + Psi( 􏼁ai, i � m, n. (27)

�e rotations of cross sections on the neutral plane are

φxi � −
2
a

zPbi

zξ
ai

� −
2
a

0, 1, 0, 2ξ, η, 0, 3ξ2, 2ξη, η2, 0, 3ξ2η, η3􏽨 􏽩ai

� Pφxiai, i � m, n,

(28)

φyi � −
2
b

zPbi

zη
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� −
2
b

0, 0, 1, 0, ξ, 2η, 0, ξ2, 2ξη, 3η2, ξ3, 3ξη2􏽨 􏽩ai

� Pφyiai, i � m, n.

(29)

Taking coordinate values ξ and η for each node into
equations (27)–(29), we get

di � Ciai⟹ ai � Ci−1di, i � m, n, (30)

where di � d1i d2i d3i d4i􏼈 􏼉
T
(dji � wji φxji φyji􏽮 􏽯

T
,

j � 1, 4, i � m, n), and matrix Ci is shown in Appendix.
Taking equation (30) into account, we get

wbi � PbiCi−1di � Qbidi, i � m, n, (31)

wsi � PsiC
−1
i di � Qsidi, i � m, n, (32)

wi � wbi + wsi � Pbi + Psi( 􏼁C−1i di � PiC
−1
i di, i � m, n.

(33)

Substituting equations (21) and (31) into equation (14),
we obtain

εi � L0iui + ziL1idi � L0i ziL1i􏼂 􏼃
ui

di

􏼨 􏼩 � L0i ziL1i􏼂 􏼃qi,

(34)
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Figure 2: A two-layer composite plate element.
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where
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0

0
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4
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zξ zη
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, i � m, n. (36)

By substituting equation (25) into equation (16), we get

γi � Lsidi, i � m, n, (37)

where

Lsi � HsiC
−1
i , Hsi �

2
a

zPsi

zξ

2
b

zPsi

zη
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, i � m, n. (38)

According to Hooke’s law, the relationship between
stresses and strains can be given as

σi � Diεi, τi � Giγi, i � m, n, (39)

where

Di �
Ei

1− ]2i

1 ]i 0

]i 1 0

0 0
1− ]i( 􏼁

2
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,

Gi �
kEi

2 1 + ]i( 􏼁

1 0

0 1
⎡⎢⎣ ⎤⎥⎦, i � m, n.

(40)

�e calculation model for the connector stub is shown in
Figure 3.

By using Lagrangian approximation for both axial dis-
placement and rotation of two components to determine the
axial deflection of the connector stub, the interfacial slips of
two components are given by

δst �
ust

vst
􏼨 􏼩 �

un

−hn

2
􏼠 􏼡

vn

−hn

2
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎨
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−
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2
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2
􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�
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2

vn0 − vm0 +
hnφyn − hmφym􏼐 􏼑

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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� Nstqe,

(41)

where

Nst � N1
st N2

st N3
st N4

st􏽨 􏽩, (42)

Nj
st �
−Nj 0 Nj 0 0 −0.5hmNj 0 0.5hnNj 0
0 −Nj 0 Nj 0 0 −0.5hmNj 0 0.5hnNj

􏼢 􏼣, j � 1, 4, (43)

in which ust and vst are the deflections of the connector stub.
�e strain energy of two components and connector stub

can be given by

􏽙
e

� 􏽙

p

e
+ 􏽙

st

e
� 􏽘

i�m,n

1
2

􏽚
Ae

􏽚
hi

εT
i Diεi + τT

i Giγi􏼐 􏼑dzidA

+
1
2

􏽚
Ae

kst u
2
st + v

2
st􏼐 􏼑dA

� 􏽘
i�m,n

1
2

􏽚
Ae

􏽚
hi

εT
i Diεi + τT

i Giγi􏼐 􏼑 dzidA

+
1
2

􏽚
Ae

qT
eN

T
stkstNstqedA.

(44)

�e kinetic energy is

Te �
1
2

􏽘
i�m,n

􏽚
Ae

􏽚
hi

ρi _w
2

dzidA, (45)

or

Te �
1
2

􏽘
i�m,n

􏽚
Ae

􏽚
hi

_d
T

i C
−T
i PT

i ρiPiC
−T
i

_di dzidA. (46)

Equation (46) can be rewritten in the shorter form as
follows:

Te �
1
2

􏽘
i�m,n

􏽚
Ae

􏽢mi
_d
T

i C
−T
i PT

i PiC
−T
i

_didA, (47)

where 􏽢mi � 􏽒
hi
ρidzi, i � m, n.
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�e work done by external distribution normal force
acting on the top surface of layer n is

Ve � 􏽚
Ae

qw dA � 􏽚
Ae

qQndndA, (48)

where q is the uniform load.
�e Lagrangian function of the plate element is defined

by

Le � Te −􏽙
e

. (49)

Using Lagrange’s equations, the governing equations of
motion of the plate element are given by

d

dt

zLe

z _qe
􏼠 􏼡−

zLe

zqe
�

zVe

zqe
. (50)

Substituting equations (44), (46), and (48) into equation
(50) considering equation (49), the equation of motion of the
plate can be obtained in the matrix form as

Mm
e + Mn

e( 􏼁€qe + Km
e + Kn

e + Kst
e􏼐 􏼑qe � Fm

e + Fn
e( 􏼁, (51)

in which Mi
e, Ki

e and Kst
e , and Fi

e are, respectively, the el-
ement mass matrix, the element stiffness matrix, and ele-
ment force vector, which are defined as

Mi
e �

ab

4
􏽢mi 􏽚

1

−1
􏽚
1

−1
C−Ti PT

i PiC
−T
i dξ dη, i � m, n, (52)

Ki
e �

ab

4
􏽚
1

−1
􏽚
1

−1
􏽚

hi

L0i ziL1i􏼂 􏼃
TDi L0i ziL1i􏼂 􏼃dzidξ dη

+
ab

4
􏽚
1

−1
􏽚
1

−1
􏽚

hi

LT
siGiLsidzidξ dη, i � m, n,

(53)

Kst
e �

ab

4
􏽚
1

−1
􏽚
1

−1
NT

stkstNstdξ dη, (54)

Fn
e �

ab

4
􏽚
1

−1
􏽚
1

−1
qQndξ dη, Fm

e � 0. (55)

Note that we need not any selective reduced in-
tegration or reduced integration scheme to calculate the

matrices and vectors in equations (52)–(55). When kst
gets a high value, displacements of the top and bottom
layers at the contact surface are the same; from equation
(41), the stiffness matrix of the stub in equation (54) gets
the value 0: it means that the structure has no stubs and
then the displacement is continuous at the interfaces
between two layers. After assembling the element matrix
and the element vector into the global matrix and global
vector, the governing equation of motion of the plate is
obtained as

M €U + KU � F, (56)

where M, K, and F are, respectively, the global mass ma-
trix, global stiffness matrix, and global force vector and U is
the vector of unknown nodal displacements.

2.3. Static Bending andFreeVibrationProblem. For the static
bending problem, ignoring €U, equation (56) becomes

KU � F. (57)

Solving equation (57), we get the vector of unknown
nodal displacements U.

For free vibration analysis, neglecting the effect of ex-
ternal force vector F and assuming u � Ueiωt in equation
(56), we get the following eigenvalue problem:

K−ω2M􏼐 􏼑U � 0. (58)

Solving equation (58), we get ω, which denotes the
natural frequencies of the plate; for each value of ω, we have
an eigenvector.

3. Numerical Results and Discussion

We now focus on numerically studying the static bending
and free vibration responses of the two-layer composite
plate. Each edge of the plate can be under the simply
supported boundary condition or clamped boundary con-
dition. For the simply supported edge,

vn � vm � w � 0, φyn � φym � 0, at x � 0, a, (59a)

un � um � w � 0, φxn � φxm � 0, at y � 0, b. (59b)

For the clamped edge,

un � um � vn � vm � w � 0,

φxn � φxm � φyn � φym � 0, at x � 0, a and y � 0, b.

(60)

3.1. Static Bending Analysis of Two-Layer Composite Plates

3.1.1. Accuracy Studies. To verify the proposed method, we
compare the deflections in two cases of materials: homoge-
neous and composite materials. Firstly, a square homoge-
neous plate under contribution load q � −1N is investigated,

z

ust

xn

xm

un

um

hn/2

hm/2

hm/2

hn/2

φxn

φxm

Figure 3: Axial displacement assuming a two-layer composite plate
with connector stubs.
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and the length and the width are a � b � 1 m. �e plate is
simply supported at all edges (SSSS) or fully clamped (CCCC).
In the published works [27, 28], the plate has one layer made
of homogeneous material with E � 10920 MPa, Poisson’s
ratio ] � 0.3, and the thickness h. But in this work, we assume
that the plate has two layers connected by stubs with two
cases—case 1: hn � 0.999 h, hm� 0.001 h, and kst � 0 and case
2: hn� hm � 0.5h and kst� 1010E. In both cases, material
properties of two layers are set to be En � Em � E �

10920 MPa and ]n � ]m � ] � 0.3, thicknesses of the top and
bottom layer are hn and hm, respectively, and hn+ hm � h. �e
nondimensional deflection is defined as

w � wmax
D

qa4, (61)

where D is given in equation (2).
Table 1 shows a comparison of the nondimensional de-

flections of SSSS and CCCC plates obtained by this method
and other approaches (FEM [28] and analytical solution [28]).
We meet a good agreement among three solutions.

We see that when the thickness of one layer is much
higher than that of the other layer and the stiffness of the
connector stub is very small, the behavior of the two-layer
plate is the same as the behavior of the one-layer plate with
the same thickness. In addition, when two layers have the
same thickness and material, the stiffness of the connector
stub gets a much higher value kst � 1010E, and then the two-
layer plate is considered as the one-layer plate with the
thickness equal to the sum of thickness of the two
components.

In order to further confirm the accuracy of this method,
we compare the nondimensional deflection of a square SSSS
composite plate (a/b �1 and the total thickness h� a/10)
with two layers (0/90°) which have the same thickness
h/2; the material properties are E1/E2 � 25, G12 � G13 �

0.5E2, G23 � 0.2E2, and ]12 � 0.25. In this comparison, the
plate is modeled as hn � hm � 0.5 h, kst � 1010E2, and the fiber
directions of the top and bottom layers are 0° and 90°, re-
spectively. Table 2 shows the comparison of the nondi-
mensional deflection of this composite plate subjected to
uniformly distributed load and central concentrated load.
�e nondimensional deflection of the plate is calculated by
the following formula:

w � wmax
100E2h

3

a4q
. (62)

It is shown plainly that the present results have a good
agreement with the results given in [29] (analytical method).
According to the above two comparisons, the present results
have a good agreement with other published ones.

3.1.2. Numerical Results for Static Bending Analysis of Two-
Layer Composite Plates. In this section, a rectangular two-
layer composite plate subjected to the uniform load q is
investigated. �e boundary conditions of the plate are SSSS
(fully simply supported), CCCC (fully clamped), CSCS
(two opposite edges are simply supported and two other

edges are clamped), and CCSS (two adjacent edges are
clamped and two other edges are simply supported). �e
sides, thickness, and material properties of the plate are set
to be a � 1 m, h � a/100, Em � 200 GPa, En � 10 GPa,
a/b � open, hn/hm � open, and kst/Em � open. �e non-
dimensional displacement of this plate is normalized by

w � w
100Emh3

12qa4 1− ]2m( 􏼁
. (63)

(1) Influence of the Length-to-Width Ratio a/b. In order for
studying the effect of the aspect ratio a/b on the mechanical
bending behavior of the two-layer composite plate, this ratio
is set to vary from 0.5 to 4, while hn/hm � 1, hn/hm � 2, and
the ratio of stiffness of the connector stub kst/Em � 1 are
considered. �e computed results are shown in Table 3 and
Figures 4(a) and 4(b). According to Table 3 and Figure 4, it is
seen that when the aspect ratio a/b increases, the non-
dimensional deflection decreases. In addition, when the ratio
(a/b)> 3, the nondimensional deflections of both boundary
conditions CCCC and CSCS of plates are very close to each
other.

(2) Influence of the�ickness-to-�ickness Ratio hn/hm. Next,
the research on the variation of deflection affected by the
relationship between the bottom layer thickness and the top
layer thickness is now investigated.�e ratio hn/hm increases
from 1 to 4, kst/Em � 1, and the length-to-width ratio a/b is
set to be 1 and 2. �e nondimensional deflection of the plate
with different boundary conditions is shown in Table 4 and
Figure 5. �e deflection of the plate increases when in-
creasing ratio hn/hm; this can be explained by the fact that
Young’s modulus of the layer n is less than that of layer m,
and the stiffness of the two-layer plate becomes smaller when
the ratio hn/hm increases.

(3) Influence of the Stiffness of the Connector Stub. Table 5
and Figure 6 show the nondimensional deflections as
a function of the ratio kst/Em of a square two-layer composite
plate with hn/hm � 1 and hn/hm � 2. �e stiffness of the stub
varies from 0 to 106Em; when it changes from 0 to Em, this
plate is stiffer and the deflection decreases; but when the
stiffness of the stub>Em, then the effect of the stub goes to
zero so that the two-layer plate connected by the stub be-
comes a two-layer one with no stub and the displacements at
the contact place are the same; it means that there is no slip
between two layers at the contact place.

To show clearly the slip between the top and bottom
layers at the contact place, we depicted the ratio R1

mn and R2
mn

in Figures 7 and 8, respectively, in which R1
mn and R2

mn are
defined as

R
1
mn � um

a

4
,
b

2
,
hm

2
􏼠 􏼡− un

a

4
,
b

2
,
−hn

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1000Emh3

12qa4 1− ]2m( 􏼁
,

R
2
mn � um x,

b

2
,
hm

2
􏼠 􏼡− un x,

b

2
,
−hn

2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1000Emh3

12qa4 1− ]2m( 􏼁
.

(64)
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Table 2: Comparison of the nondimensional deflection of a square SSSS composite plate subject to uniformly distributed load and central
concentrated load.

w
Uniformly distributed load Central concentrated load

Reddy [29] Present Reddy [29] Present
1.6955 1.6538 4.6664 4.6421

Table 1: Comparison of nondimensional deflection of square plates with a/h � 10 and a/h � 10000.

Source
SSSS CCCC

a/h � 10 a/h � 10000 a/h � 10 a/h � 10000
Ferreira [28] 0.004271 0.004060 0.001503 0.001264
Exact solution [28] 0.004270 0.004060 — 0.001260
Present (hn � 0.999 h, hm � 0.001 h, and kst � 0) 0.004290 0.004079 0.001508 0.001272
Present (hn � hm � 0.5 h and kst � 1010E) 0.004300 0.004079 0.001523 0.001291

Table 3: Nondimensional deflection of the plate as a function of ratio a/b with kst/Em � 1.

a/b
hn/hm � 1 hn/hm � 2

SSSS CCCC CSCS CCSS SSSS CCCC CSCS CCSS

0.5 6.4728 1.6252 5.4088 3.1243 12.5027 3.1584 10.4767 6.0528
0.625 5.3098 1.4770 3.8595 2.7089 10.2589 2.8726 7.4844 5.2510
0.75 4.2368 1.2639 2.6511 2.2449 8.1874 2.4598 5.1458 4.3531
0.875 3.3289 1.0313 1.8013 1.7999 6.4339 2.0083 3.4991 3.4914
1.0 2.5968 0.8135 1.2304 1.4124 5.0196 1.5849 2.3919 2.7406
1.2 1.7421 0.5350 0.6889 0.9375 3.3683 1.0431 1.3408 1.8201
1.4 1.1793 0.3464 0.4036 0.6196 2.2806 0.6760 0.7866 1.2035
1.6 0.8107 0.2259 0.2475 0.4139 1.5683 0.4413 0.4830 0.8046
1.8 0.5676 0.1501 0.1582 0.2818 1.0984 0.2936 0.3094 0.5482
2.0 0.4050 0.1020 0.1051 0.1958 0.7839 0.1999 0.2058 0.3812
2.2 0.2943 0.0711 0.0721 0.1389 0.5699 0.1395 0.1416 0.2707
2.4 0.2177 0.0507 0.0510 0.1006 0.4217 0.0997 0.1003 0.1962
2.6 0.1637 0.0370 0.0371 0.0742 0.3172 0.0729 0.0730 0.1450
2.8 0.1249 0.0276 0.0275 0.0558 0.2423 0.0544 0.0544 0.1091
3.0 0.0967 0.0209 0.0209 0.0426 0.1877 0.0415 0.0414 0.0835
3.2 0.0759 0.0162 0.0162 0.0331 0.1473 0.0321 0.0322 0.0650
3.4 0.0602 0.0127 0.0127 0.0261 0.1170 0.0253 0.0254 0.0512
3.6 0.0484 0.0101 0.0101 0.0208 0.0940 0.0202 0.0203 0.0409
3.8 0.0392 0.0082 0.0082 0.0168 0.0763 0.0164 0.0164 0.0331
4.0 0.0321 0.0067 0.0067 0.0137 0.0626 0.0134 0.0134 0.0270
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Figure 4: �e influence of ratio a/b on the nondimensional deflection of the plate with kst/Em � 1: (a) hn/hm � 1; (b) hn/hm � 2.
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Table 4: Nondimensional deflection of the plate as a function of ratio hn/hm with kst/Eb � 1.

hn/hm

a/b � 1 a/b � 2
SSSS CCCC CSCS CCSS SSSS CCCC CSCS CCSS

1.0 2.5968 0.8135 1.2304 1.4124 0.4050 0.1020 0.1051 0.1958
1.2 3.1576 0.9907 1.4977 1.7187 0.4926 0.1243 0.1281 0.2384
1.4 3.6969 1.1617 1.7556 2.0138 0.5769 0.1460 0.1503 0.2795
1.6 4.1941 1.3201 1.9940 2.2864 0.6546 0.1661 0.1710 0.3175
1.8 4.6367 1.4618 2.2070 2.5297 0.7239 0.1841 0.1896 0.3516
2.0 5.0196 1.5849 2.3919 2.7406 0.7839 0.1999 0.2058 0.3812
2.2 5.3436 1.6895 2.5488 2.9194 0.8348 0.2133 0.2196 0.4063
2.4 5.6129 1.7769 2.6798 3.0684 0.8771 0.2246 0.2312 0.4273
2.6 5.8338 1.8489 2.7875 3.1909 0.9118 0.2340 0.2408 0.4447
2.8 6.0131 1.9077 2.8752 3.2906 0.9400 0.2416 0.2487 0.4588
3.0 6.1575 1.9552 2.9461 3.3710 0.9628 0.2478 0.2551 0.4702
3.2 6.2731 1.9934 3.0030 3.4355 0.9810 0.2529 0.2603 0.4795
3.4 6.3651 2.0239 3.0485 3.4870 0.9956 0.2569 0.2644 0.4868
3.6 6.4379 2.0482 3.0847 3.5278 1.0071 0.2602 0.2678 0.4927
3.8 6.4954 2.0676 3.1133 3.5602 1.0162 0.2628 0.2704 0.4974
4.0 6.5405 2.0828 3.1359 3.5856 1.0234 0.2649 0.2726 0.5011

Table 5: Nondimensional deflection of the plate as a function of ratio kst/Em with a/b � 1.

kst/Em

hn/hm � 1 hn/hm � 2
SSSS CCCC CSCS CCSS SSSS CCCC CSCS CCSS

0 3.1903 0.9951 1.5068 1.7316 9.4673 2.9526 4.4712 5.1381
10–2 2.6790 0.8708 1.3056 1.4862 5.5538 1.9698 2.8925 3.2279
10–1 2.6051 0.8214 1.2402 1.4215 5.0730 1.6363 2.4560 2.7995
100 2.5968 0.8135 1.2304 1.4124 5.0196 1.5849 2.3919 2.7406
101 2.5959 0.8126 1.2293 1.4114 5.0142 1.5792 2.3850 2.7343
102 2.5958 0.8125 1.2292 1.4113 5.0137 1.5787 2.3843 2.7336
103 2.5958 0.8125 1.2292 1.4113 5.0136 1.5786 2.3842 2.7336
104 2.5958 0.8125 1.2292 1.4113 5.0136 1.5786 2.3842 2.7336
105 2.5958 0.8125 1.2292 1.4113 5.0136 1.5786 2.3842 2.7336
106 2.5958 0.8125 1.2292 1.4113 5.0136 1.5786 2.3842 2.7336
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Figure 5: �e effect of ratio hn/hm on the nondimensional transverse deflection of the plate with kst/Em � 1: (a) a/b � 1; (b) a/b � 2.
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We can see again in Figure 7 that when the stiffness of
the stub increases, the slip between two layers decreases and
tends to zero. By looking at Figure 8 (the ratio kst/Em � 0.1 is
employed), it is very interesting to see that the minimum of
slip between two layers at the contact place appears at the
central plate with symmetric boundary conditions (CCCC,
SSSS, and CSCS). �e slip gets a maximum value at the
simply supported edge, and this slip strongly depends on
the boundary condition.

(4) Influence of Boundary Condition. We further study the
deflection affected by the boundary condition. A square

plate with hn/hm � 1-2 and kst/Em � 0-1 is considered.
Figure 9 shows the displacement at x � a/2 and along the
y direction in four boundary conditions. �e bound-
ary condition has strong effects on the deflection mag-
nitude and deformation shape of the plate. It is shown
that the plate with the simple support at all edges has the
highest deflection and the one with the fully clamped
support has the smallest deflection. �e deformation
shapes of the SSSS plate, CCCC plate, and CSCS plate are
symmetric, while the deformation of the CCSS plate is
asymmetric.
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Figure 6: �e effect of ratio kst/Em on nondimensional deflection of the plate with a/b � 1: (a) hn/hm � 1; (b) hn/hm � 2.
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Figure 7: �e effect of ratio kst/Em on R1
mn of the plate with

hn/hm � 1.
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Figure 8:�e slip between the top and bottom layers at the contact
place varying along the x-direction, with kst/Em � 0.1 and
hn/hm � 1.
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3.2. Free Vibration Analysis

3.2.1. Accuracy Studies. To confirm the accuracy of this
work, we first present a comparison of frequencies of ho-
mogeneous CCCC and SSSS plates, with a� b� 1m, h� a/10
and a/100, E� 10920MPa, and Poisson’s ratio ] � 0.3;
similar to the bending analysis, hn � hm � 0.5 h and
kst � 1010E are again used for this comparison. �e non-
dimensional frequencies are defined by

ωi � ωia

��
ρ
G

􏽲

. (65)

�e results are listed in Tables 6 and 7, in which Ferreira
theory [28] was based on FEM and Mindlin theory [28] was

based on the analytical solution. As expected, the results
obtained by this work match well with those derived from
other solutions.

Next, we compare the nondimensional frequencies of an
SSSS composite plate 0/90°. �e parameters of this plate are
set to be E1/E2 � 25, G12 � G13 � 0.5E2, G23 � 0.2E2,
]12 � 0.25, (a/b) � 1, and (a/h) � 10. �e nondimensional
frequencies of the plate are normalized by

􏽥ωi � ωi

b2

π2

���
ρh

D22

􏽳

, (i � 1− 6). (66)

�e comparison is shown in Table 8; note that the results
in [29] are obtained from the exact solution. We can see that
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Figure 9: Nondimensional deflection of the plate along the line part x � a/2 with a/b � 1 and (a) hn/hm � 1, kst/Em � 0, (b) hn/hm � 1,
kst/Em � 1, (c) hn/hm � 2, kst/Em � 0, and (d) hn/hm � 2, kst/Em � 1.
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the present results and reference results are close to each
other. From two comparisons, we conclude that the accuracy
of this approach is accepted.

3.2.2. Numerical Results for Free Vibration Analysis of Two-
Layer Composite Plates. In this section, we research the
natural frequency of the two-layer composite plate utilizing
the proposed method.�e two-layer composite plate (length
a, width b, thickness of the top layer hn, and thickness of the
bottom layer hm) is studied herein. �e nondimensional
fundamental frequency is defined as

ω⌣ � ω1 · 100 · a

���������
2 1 + ]m( 􏼁ρ

Em

􏽳

. (67)

(1) Influence of Length-to-Width Ratio. Table 9 and Fig-
ure 10 show the dimensionless fundamental frequencies
as a function of aspect ratio a/b with hn/hm � 1 and
kst/Em � 1 of two-layer composite plates altered by the
boundary condition. It is evident that the highest and
the smallest natural frequencies are found for CCCC
and SSSS plates, respectively. When the aspect ratio
a/b increases, the nondimensional fundamental fre-
quency increases, and the fundamental frequencies of
CCCC and CSCS plates are close when the aspect ratio
a/b> 2.6; this is a similar behavior to the static bending
problem.

(2) Influence of �ickness-to-�ickness Ratio hn/hm. To study
the influence of thickness-to-thickness ratio hn/hm, a two-
layer square composite plate with kst/Em � 1 is used for this
analysis. �e nondimensional fundamental frequencies as
a function of the ratio hn/hm are tabulated in Table 10 and
shown in Figures 11 and 12. �e nondimensional funda-
mental frequency varies nonlinearly with the increasing
ratio hn/hm; the minimum value of fundamental frequency
will be obtained when the ratio hn/hm is in the range of 1.8
to 2.6.

(3) Influence of Stiffness of the Connector Stub. In this ex-
ploration, the effect of stiffness of the connector stub on
the nondimensional fundamental frequency of the two-
layer composite plate is studied. A square two-layer plate
with a/b � 1 and kst/Em varying from 0 to 106 is in-
vestigated. Table 11 and Figure 13 report the com-
puted results of this plate with hn/hm � 1; we can see that
increasing the ratio kst/Em from 0 to 1 leads to the in-
crease in the frequencies. When the ratio (kst/Em)> 1,
the nondimensional fundamental frequency is almost
unchanged.

Figures 14 and 15 plot nondimensional fundamental
frequencies of the plate as a function of ratios a/b, hn/hm,
and kst/Em. In addition, the first six mode shapes of plates
with boundary conditions such as SSSS, CCCC, CSCS, and
CCSS are shown in Figures 16–19 with a/b � 1, hn/hm � 1,
and kst/Em � 10−1. It is seen that the boundary condition
has an effect on mode shapes as well as on the value of
frequencies.

Table 6: Comparison of the nondimensional frequencies of an SSSS plate.

a/h Mode Ferreira [28] Mindlin [28] Present

10

1 0.9346 0.930 0.9271
2 2.2545 2.219 2.2055
3 2.2545 2.219 2.2055
4 3.4592 3.406 3.3600
5 4.3031 4.149 4.1123
6 4.3031 4.149 4.1123

100

1 0.0965 0.0963 0.0952
2 0.2430 0.2406 0.2343
3 0.2430 0.2406 0.2343
4 0.3890 0.3847 0.3680
5 0.4928 0.4807 0.4580
6 0.4928 0.4807 0.4580

Table 7: Comparison of the nondimensional frequencies of
a CCCC plate.

a/h Mode Ferreira [28] Liew et al. [27] Present

10

1 1.5955 1.5582 1.5710
2 3.0662 3.0182 2.9927
3 3.0662 3.0182 2.9927
4 4.2924 4.1711 4.1829
5 5.1232 5.1218 4.9441
6 5.1730 5.1594 4.9893

100

1 0.1750 0.1743 0.1683
2 0.3635 0.3576 0.3431
3 0.3635 0.3576 0.3432
4 0.5358 0.5240 0.4978
5 0.6634 0.6465 0.6014
6 0.6665 0.6505 0.6057

Table 8: Comparison of the nondimensional frequencies 􏽥ωi of
a square SSSS composite plate.

Mode
E1/E2 � 10 E1/E2 � 20

Reddy [29] Present Reddy [29] Present

1 1.183 1.151 0.990 1.032
2 3.174 3.209 2.719 2.966
3 3.174 3.209 2.719 2.966
4 4.733 5.057 3.959 4.101
5 6.666 6.399 5.789 5.806
6 6.666 6.399 5.789 5.806

12 Advances in Civil Engineering



4. Conclusions

In this work, new numerical results of mechanical behaviors
and free vibration responses of the two-layer composite plate
are explored, in which two layers are connected by stubs. We
used the finite element method combined with the new
modified first-order shear deformation theory, which has the
following advantages:

(i) Simple formulations for theoretical representation
(ii) No need for reduced integration or selective reduced

integration scheme for the proposed method

�e computed results of static bending and free vi-
bration obtained by this approach are also compared to

other solutions, showing a good agreement. We gained
insight into the responses of deflections and natural
frequencies. Besides, some geometrical and physical
properties of this structure are also examined. Finally,
from new numerical results, several conclusions may be
achieved as follows:

(i) �e stiffness of the stub has a strong effect on static
bending deflections and natural frequencies of the
two-layer composite plate when kst/Em < 1. When
kst/Em > 1, there is no slip between the top and the
bottom layers at the contact place, and the static
bending and free vibration responses of this plate
are similar to those of the one-layer composite plate
without stubs.

Table 9: Influence of ratio a/b on nondimensional fundamental
frequency of the plate with hn/hm � 1 and kst/Em � 1.

a/b
Boundary

SSSS CCCC CSCS CCSS
0.5 0.8439 1.6701 0.9329 1.2115
1.0 1.3505 2.4421 1.9700 1.8434
1.2 1.6474 3.0049 2.6189 2.2592
1.4 1.9983 3.7145 3.3955 2.7687
1.6 2.4029 4.5647 4.2971 3.3698
1.8 2.8614 5.5501 5.3220 4.0606
2.0 3.3737 6.6663 6.4691 4.8395
2.2 3.9398 7.9101 7.7374 5.7053
2.4 4.5595 9.2791 9.1262 6.6570
2.6 5.2330 10.7714 10.6349 7.6938
2.8 5.9601 12.3857 12.2627 8.8151
3.0 6.7408 14.1208 14.0093 10.0203
3.2 7.5751 15.9757 15.8739 11.3092
3.4 8.4628 17.9494 17.8561 12.6811
3.6 9.4040 20.0412 19.9553 14.1359
3.8 10.3985 22.2503 22.1709 15.6730
4.0 11.4463 24.5760 24.5023 17.2922
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Figure 10: �e effect of ratio a/b on nondimensional fundamental
frequencies of the plate with hn/hm � 1 and kst/Em � 1.

Table 10: Influence of ratio hn/hm on nondimensional fundamental
frequency of the square plate with a/b � 1 and kst/Em � 1.

hn/hm

Boundary
SSSS CCCC CSCS CCSS

1.0 1.3505 2.4421 1.9700 1.8434
1.2 1.2757 2.3022 1.8582 1.7396
1.4 1.2231 2.2024 1.7789 1.6661
1.6 1.1872 2.1332 1.7241 1.6156
1.8 1.1641 2.0873 1.6880 1.5825
2.0 1.1506 2.0591 1.6662 1.5627
2.2 1.1445 2.0445 1.6552 1.5530
2.4 1.1439 2.0403 1.6526 1.5511
2.6 1.1476 2.0439 1.6562 1.5550
2.8 1.1544 2.0535 1.6646 1.5633
3.0 1.1635 2.0676 1.6765 1.5749
3.2 1.1744 2.0850 1.6911 1.5889
3.4 1.1866 2.1049 1.7077 1.6048
3.6 1.1997 2.1266 1.7256 1.6219
3.8 1.2133 2.1496 1.7446 1.6399
4.0 1.2274 2.1734 1.7642 1.6585
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Figure 11: �e effect of ratio hn/hm on nondimensional funda-
mental frequencies of the plate with a/b � 1 and kst/Em � 1.
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(ii) Likewise, the boundary condition has great effect
on the slip between two layers, the minimum slip
appears at the center of the plates with the sym-
metric boundary condition, and the slip has the
greatest value at the simply supported edge.

(iii) When the ratio hn/hm increases, the static bending
deflection increases, but the fundamental frequency
varies as a nonlinear function of this ratio.

(iv) �e higher the ratio a/b, the smaller the deflection
and the higher the fundamental frequency.

�e new results of this work are useful for calculation,
design, and testing, as well as for giving the optimal so-
lution for the two-layer plate and shell in engineering and
technologies. �is study suggests some further works on
buckling, dynamic response, and heat transfer problems
of the two-layer composite plate using different plate
theories.

Table 11: Influence of ratio kst/Em on nondimensional funda-
mental frequency of the plate with a/b � 1 and hn/hm � 1.

kst/Em

Boundary
SSSS CCCC CSCS CCSS

0 1.2206 2.2205 1.7881 1.6710
10–2 1.3292 2.3636 1.9142 1.7976
10–1 1.3482 2.4308 1.9625 1.8376
100 1.3505 2.4421 1.9700 1.8434
101 1.3507 2.4433 1.9708 1.8441
102 1.3508 2.4435 1.9709 1.8441
103 1.3508 2.4435 1.9709 1.8441
104 1.3508 2.4435 1.9709 1.8441
105 1.3508 2.4435 1.9709 1.8441
106 1.3506 2.4434 1.9710 1.8439
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Figure 14: Nondimensional fundamental frequencies as a function
of kst/Em and hn/hm of the SSSS plate with a/b � 1.
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Figure 13: �e effect of ratio kst/Em on nondimensional funda-
mental frequencies of the plate with a/b � 1 and hn/hm � 1.
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Figure 15: Nondimensional fundamental frequencies as a function
of kst/Em and a/b of the SSSS plate with hn/hm � 1.
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Figure 12: Nondimensional fundamental frequencies as a function
of hn/hm and a/b of the SSSS plate with kst/Em � 1.
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(a) (b) (c)

(d) (e) (f )

Figure 16:�e first six mode shapes of a two-layer square SSSS composite plate. (a) Mode 1. (b)Mode 2. (c)Mode 3. (d)Mode 4. (e)Mode 5.
(f ) Mode 6.

(a) (b) (c)

(d) (e) (f )

Figure 17: �e first six mode shapes of a two-layer square CCCC composite plate. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
(e) Mode 5. (f ) Mode 6.

(a) (b) (c)

(d) (e) (f )

Figure 18: �e first six mode shapes of a two-layer square CSCS composite plate. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
(e) Mode 5. (f ) Mode 6.
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Appendix

�e matrix C in equation (30) is defined as

C � CT
1 CT

2 CT
3 CT

4􏽨 􏽩
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Figure 19: �e first six mode shapes of a two-layer square CCSS composite plate. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4.
(e) Mode 5. (f ) Mode 6.
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where D � Dn and S � Sn for layer n and D � Dm and S �

Sm for layer m.
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