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Abstract: In working processes, mechanical systems are often affected by both internal and external
forces, which are the cause of the forced vibrations of the structures. They can be destroyed if the
amplitude of vibration reaches a high enough value. One of the most popular ways to reduce these
forced vibrations is to attach tuned mass damper (TMD) devices, which are commonly added at
the maximum displacement point of the structures. This paper presents the computed results of the
free vibration and the vibration response of the space frame system under an external random load,
which is described as a stationary process with white noise. Static and dynamic equations are formed
through the finite element method. In addition, this work also establishes artificial neural networks
(ANNs) in order to predict the vibration response of the first frequencies of the structure. Numerical
studies show that the data set of the TMD device strongly affects the first frequencies of the mechanical
system, and the proposed artificial intelligence (AI) model can predict exactly the vibration response of
the first frequencies of the structure. For the forced vibration problem, we can find optimal parameters
of the TMD device and thus obtain minimum displacements of the structure. The results of this work
can be used as a reference when applying this type of structure to TMD devices.
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1. Introduction

There are many different ways to reduce vibrations of structures, such as reinforcing stiffeners
into a structure to enhance its global stiffer, using special materials with high strengths, and adding
TMD devices. Energy dissipation equipment such as TMD devices is used in engineering applications
all over the world. There have been many studies on structures with energy dissipation equipment.
The original invention of TMD was first proposed by Frahm [1], who strongly influenced Den Hartog [2],
who presented classical optimum frequency and damping for a structure under a harmonic load.
In the open TMD literature, Elias and Matsagar [3] briefly introduced TMD devices. Optimality criteria
and specific TMD applications directly affected TMD efficiency in the reduction vibrations. For example,
the authors in [4,5] presented an optimal data set of TMDs of high-rise buildings subjected to wind
loads; the authors in [6] studied optimal TMDs for skyscrapers and considered uncertain parameters
based on the Monte Carlo approach and Latin Hypercube Sampling. Kaynia and Veneziano [7] carried
out a time history response of a one-degree-of-freedom system in two cases (with and without a TMD),
where the structure was influenced by a series of historical earthquakes. Tuan and Shang [8] examined
the mitigating influence of a TMD on the mechanical dynamic behaviour of a 101-floor building
(in Taipei city) through numerical simulation and experiments, in which the structure was subjected to
seismic excitation and wind loads. Domizio et al. [9] presented nonlinear dynamic responses of a 4-story
steel frame with a TMD under wind loads and far-fault earthquakes. Krenk and Jan [10] investigated
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the optimal parameters of a TMD attached to a mechanical system with one degree of freedom, and
the computed results showed that the influence of the difference between the exact optimal frequency
tuning under random load and the classic tuning for harmonic load was not negligible. Fujino and
Masato [11] employed a perturbation technique to optimize the parameters of TMDs subjected to
different types of external loading. The results showed that this approach was only accurate when mass
ratios were less than 0.02. Gerges and Vickery [12] studied a one-degree-of-freedom system equipped
with a TMD under random white noise to obtain the optimum parameters of TMD, after which
a design graph for the over-optimum-damped TMDs was shown. Sun and Jahangiri [13] employed
an analytical model to obtain an optimum design formula of parameters for a TMD, which was added
to an offshore wind turbine. The main purpose of their work was to control the vibration of the
structure. Matteo et al. [14] used a tuned liquid column damper (TLCD) to control the seismic response
of base-isolated structures. This work aimed to meet the optimal design of this type of TLCD device by
using a‘straightforward direct approach. Bigdeli and Kim [15] studied the influence of damping to
control vibration of a structure consisting of a TMD, a tuned liquid damper, and a tuned liquid column
damper. The experiment results showed that the mass and damping of these devices were the most
important factors in reducing vibration of the structure.

Regarding open literature about mechanical systems dealing with TMD devices, Lievens et al. [16]
presented a robust optimization method for the design of a TMD, and uncertainties in the modal
parameters were taken into account. Jiménez-Alonso and Sáez [17] proposed a motion-based
design optimization approach in order to research the behavior of footbridges under uncertainty
conditions. In [18], Tributsch and Adam examined the seismic performance of TMDs based on sets of
recorded ground motion, and the effect of detuning on the stroke of the TMD and on the structural
response was evaluated and quantified. Domenico and Ricciardi presented research on, respectively,
the earthquake-resilient design of base-isolated buildings with a TMD in the basement [19] and the
optimal design and seismic performance of a tuned mass damper inerter (TMDI) for structures with
nonlinear base isolation systems [20]. They continued exploring the reduction of dynamic responses of
base-isolated buildings by introducing a TMD in the basement, below the isolation floor where most
of the earthquake-induced displacement demand is concentrated. For reduction vibration problems,
Pietrosanti and his colleagues [21] concerned the optimal design and performance evaluation of
a TMDI to reduce dynamic vibrations. Once again, Domenico and Ricciardi similarly studied the
dynamic performance of base-isolated structures via TMD and TMDI devices [22] and an enhanced base
isolation system equipped with an optimal TMDI [23]. Elias et al. [24] investigated the effectiveness
of distributed multiple tuned mass dampers (d-MTMDs) for the multimode control of chimneys for
along-wind response, where the response of a chimney is controlled by adding TMDs. Hashimoto and
his coworkers [25] studied the reduction of responses in high-rise buildings subjected to wind loading
by considering the effect of TMD devices.

This paper aims to present new numerical results about free vibration behaviors of beams and
space frame systems. The artificial neural network (ANN) model is proposed to predict the fundamental
frequencies of the structures. This work also presents the vibration response of beams under random
load, which is described as a stationary process with white noise.

The body of this paper is divided into four main sections. Section 2 presents the finite element
formulations for the space frame system with a TMD in the stationary process with white noise.
A review of ANNs is presented in Section 3. Numerical results and discussions are given in Section 4,
in which the ANN model is shown to predict the fundamental frequencies of the structure. In Section 5,
important conclusions are summarized.
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2. Geometry and Theoretical Formulations

The Space Frame with a TMD

Consider a space frame element of the mechanical system (Figure 1). At any point on the frame
elenment, there is a local coordinate x that has an unknown displacement vector u(x, t).

u =
[

u v θz w θy ϕ
]T

(1)

in which u, v, w, and ϕ are the displacments along the x-, y-, and z-directions and the twisting
displacement around the x-axis, respectively. θz, θy are the angular components corresponding to the
displacements u and w.

θz =
dv
dx

;θy =
dw
dx

. (2)
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Consider q is the nodal displacement of the frame element:

q(t) =
[

qu(t) qv(t) qw(t) qϕ(t)
]T

(3)

where 

qu(t) =
[

u1 u2
]T

qv(t) =
[

v1 θ1z v2 θ2z
]T

qw(t) =
[

w1 θ1y w2 θ2y
]T

qϕ(t) =
[
ϕ1 ϕ2

]T

. (4)

The displacement field of the frame element is approximated through the nodal displacement
vector as follows

u(x, t) = N(x)q(t) (5)

where N are the shape functions

N(x) =


Nu(x)

Nv(x)
Nw(x)

Nϕ(x)

. (6)

Herein, the Hermite shape functions are employed and are expressed as follows:

Nu(x) =
[

N1u(x) N2u(x)
]

(7)
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Nv(x) =

 N1v(x) N2v(x) N3v(x) N4v(x)
dN1v(x)

dx
dN2v(x)

dx
dN3v(x)

dx
dN4v(x)

dx

 (8)

Nw(x) =

 N1w(x) N2w(x) N3w(x) N4w(x)
dN1w(x)

dx
dN1w(x)

dx
dN1w(x)

dx
dN1w(x)

dx

 (9)

Nϕ(x) =
[

N1ϕ(x) N2ϕ(x)
]

(10)

in which a is the length of the frame element. These shape functions can be found in the Appendix A.
The elastic potential energy of the internal forces in the frame element is calculated as follows:

A = 1
2

EF
a∫

0
[u′(x, t)]2dx + EIz

a∫
0
[v′′ (x, t)]2dx

+EIy

a∫
0
[w′′ (x, t)]2dx + GJp

a∫
0
[ϕ′′ (x, t)]2dx


(11)

where u′, v′′ , w′, ϕ′ are the derivative components of u, v, w, and ϕ displacements, correspondingly.
E is the elastic modulus of the material. G is the shear modulus of the material. F is the area of the
cross-section of the frame element. Iy and Iz are the moments of inertia of the area in the y- and
z-directions in the local coordinate system. Jp is the polar moment of inertia of the area.

Note that Equations (5) and (11) can be rewritten in the matrix form as follows:

A =
1
2

a∫
0

D[B(x)q(t)]2dx =
1
2

qT(t)


a∫

0

BT(x)DB(x)dx

q(t) (12)

where B is the strain-displacement relation matrix of the frame element.

B(x) =


N
′

u(x)
N”

v(x)
N”

w(x)
N
′

ϕ(x)

 (13)

D is the eslastic matrix of the frame element.

D =


EF

EIz

EIy

GJp

 (14)

The work done by external forces is expressed as follows:

Ae = −


a∫

0
pu(x, t)u(x, t)dx +

a∫
0

pv(x, t)v(x, t)dx +
a∫

0
pw(x, t)w(x, t)dx+

a∫
0

pϕ(x, t)ϕ(x, t)dx

+

−
1
2


a∫

0
−mü(x, t)u(x, t)dx +

a∫
0
−mv̈(x, t)v(x, t)dx +

a∫
0
−mẅ(x, t)ω(x, t)dx+

a∫
0
−mpϕ̈(x, t)ϕ(x, t)dx

+

−
1
2


a∫

0
−cu̇(x, t)u(x, t)dx +

a∫
0
−cv̇(x, t)v(x, t)dx +

a∫
0
−cẇ(x, t)w(x, t)dx+

a∫
0
−cpϕ̇(x, t)ϕ(x, t)dx



(15)
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Equation (15) can be rewritten in the matrix form as follows:

Ae = −qT(t)
a∫

0
NT(x)p(x, t)dx+

+ 1
2 qT(t)

a∫
0

NT(x)N(x)dxmeq̈(t)

+ 1
2 qT(t)

a∫
0

NT(x)N(x)dxcq̈(t)

(16)

where m is the mass per unit length. mp is the moment of inertia of m per unit length, which is defined
as follows:

mp = mJp (17)

c is the viscous drag coefficient per unit length. pu, pv, pw, and pϕ are the distributed loads per unit
length (Figure 2b). p(x,t) is the distributed load on the frame element:

p(x, t) =
[

pu(x, t) pv(x, t) pw(x, t) pϕ(x, t)
]T

. (18)
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Figure 2. The displacement components at element nodes (a); the distributed load components on the
frame element (b).

me is the distributed mass matrix of the frame element:

me =


mu

mv

mw

mϕ

 (19)

in which distributed mass matrix components are given in the Appendix A.
According to the minimum of the potential energy, the equilibrium condition of the system has

a form as follows:
∂V
∂qi

=
∂(A + Ae)

∂qi
= 0 with i = u, v, w, ϕ. (20)

Substituting Equations (12) and (16) into Equation (20) with generalized coordinates i are u, v, w,
and ϕ, respectively, we obtain the finite element oscillation equation as follows:

m
..
q(t) + c

.
q(t) + kq(t) = p(t) (21)

where k, m, and c are the element stiffness matrix, the element mass matrix, and the element viscous
drag matrix, respectively.
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k =
a∫

0
BT(x)DB(x)dx

m = mT
e

a∫
0

NT(x)N(x)dx

c = c
a∫

0
NT(x)N(x)dx

(22)

p is the element nodal force:

p(t) =

a∫
0

N(x)Tp(x, t)dx. (23)

By integrating Equations (22) and (23), we obtain the finite element matrices of the space frame
element. These element matrices are given in the Appendix A.

We suppose a TMD is installed on the top horizontal bar of the frame system (Figure 3), assuming
the TMD only transverses in the horizontal direction corresponding to displacement w of this system.
Let wT be the displacement of the mass mT in the TMD vibration reduction system. We can then
determine the vibration equation of the mass mT as the following formula:

mT
..
wT + cT

( .
wT −

.
w0

)
+ kT(wT −w0) = F(t) (24)

where mT, cT, and kT are the mass, damper, and stiffness of the TMD, respectively. When adding the
TMD, the concentrated force fT due to TMD acting on the system is defined as follows:

fT = mT g + kT(wT −w0) + cT(
.

wT −
.

w0) (25)

where

w0 = Nwq;
.

w0 =
∂w0

∂t
= Nw

.
q (26)
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Figure 3. The real space frame system with a tuned mass damper (TMD).

By combining two vibration equations (Equations (21) and (24)), we obtain the dynamic equation
of the structure with a TMD as follows:[

m 0
0 mT

]{ ..
q
..
wT

}
+

[
c + cTNT

wNw −cTNT
w

−cTNw cT

]{ .
q
.

wT

}
+

[
k + kTNT

wNw −kTNT
w

−kTNw kT

]{
q

wT

}
=

{
p(t)
F(t)

}
(27)

When establishing finite element matrices of elements, each element is set in a local coordinate
system (called the element coordinate system). The components of the element nodal force vector and
the element nodal displacement vector are selected correspondingly to the directions of this coordinate
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system. When setting up the motion equation of the structure, the above vectors need to be converted
to the global coordinate system of the structure.

The relation of the force vector and the displacement vector in the local coordinate and the global
coordinate is described as follows:

q=T
¯
q (28)

in which q is the displacement vector or the load vector in the local coordinate system.
¯
q is the

displacement vector or the load vector in the global coordinate system. T is the transformation matrix

between vectors q and
¯
q. The relationship of the nodal displacement components between the local

coordinate system and the global coordinate system of the structure is given in the Appendix A.
Therefore, the equation of forced vibration of the frame element with a TMD has the following form.

[
TTmT 0

0 mT

]
..
q
..
wT

+

 TT
(
c + cTNT

wNw
)
T+ −cTNT

wT
−cTNwT cT

{ q
.

wT

}
+

 TT
(
k + kTNT

wNw
)
T+ −kTNT

wT
−kTNwT kT

{ q
wT

}
=

{
TTp(t)

F(t)

}
. (29)

By assembling the element matrices and vectors and eliminating boundary conditions, we obtain
the forced oscillation equation of the structure as follows:

M
..
Q + C

.
Q + KQ = F (30)

where M, C, and K are the global mass matrix, the global viscous drag matrix, and the global stiffness
matrix of the structure, respectively, and Q and F are the global displacement vector and the global
force vector of the structure, respectively.

For the free vibration without the viscous drag, Equation (30) becomes

M
..
Q + KQ = 0. (31)

We then obtain the equation to determine the natural frequencies and the mode shapes:(
K−ω2M

)
Q = 0. (32)

Consider a mechanical system under random loads with the forced vibration equation as
Equation (30); the random load is described as a stationary process with the average value as follows:

mF =
{

mF1 mF2 . . . mFn

}T
. (33)

The correlation matrix is
RF(τ) =

〈
F(t)F(t + τ)

〉
(34)

where RFiF j =
〈
Fi(t)F j(t + τ)

〉
is the correlation between two functions Fi and Fj at two moments t

and (t + τ).
In order to obtain the average value of the response, taking the average of two sides of Equation (30),

we obtain
M

〈 ..
Q

〉
+ C

〈 .
Q

〉
+ K〈Q〉 = 〈F〉. (35)

Because of the assumption that Q is the stationary process (〈Q〉 is constant), we have

〈 .
Q

〉
=

d
dt
〈Q〉 = 0;

〈 ..
Q

〉
=

d2

dt2 〈Q〉 = 0 (36)

Thus, from Equation (35), we obtain

K〈Q〉 = 〈F〉 or 〈Q〉 = K−1
〈F〉. (37)
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The image equation of Equation (30) through the Fourier transform is

M(iω)2Q(ω) + MiωQ0 −M
.

Q0 + CiωQ(ω) −CQ0 + KQ(ω) = F(ω) (38)

or (
−(iω)2M + iωC + K

)
Q(ω) +

(
MiωQ0 −M

.
Q0 −CQ0

)
= F(ω). (39)

When t = 0, Q0 = 0 and
.

Q0 = 0, we have(
MiωQ0 −M

.
Q0 −CQ0

)
= 0. (40)

Thus, from Equation (39), we have

Q(ω) =
(
−(iω)2M + iωC + K

)
F(ω) = H(ω)F(ω) (41)

where
H(ω) =

(
−(iω)2M + iωC + K

)−1
(42)

is the transfer function matrix of the system.
Let SFF(ω) be the spectral matrix of the input with the components SFiF j(ω), H(ω) be the transfer

function matrix of the system with the components Hi j(ω), and SQQ(ω) be the spectral vector of
function Q with its components SQiQ j(ω). We can then define the relation equation among the spectral
matrices of the input SQQ(ω), SFF(ω), and the transfer function matrix H(ω).

The autocorrelation matrix of the response vector Q is

RQQ(τ) = E
(
QQT

)
. (43)

Replacing Q with Duhamel’s integrals for multiple degrees of freedom system, we have

RQQ(τ) = E

+∞∫
−∞

h(τ1)F(t− τ1)dτ1

+∞∫
−∞

FT(t + τ− τ2)hT(τ2)dτ2


=

+∞∫
−∞

+∞∫
−∞

h(τ1)hT(τ2)E
(
F(t− τ1)FT(t + τ− τ2)

)
dτ1dτ2

(44)

Because E
(
F(t− τ1)FT(t + τ− τ2)

)
= RFF(t + τ1 − τ2),

RQQ(τ) =

+∞∫
−∞

+∞∫
−∞

h(τ1)hT(τ2)RFF(t + τ1 − τ2)dτ1dτ2. (45)

From the Wiener–Khinchin function, we have

SQQ(ω) =
1

2π

+∞∫
−∞

RQQ(τ)e−iωtdτ. (46)

Substituting Equation (45) into Equation (46), we obtain the matrix of spectral density functions
of response as follows:

SQQ(τ) = 1
2π

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

h(τ1)hT(τ2)RFF(τ+ τ1 − τ2)e−iωtdτ1dτ2dτ

= 1
2π

+∞∫
−∞

+∞∫
−∞

h(τ1)hT(τ2)

+∞∫
−∞

RFF(τ+ τ1 − τ2)e−iωtdτ

dτ1dτ2

(47)
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Let τ+ τ1 − τ2 = τ̃, τ = τ̃− τ1 + τ2 and we have

SQQ(τ) =
1

2π

+∞∫
−∞

h(τ1)eiωτ1dτ1

+∞∫
−∞

hT(τ2)e−iωτ2dτ2

+∞∫
−∞

RFF (̃τ)e−iωτ̃d̃τ. (48)

The first integral is
+∞∫
−∞

h(τ1)eiωτ1dτ1 = H∗(ω). (49)

The second integral is
+∞∫
−∞

h(τ2)e−iωτ2dτ2 = HT(ω). (50)

The third integral is
+∞∫
−∞

RFF (̃τ)e−iωτ̃d̃τ = 2πSFF(ω). (51)

Finally, we have
SQQ(ω) = H∗(ω)SFF(ω)HT(ω). (52)

Since this is a stationary process, the area of the spectral density function in the frequency domain
is the variance of the response function. With the spectral density function of the constant agitation
function, it is assumed that the white noise agitation, for each data set of the TMD, will make the
density response function different.

3. Artificial Neural Networks

In recent years, along with the development of science and technology, applying artificial
intelligence (AI) in solving complicated issues in science and in mechanical problems is important. The
ANN model is based on a simulation of the working processes of the human brain. Neural network
nodal functions can process numerous duties at the same time in a short amount of time to solve
problems. A neural network is like a black box that can predict output data from a particular
input. After a training process, the neural network can become aware of similarities from new input
patterns [26]. There have been many science publications about the use of AI in analyzing mechanical
behaviors, including design of experiments [27], genetic algorithms [28], ant colony optimization [29],
fuzzy logic [30], and finite elements analysis [31]. Mohsen and Mazahery [32] employed a standard
feed-forward network with a hidden layer. The number of neurons in both the input and output layers
was defined by the variation data, and the optimal design was found through the numbers of neuron
in the hidden layer and the mean square error. Esmailzadeh and Khafri [33] used finite element and
artificial neural network to simulate a process of equal-channel angular pressing of an aluminum alloy.
In [34], Abambres et al. introduced a neural network-based formula for the buckling load prediction
of I-section cellular steel beams in order to precisely compute the critical buckling load of simply
supported beams subjected to uniform loads. In mechanical systems, problems such as those related
to resonance or the need to predict cracks require natural frequencies of the structure, and natural
frequencies of the system are processed. Based on ANN models, we can predict the natural frequencies
of the mechanical structures through the input data. Operating the ANN model costs less time and
memories, and it can shorten the simulating time needed to export output parameters (in this work,
the natural frequencies). This is one of the basic advantages of ANN models; they can be fully applied
to other complex problems in mechanics.
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4. Numerical Results and Discussions

4.1. Numerical Results for Free Vibration Analysis of the Beam and Frame System with a TMD

4.1.1. Accuracy Studies

Firstly, a plane beam (2-dimensional beam) with a TMD attached at the mid-point is considered
for the accuracy problem (Figure 4). The author compares the natural frequencies between this work
and other exact publications. Note that the 2-dimensional beam only bends in one plane. At this time,
each node retains three displacement components u, w, and θy, which means each node has three
degrees of freedom. Therefore, in order to obtain the element mass matrix, the element stiffness matrix
in this plane, in the stiffness matrix and mass matrix of the space frame element above, we only need
to remove rows and columns corresponding to the remaining degrees of freedom.
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Consider a fully simply supported plane beam with the geometrical and material properties as
follows: length = 1 m, width = 3 cm, height = 2 cm, density ρ = 7800 kg/m3, and Young’s modulus
E = 2 × 1011 N/m2. The data set of the TMD is as follows [35]: mT = 0.468 kg, kT = 27,058.08 N/m,
and cT = 100 Ns/m. The first natural frequency calculated by Hartog’s method [35] is 33.55 Hz, and the
one of this work is 33.62 Hz. We understand that, although we employ different theories and methods,
the results are still in good agreement, so the proposed theory and method in this work are verified.

4.1.2. Numerical Results for Free Vibration Analysis of the Plane Beam with a TMD

Consider a fully simply supported beam with a TMD attached at the mid-point (Figure 4),
where length L = 20 m, EJ = 2.66 × 107 Nm2, density ρ = 7800 kg/m3 (b = h = 0.2 m, E = 2 × 1011 N/m2),
and the total mass of the beam m0 = 6240 kg. For the TMD, cT = 100 Ns/m, and kT = 2000 N/m. The mass
of the TMD mT varies such that its value is in a range of 1–10%m0. The first three natural frequencies
are presented in Table 1. For the case where mT = 10%m0, kT = 2000 N/m, and the drag coefficient cT
= 10–1000 Ns/m, the first three natural frequencies are presented in Table 2. For the case where mT
= 10%m0, cT = 100 Ns/m, and the stiffness of the TMD kT = 100–10,000 N/m, the first three natural
frequencies are presented in Table 3.

In the case of attaching TMDs at three positions (Figure 5), one at the mid-point and the other
two at positions such that the distance from there to the first one is L/4, the mass of the first TMD
is equal to the third, mT1 = mT3. By varying the masses of TMDs so that the total mass of the three
TMDs is not larger than 10%m0, the first three natural frequencies are presented in Table 4. In the
case where mT1 = mT2 = mT3 = 3%m0, where cT1 = 10–1000 Ns/m and kT1 = 2000 N/m (cT1 = cT2 =

cT3, and kT1 = kT2 = kT3), the first three natural frequencies are presented in Table 5. Finally, in the
case where cT1 = 100 Ns/m, and kT1 = 100–10,000 N/m, the first three natural frequencies are presented
in Table 6.

Materials 2019, 12, x FOR PEER REVIEW  11 of 25 

 

Consider a fully simply supported plane beam with the geometrical and material properties as 
follows: length = 1 m, width = 3 cm, height = 2 cm, density ρ = 7800 kg/m3, and Young’s modulus E = 
2 × 1011 N/m2. The data set of the TMD is as follows [35]: mT = 0.468 kg, kT = 27,058.08 N/m, and cT = 
100 Ns/m. The first natural frequency calculated by Hartog’s method [35] is 33.55 Hz, and the one of 
this work is 33.62 Hz. We understand that, although we employ different theories and methods, the 
results are still in good agreement, so the proposed theory and method in this work are verified. 

4.1.2. Numerical Results for Free Vibration Analysis of the Plane Beam with a TMD 

Consider a fully simply supported beam with a TMD attached at the mid-point (Figure 4), where 
length L = 20 m, EJ = 2.66 × 107 Nm2, density ρ = 7800 kg/m3 (b = h = 0.2 m, E = 2 × 1011 N/m2), and the 
total mass of the beam m0 = 6240 kg. For the TMD, cT = 100 Ns/m, and kT = 2000 N/m. The mass of the 
TMD mT varies such that its value is in a range of 1–10%m0. The first three natural frequencies are 
presented in Table 1. For the case where mT = 10%m0, kT = 2000 N/m, and the drag coefficient cT = 10–
1000 Ns/m, the first three natural frequencies are presented in Table 2. For the case where mT = 10%m0, 
cT = 100 Ns/m, and the stiffness of the TMD kT = 100–10,000 N/m, the first three natural frequencies 
are presented in Table 3. 

In the case of attaching TMDs at three positions (Figure 5), one at the mid-point and the other 
two at positions such that the distance from there to the first one is L/4, the mass of the first TMD is 
equal to the third, mT1 = mT3. By varying the masses of TMDs so that the total mass of the three TMDs 
is not larger than 10%m0, the first three natural frequencies are presented in Table 4. In the case where 
mT1 = mT2 = mT3 = 3%m0, where cT1 = 10–1000 Ns/m and kT1 = 2000 N/m (cT1 = cT2 = cT3, and kT1 = kT2 = kT3), 
the first three natural frequencies are presented in Table 5. Finally, in the case where cT1 = 100 Ns/m, 
and kT1 = 100–10,000 N/m, the first three natural frequencies are presented in Table 6. 

 

Figure 5. Beam with three TMDs. 

Table 1. Variation of the first natural frequencies as a function of the mT2/m0 ratio. 

mT/m0 
(%) 

cT 
(Ns/m) 

kT 
(N/m) 

Beam without TMD Beam with One TMD 
f1 

(Hz) 
f2 

(Hz) 
f3  

(Hz) 
f4 

(Hz) f1 (Hz) f2 
(Hz) 

f3  
(Hz) 

f4 

(Hz) 

1 

100 2000 1.161 5.093 19.933 63.312 

0.887 1.178 5.093 19.937 
2 0.631 1.171 5.093 19.937 
3 0.516 1.169 5.093 19.937 
4 0.447 1.169 5.093 19.937 
5 0.400 1.169 5.093 19.937 
6 0.365 1.169 5.093 19.937 
7 0.338 1.168 5.093 19.937 
8 0.316 1.168 5.093 19.937 
9 0.298 1.168 5.093 19.937 
10 0.283 1.168 5.093 19.937 

Table 2. Variation of the first natural frequencies as a function of cT. 

mT/m0 
(%) 

cT 
(Ns/m) 

kT 
(N/m) 

Beam without TMD Beam with One TMD 
f1 

(Hz) 
f2 

(Hz) 
f3 

(Hz) 
f4 

(Hz) f1 (Hz) f2 (Hz) f3 
(Hz)  

f4 
(Hz) 

10 
10 

2000 1.161 5.093 19.933 63.312 
0.283 1.168 5.093 19.937 

20 0.283 1.168 5.093 19.937 

Figure 5. Beam with three TMDs.
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Table 1. Variation of the first natural frequencies as a function of the mT2/m0 ratio.

mT/m0
(%)

cT
(Ns/m)

kT
(N/m)

Beam without TMD Beam with One TMD

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

1

100 2000 1.161 5.093 19.933 63.312

0.887 1.178 5.093 19.937

2 0.631 1.171 5.093 19.937

3 0.516 1.169 5.093 19.937

4 0.447 1.169 5.093 19.937

5 0.400 1.169 5.093 19.937

6 0.365 1.169 5.093 19.937

7 0.338 1.168 5.093 19.937

8 0.316 1.168 5.093 19.937

9 0.298 1.168 5.093 19.937

10 0.283 1.168 5.093 19.937

Table 2. Variation of the first natural frequencies as a function of cT.

mT/m0
(%)

cT
(Ns/m)

kT
(N/m)

Beam without TMD Beam with One TMD

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

10

10

2000 1.161 5.093 19.933 63.312

0.283 1.168 5.093 19.937

20 0.283 1.168 5.093 19.937

100 0.283 1.168 5.093 19.937

150 0.283 1.168 5.093 19.937

300 0.283 1.168 5.093 19.937

500 0.283 1.168 5.093 19.937

700 0.283 1.168 5.093 19.937

800 0.283 1.168 5.093 19.937

1000 0.283 1.168 5.093 19.937

Table 3. Variation of the first natural frequencies as a function of kT.

mT/m0
(%)

cT
(Ns/m)

kT
(N/m)

Beam without TMD Beam with One TMD

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

10 100

100

1.161 5.093 19.933 63.312

0.063 1.161 5.093 19.935

500 0.142 1.162 5.093 19.936

1000 0.200 1.164 5.093 19.936

1500 0.245 1.166 5.093 19.936

2000 0.283 1.168 5.093 19.937

3000 0.345 1.172 5.093 19.937

5000 0.442 1.181 5.093 19.938

8000 0.552 1.197 5.093 19.940

10,000 0.611 1.209 5.093 19.941

The Beam with One TMD

When increasing the mass of the TMD, the first natural frequency decreases, and the other natural
frequencies are almost not changed despite this increase. When the mass of the TMD reaches 1% of the
mass of the beam, the first natural frequency of the structure with one TMD is equal to 76.40% of the
beam without a TMD (meaning this frequency is reduced by 23.60%). The frequency reduction rate,
which can be up to 75.62%, increases when the mass of the TMD increases, indicating that a TMD has a
strong effect on the first natural frequency of the structure.
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When mT is equal to 10% of the total mass of the structure, the stiffness of the spring k is constant.
When the damper of the TMD increases from 10 to 1000 Ns/m, the first natural frequencies are not
changed. For this case, we can state that the viscous drag coefficient has a light influence on the free
vibration of the structure.

However, when m2 is equal to 10% of the total mass of the structure, the drag coefficient of the
TMD remains at 100 Ns/m. When the stiffness of the spring k increases from 10 to 10,000 N/m, the first
natural frequency of the beam also increases. When the damper of the TMD is equal to 100 Ns/m, the
stiffness of the spring kT is equal to 100 N/m; the first natural frequency of the beam can be reduced by
94.57%.

Table 4. Variation of the first natural frequencies as a function of mT2/m0 and mT1/m0.

mT2/m0
(%)

mT1/m0
(%)

cT1
(Ns/m)

kT1
(N/m)

Beam without TMD Beam with Three TMDs

f 1
(Hz)

f 2
(Hz)

f 3
(Hz)

f 4
(Hz)

f 1
(Hz)

f 2
(Hz)

f 3
(Hz)

f 4
(Hz)

1 4.0

102 2000 1.161 5.093 19.933 63.312

0.447 0.450 0.888 1.185

1 3.0 0.516 0.519 0.888 1.186

1 2.0 0.631 0.638 0.888 1.187

1 1.0 0.876 0.900 0.901 1.193

2 4.0 0.447 0.450 0.631 1.179

2 3.0 0.512 0.519 0.631 1.179

2 2.0 0.626 0.636 0.637 1.180

2 1.0 0.631 0.888 0.900 1.187

3 3 0.512 0.519 0.520 1.178

3 2 0.516 0.632 0.636 1.179

3 1 0.516 0.888 0.900 1.186

4 3 0.447 0.516 0.519 1.178

4 2 0.447 0.631 0.636 1.179

4 1 0.447 0.888 0.900 1.185

5 2 0.400 0.631 0.636 1.178

5 1 0.400 0.888 0.900 1.185

Table 5. Variation of the first natural frequencies as a function of cT1.

mT2/m0
(%)

cT1
(Ns/m)

kT1
(N/m)

Beam without TMD Beam with Three TMDs

f 1
(Hz)

f 2
(Hz)

f 3
(Hz)

f 4
(Hz)

f 1
(Hz)

f 2
(Hz)

f 3
(Hz)

f 4
(Hz)

3

10

2000 1.161 5.093 19.933 63.312

0.512 0.519 0.520 1.178

20 0.512 0.519 0.520 1.178

100 0.512 0.519 0.520 1.178

150 0.512 0.519 0.520 1.178

300 0.512 0.519 0.520 1.178

500 0.512 0.519 0.520 1.178

700 0.512 0.519 0.520 1.178

800 0.512 0.519 0.520 1.178

1000 0.512 0.519 0.520 1.178
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Table 6. Variation of the first natural frequencies as a function of kT1.

mT2/m0
(%)

cT1
(Ns/m)

kT1
(N/m)

Beam without TMD Beam with Three TMDs

f 1
(Hz)

f 2
(Hz)

f 3
(Hz)

f 4
(Hz)

f 1
(Hz)

f 2
(Hz)

f 3
(Hz)

f 4
(Hz)

3 100

100

1.161 5.093 19.933 63.312

0.116 0.117 0.118 1.161

500 0.259 0.260 0.261 1.164

1000 0.365 0.367 0.368 1.168

1500 0.445 0.450 0.451 1.173

2000 0.512 0.519 0.520 1.178

3000 0.621 0.636 0.637 1.190

5000 0.780 0.821 0.822 1.224

8000 0.924 1.037 1.040 1.306

10,000 0.976 1.159 1.162 1.382

The Beam with Three TMDs

When the masses of TMD1 and TMD2 are equal to each other, increasing the mass of TMD2
reduces the first natural frequency of the structure. Similarly, the first natural frequency of the structure
also decreases when the mass of TMD2 is constant, while the masses of TMD1 and TMD2 increase.
When the total mass of the TMDs is equal to 10% of the mass of the structure, the first natural frequency
only decreases by 61.50% (while the structure with one TMD can be up to 75.62%).

When the total mass of the TMDs is equal to 9% of the mass of the beam (each TMD obtains 3%),
the stiffness of the spring kT1 (= kT2 = kT3) is 2000 N/m. When the damper of the TMD increases from
10 to 1000 Ns/m (cT1 = cT2 = cT3), the first natural frequencies are almost not changed (the phenomenon
is similar to that of the structure with one TMD at the mid-point).

When the total mass of TMDs is equal to 9% of the mass of the beam (each TMD obtains 3%),
the damper is a constant 100 Ns/m (cT1 = cT2 = cT3). The stiffness of the spring kT1 (= kT2 = kT3)
increases in a range of 100–10,000 N/m, and the first natural frequencies of the structure increase.
This phenomenon is also similar to that of the structure with one TMD at the mid-point. This time,
the first natural frequency is decreased by 90%.

4.2. Numerical Results for Free Vibration Analysis of the Space Frame System with a TMD

Consider a mechanical space frame system as shown in Figure 6, in which the frame elements are
made from the different steel straight pipes. Herein, we have two types of frame elements: (1) vertical
frames where outer diameter D0 = 0.5 m, the area of the cross-section F0 = 1.57 × 10−3 m2, bending
moments of inertia Jx0 = Jz0 = 4.88 × 10−5 m4, and the polar moment of inertia Jp0 = 9.76 × 10−5 m4;
(2) frames where D = 0.3 m, F = 9.40 × 10−2 m2, Jx = Jz = 1.05 × 10−5 m4, and Jp = 2.1 × 10−5 m4.
The mechanical properties of the steel are as follows: Young’s modulus E = 2 × 1011 N/m2, shear
modulus G = 0.8 × 1011 N/m2, and density ρ = 7850 kg/m3. The concentrated loads of 4 × 27,000 kg are
subject to four top points (A, B, C, and D). The total height of the frame system is 20 m. The results
of the first three natural frequencies of this work, obtained from commercial software SAP-2000,
are presented in Table 7. We can see that the results are in good agreement, so the proposed theory and
method are reliable.

When a TMD is added to the mid-point of the top horizontal frame (Figure 3), the total mass of
the system is m0 = 1.114 × 105 kg. When the mass mT, the stiffness of the spring, and the damper cT of
the TMD are changed, we obtain the results of the first three natural frequencies of the structure with
and without a TMD as shown in Tables 8–10.
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When the mass of the TMD increases, the natural frequencies of the system decrease. The mass
of the TMD has a strong effect on the first natural frequency of the structure. Two other natural
frequencies are slightly affected by the mass of the TMD.

Similarly, the stiffness of the TMD has a strong influence on the first natural frequency. Two other
natural frequencies are almost not changed when the stiffness of the TMD increases.

Finally, increases in the damper of the TMD have a light effect on the first three natural
frequencies. The values of the first three natural frequencies are almost not varied by the damper in
the exploring domain.
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Figure 6. The real space frame system without a TMD.

Table 7. The comparison of the first three natural frequencies of the space frame.

Method
ωi (rad/s)

ω1 ω2 ω3

SAP-2000 4.437 6.375 6.784
This work 4.426 6.039 6.522

Table 8. Variation of the first natural frequencies of the space frame system as a function of mT/m0.

mT/m0
(%)

cT
(Ns/m)

kT
(N/m)

The Frame System without TMD The Frame System with One TMD

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

1

103 104 0.704 0.961 1.038 1.283

0.475 0.704 0.961 1.038

2 0.336 0.704 0.961 1.038

3 0.274 0.704 0.961 1.038

4 0.237 0.704 0.961 1.038

5 0.212 0.704 0.961 1.038

6 0.194 0.704 0.961 1.038

7 0.179 0.704 0.961 1.038

8 0.168 0.704 0.961 1.038

9 0.158 0.704 0.961 1.038

10 0.150 0.704 0.961 1.038
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Table 9. Variation of the first natural frequencies of the space frame system as a function of kT.

mT/m0
(%)

cT
(Ns/m)

kT
(N/m)

The Frame System without TMD The Frame System with One TMD

f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz) f 1 (Hz) f 2 (Hz) f 3 (Hz) f 4 (Hz)

10 103

5000

0.704 0.961 1.038 1.283

0.106 0.704 0.961 1.038

7000 0.126 0.704 0.961 1.038

8000 0.134 0.704 0.961 1.038

10,000 0.150 0.704 0.961 1.038

12,000 0.164 0.704 0.961 1.038

15,000 0.184 0.704 0.961 1.038

18,000 0.201 0.704 0.961 1.038

20,000 0.212 0.704 0.961 1.038

25,000 0.237 0.704 0.961 1.038

Table 10. Variation of the first natural frequencies of the space frame system as a function of cT.

mT/m0
(%)

cT
(Ns/m)

kT
(N/m)

The Frame System without TMD The Frame System with One TMD

f 1
(Hz)

f 2
(Hz)

f 1
(Hz)

f 2
(Hz)

f 1
(Hz)

f 2
(Hz)

f 1
(Hz)

f 2
(Hz)

10

100

104 0.704 0.961 1.038 1.283

0.150 0.704 0.961 1.038

500 0.150 0.704 0.961 1.038

800 0.150 0.704 0.961 1.038

1000 0.150 0.704 0.961 1.038

1400 0.150 0.704 0.961 1.038

1600 0.150 0.704 0.961 1.038

1800 0.150 0.704 0.961 1.038

2000 0.150 0.704 0.961 1.038

2500 0.150 0.704 0.961 1.038

4.3. Setup of the ANN Model

We first chose the training set, which are the parameters of the TMDs and the fundamental
frequencies; for the beam with three TMDs, the ANN model has four data inputs: mT2/m0, mT1/m0, cT
(cT = cT1 = cT2 = cT3), and the stiffness kT (kT = kT1 = kT2 = kT3) of the TMD, and the one data output
is the fundamental frequency (see Figure 7). In this model, 27 randomly selected data are given to
train the network (from a total of 32), and the other five data are test data. Similarly, for the space
frame system with one TMD, the ANN model has three data inputs mT/m0, cT, and kT of the TMD,
and the one data output is the fundamental frequency. There are 22 randomly selected data (from
a total of 26) and 4 four data for training and testing, respectively (see Figure 8). In this work, the
proposed model is designed and computed in a MATLAB environment. The quantifiable method
cannot be used to evaluate the best network architecture, so we seek to optimize the verification of the
ANN model. A text spreadsheet input file includes both the training data input and the output for
the training stage. One to three hidden number layers are chosen in order to discover the number of
layers required to model the process. In each one of the hidden layers, the number of nodes (neurons)
is changed in a range of 4–80 neurons. To control the magnitude of the weight and bias updates,
the learning rate parameter is set during the simulation process. Therefore, the training time of the
ANN depends strongly on the selection of this value. In a MATLAB environment, the weights are
automatically corrected after each case of the training data. In addition, one parameter (the momentum
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value) is employed to reduce the likeliness of the simulation, which can be stuck in local optima.
Moreover, the learning rate is commonly established in a range from 0.0001 to 6.0, which depends
on the simulation during the training process, and the momentum in the ANN model is retained at
an average value of 0.8. In order to minimize the training error and avoid over training, the training
process needs to be supervised. After testing a variety of hidden layer variations, we find that a hidden
layer that includes six nodes achieves the most accurate prediction of frequencies. The computed and
predicted values of the frequencies are listed in Table 11. The bold values are accurately predicted
values. The average errors are presented in the penultimate row of Table 11, in which the percentage
error (ei) is determined as the following formula:

ei = 100×
(predict value− computed value)

computed value
%. (53)

Table 11. The input and output parameters of this artificial neural network (ANN) model for the beam
with three TMDs.

Order mT2/m0 (%) mT1/m0 (%) cT (Ns/m) kT (N/m) Target
f 1 (Hz)

Predict
f 1 (Hz)

1 1 4.0 100 2000 0.447 0.447
2 1 3.0 100 2000 0.516 0.516
3 1 2.0 100 2000 0.631 0.631
4 1 1.0 100 2000 0.876 0.876
5 2 4.0 100 2000 0.447 0.447
6 2 3.0 100 2000 0.512 0.512
7 2 2.0 100 2000 0.626 0.626
8 2 1.0 100 2000 0.631 0.631
9 3 3 100 2000 0.512 0.512

10 3 2 100 2000 0.516 0.516
11 3 1 100 2000 0.516 0.5199
12 4 3 100 2000 0.447 0.447
13 4 2 100 2000 0.447 0.447
14 4 1 100 2000 0.447 0.447
15 5 2 100 2000 0.400 0.400
16 5 1 100 2000 0.400 0.400
17 3 3 10 2000 0.512 0.512
18 3 3 20 2000 0.512 0.512
19 3 3 150 2000 0.512 0.512
20 3 3 300 2000 0.512 0.512
21 3 3 500 2000 0.512 0.512
22 3 3 700 2000 0.512 0.512
23 3 3 800 2000 0.512 0.5097
24 3 3 1000 2000 0.512 0.512
25 3 3 100 100 0.116 0.116
26 3 3 100 500 0.259 0.259
27 3 3 100 1000 0.365 0.365
28 3 3 100 1500 0.445 0.445
29 3 3 100 3000 0.621 0.6195
30 3 3 100 5000 0.780 0.790
31 3 3 100 8000 0.924 0.924
32 3 3 100 10,000 0.976 0.976

EAverage (%) 0.0017
Emax (%) 0.7484
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The absolute maximum percentage errors are presented in the bottom row of Table 11, E∞,
which show the worst prediction errors of the model. In this case, we need the smallest values (E∞) in
order to obtain the best predictions. Herein, E∞ can be defined as follows:

E∞ = maxn
i=1(ei). (54)

From Tables 11 and 12, we can see that the maximum errors (E∞) are very small; E∞ = 0.7484% for
the beam, and E∞ = 0.3052% for the space frame system. These computed results demonstrate that this
ANN model can well predict the fundamental frequencies of the structure. This is the highlight of
this work: the basis on which mechanical behavior predictions can be applied to many complicated
problems in mechanics. Complicated mechanical systems require a great deal of work, and the use of
ANN models can lead to precise results. There is no need to conduct calculations for the structure from
the beginning, thus increasing simulation and calculation efficiency. In other words, we can apply the
proposed ANN model to other models that only need input parameters, specific targets, the number
of training data, and testing data. By selecting appropriately the number of nodes (neurons) in the
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hidden layers and the momentum, we can completely predict the desired results with acceptable
errors in comparison with the original goals. For example, consider a plate with cracks, where each
data set of plate parameters such as the length of the structure, the deviational angle of the crack,
the location of the crack in the plate, and the changing laws of external loads are input into the
data set. The output parameters are the growing lines of the cracks. Thus, by employing the ANN
model, we can fully train each situation of the input data set to predict the development of the crack.
Therefore, this is a method of great significance in technology; at this time; we do not need to run
repeatedly the problem of dynamic crack propagation when facing a specific situation in practice (note
that the simulation of a dynamic crack propagation problem, which requires a high-speed computer,
is a relatively complex problem and is a waste of time). Therefore, we only need to import the input
data set instead. The ANN model can output instant results regarding the development of the growing
line of the crack, so engineers can handle arising matters as quickly as possible.

Table 12. The input and output parameters of this ANN model for the space frame system with
one TMD.

Order mT/m0 (%) cT (Ns/m) kT (N/m) Target
f 1 (Hz)

Predict
f 2 (Hz)

1 1 1000 10,000 0.475 0.475
2 2 1000 10,000 0.336 0.336
3 3 1000 10,000 0.274 0.2739
4 4 1000 10,000 0.237 0.2372
5 5 1000 10,000 0.212 0.2121
6 6 1000 10,000 0.194 0.1936
7 7 1000 10,000 0.179 0.1794
8 8 1000 10,000 0.168 0.1678
9 9 1000 10,000 0.158 0.158

10 10 1000 10,000 0.150 0.150
11 10 1000 5000 0.106 0.1061
12 10 1000 7000 0.126 0.1256
13 10 1000 8000 0.134 0.1343
14 10 1000 12,000 0.164 0.1643
15 10 1000 15,000 0.184 0.1838
16 10 1000 18,000 0.201 0.2013
17 10 1000 20,000 0.212 0.2118
18 10 1000 25,000 0.237 0.237
19 10 100 10,000 0.150 0.150
20 10 500 10,000 0.150 0.150
21 10 800 10,000 0.150 0.150
22 10 1400 10,000 0.150 0.150
23 10 1600 10,000 0.150 0.150
24 10 1800 10,000 0.150 0.150
25 10 2000 10,000 0.150 0.150
26 10 2500 10,000 0.150 0.150

EAverage (%) 0.0073
Emax (%) 0.3052

4.4. Numerical Results for Vibration Analysis of Beam with a TMD under Random Loading

Consider a fully simply supported beam where length L = 57 m, density µ = 54 kg/m,
EJ = 6.384 × 108 Nm2, and total mass of the beam m0 = 42,978 kg. We explore the first natural
frequency of the beam without a TMD, which is 2.80 Hz. For the beam with one TMD, at the mid-point,
the mass of the TMD mT is 5% of m0 (Figure 4); the beam is under a uniform random load (as a stationary
process) where the white noise domain SFF(ω) = 1. For each data set of the damper cT and the stiffness
of the spring kT of the TMD, the mechanical responses of the structure are different. We will plot
the response function SQiQ j(ω) of the degrees of freedom in the exploring frequency domain. The
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area limited by the response function in this frequency domain is the variance of response (DQiQ j)

and is also the square of the standard deviation
(
σQiQ j

)2
. The standard deviation

(
σQiQ j

)2
changes as

a function of cT and kT, as presented in Figure 9. From this figure, t can be seen that the minimum

value of
(
σQiQ j

)2
at the position of cT = 1640 Ns/m and kT = 14,100 N/m. The diagram describing the

variation of the spectral density function SWc corresponding to the vertical displacement wc at the
mid-point of the beam in the frequency range 0–5 rad/s, as shown in Figure 10. The figure shows that
the TMD has a great effect on reducing vibrations, removing the ability to resonate in a forced vibration
of the structure.
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5. Conclusions

This paper presents the numerical results of free vibration response problems for beams and space
frame systems with TMDs, which combines artificial intelligence models (AI models) to predict the
first natural frequency of the structures. In addition, the results of reduction vibration problems with
TMDs under a random load described as a stationary process with white noise are also presented.
The equations are derived through the finite element method and are verified by comparing them with
those from other publications. Based on the computations, the effects of the data set of the TMD on
the vibration response of the structures were investigated. The results of this study can be applied in
many fields. There is great interest in using AI models to solve mechanical problems, so we decided to
use an ANN model to predict natural frequencies because many mechanical problems require natural
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frequencies as input data in early stages. Applications include the dynamic response problem related
to resonance and predicting cracks based on the natural frequencies of structures. Hence, this ANN
model can be applied to other mechanical problems. These results are also a good reference for further
complicated studies.
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Appendix A.

Appendix A.1. The Shape Functions
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a2 + x3

a3

)
dN1w(x)

dx =
(
−6 x

a2 + 6 x2

a3

)
; dN1w(x)

dx =
(
1− 4 x

a + 3 x2

a

)
dN1w(x)

dx =
(
6 x

a2 − 6 x2

a3

)
; dN1w(x)

dx =
(
−2 x

a2 + 3 x2

a3

) (A3)

N1ϕ(x) =
(
1−

x
a

)
; N2ϕ(x) =

x
a

(A4)

in which a is the length of the frame element.

Appendix A.2. The Distributed Mass Matrix Components

mu = mv = mw =

[
m

m

]
, mϕ =

[
mp

mp

]
(A5)

Appendix A.3. The Element Matrices

k =



EF
a 0 0 0 0 0 −

EF
a 0 0 0 0 0

0 12EIz
a3 0 0 0 6EIz

a2 0 −
12EIz

a3 0 0 0 6EIz
a2

0 0
12EIy

a3 0
6EIy

a2 0 0 0 −
12EIy

a3 0
6EIy

a2 0

0 0 0
EGJp

a 0 0 0 0 0 −
EGJp

a 0 0

0 0 −
6EIy

a2 0
4EIy

a 0 0 0
6EIy

a2 0
2EIy

a 0
0 6EIz

a2 0 0 0 4EIz
a 0 −

6EIz
a2 0 0 0 4EIz

a
−

EF
a 0 0 0 0 0 EF

a 0 0 0 0 0
0 −

12EIz
a3 0 0 0 −

6EIz
a2 0 12EIz

a3 0 0 0 −
6EIz
a2

0 0 −
12EIy

a3 0
6EIy

a2 0 0 0
12EIy

a3 0 −
6EIy

a2 0

0 0 0 −
EGJp

a 0 0 0 0 0
EGJp

a 0 0

0 0
6EIy

a2 0
2EIy

a 0 0 0 −
6EIy

a2 0
4EIy

a 0
0 6EIz

a2 0 0 0 4EIz
a 0 −

6EIz
a 0 0 0 4EIz

a



(A6)



Materials 2019, 12, 1329 21 of 24

m =
ma
420



140 0 0 0 0 0 70 0 0 0 0 0
0 156 0 0 0 22a 0 54 0 0 0 −13a
0 0 156 0 22a 0 0 0 54 0 −13a 0

0 0 0
140Jp

F 0 0 0 0 0 70 0 0
0 0 22a 0 4a2 0 0 0 13a 0 −3a 0
0 22a 0 0 0 4a2 0 13a 0 0 0 −3a2

70 0 0 0 0 0 140 0 0 0 0 0
0 54 0 0 0 13a 0 156 0 0 0 −22a
0 0 54 0 13a 0 0 0 156 0 −22a 0

0 0 0 70 0 0 0 0 0
140Jp

F 0 0
0 0 −13a 0 −3a2 0 0 0 −22a 0 4a2 0
0 −13a 0 0 0 −3a2 0 −22a 0 0 0 4a2



(A7)

c =
ca

420



140 0 0 0 0 0 70 0 0 0 0 0
0 156 0 0 0 22a 0 54 0 0 0 −13a
0 0 156 0 22a 0 0 0 54 0 −13a 0
0 0 0 140 0 0 0 0 0 70 0 0
0 0 22a 0 4a2 0 0 0 13a 0 −3a2 0
0 22a 0 0 0 4a2 0 13a 0 0 0 −3a2

70 0 0 0 0 0 140 0 0 0 0 0
0 54 0 0 0 13a 0 156 0 0 0 −22a
0 0 54 0 13a 0 0 0 156 0 −22a 0
0 0 0 70 0 0 0 0 0 140 0 0
0 0 −13a 0 −3a2 0 0 0 −22a 0 4a2 0
0 −13a 0 0 0 −3a2 0 −22a 0 0 0 4a2



(A8)

Appendix A.4. The Relationship of the Nodal Displacement Components between the Local Coordinate System
and the Global Coordinate System of the Structure

Consider a frame element with two nodes i and j in any direction in space (Figure A1). Let xyz
be the local coordinate system of the frame element, and let XYZ be the global coordinate system of
the structure.Materials 2019, 12, x FOR PEER REVIEW  23 of 25 
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The coordinate components of node i and j of the frame element in the global coordinate system
are Xi, Yi, and Zi and Xj, Yj, and Zj, respectively. The length of the frame element is then defined
as follows:

a =

√(
X j −Xi

)2
+

(
Y j −Yi

)2
+

(
Z j −Zi

)2
(A9)

A matrix indicating the direction of the xyz coordinate system versus the XYZ coordinate system
is of the form

cTr =


cxX cxY cxZ

cyX cyY cyZ

czX czY czZ

 (A10)

where cxX, cxY, and cxZ are the directional cosines of the x-axis relative to the X-, Y-, and Z-axes,
respectively. cyX, cyY, and cyZ are the directional cosines of the y-axis relative to the X-, Y-, and Z-axes,
respectively. czX, czY, and czZ are the directional cosines of the z-axis relative to the X-, Y-, and Z-axes,
respectively.

For the local coordinate system, the x-axis is often seclected as the the main long axis of the
frame element, and the y- and z-axes are the central main axes of the cross section. At that time,
the components in Equation (A10) are calculated with the following formula

cxX =
X j −Xi

a
, cxY =

Y j −Yi

a
, cxZ =

Z j −Zi

a
(A11)

Knowing the location of the central main axes of the yz-section, we also know the values of angles
β and γ, so we have

czY = cos β, cyY = cosγ. (A12)

Next, four remaining components cyX, cyZ, czX, and czZ of matrix c are determined from four
familiar expressions in the analytic geometry as follows.

c2
yX + c2

yY + c2
yZ = 1,

c2
zX + c2

zY + c2
zZ = 1,

cxX + cyX + cxY + cyY + cxZ + cyZ = 0,
cxX + czX + cxY + czY + cxZ + czZ = 0.

(A13)

If we use a numbering principle and a positive-dimensional convention of coordinates in the global
coordinate system XYZ and in the local coordinate system xyz (Figure A1), the matrix T transforming
from the global coordinate system to the local coordinate system (in the case of the space frame system)
has the following form:

T=


cTr 0 0 0
0 cTr 0 0
0 0 cTr 0
0 0 0 cTr

 (A14)
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