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Abstract. When steering about the titled kingpin axis, the tyre-road contact
point moves along the tyre perimeter. In the literature on the tyre kinematics, this
displacement, however, has not been taken into consideration. This results in an
inaccuracy in the steering tyre kinematics, especially when the steering angle is
large. This paper presents a novel method, utilising homogeneous transforma-
tion, to develop the kinematics of a steering tyre with the chance of the tyre-road
contact being taken into account. The results show that this novel kinematic
model is more accurate than those in the literature. The steering tyre kinematics
developed in this investigation is then compared to that one built in ADAMS
software for validating purpose.

Keywords: Homogeneous transformation - Coordinate frame
Steering tyre kinematics -+ Road-tyre contact

1 Introduction

A kinematic model of the steering wheel is usually required in the studies of steering
system dynamics and lateral vehicle dynamics [1-3]. In the literature, the kinematics of
the road steering wheel was developed by explicitly or implicitly accepting the
assumption that the ground-tyre contact is a fixed point on the tyre perimeter [3-5]. It
was also assumed that ‘the tyre-to-ground contact point is the wheel radius below the
wheel centre’ [2]. However, when a wheel is steering around a titled kingpin axis with
a large steering angle, the two assumptions are no longer reasonable. The former
assumption will be proven inaccurate in Sect. 4. The latter assumption is not true as the
wheel gains camber when it is steering about the tilted axis. Therefore, a kinematic
model of the steering tyre that can take this effect into account is essential, especially
when it comes to large steering angles such as in lock-to-lock steering manoeuvre. In
this current investigation, we utilise different coordinate frames to describe the motion
of the steering wheel. The homogeneous transformation is then employed to transform
coordinates between the frames by which the steering wheel kinematics is developed.
The kinematics is then compared to that of the model built in multi-body software,
ADAMS, for validation.
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2 Coordinate Frames

In this paper, we accept the assumption that the wheel (hereafter, there is no difference
between wheel and tyre) is a flat and rigid disk. Without loss of generality, we also
assume the wheel is upright when it is not steering, so it has zero initial camber. In
order to establish the kinematics of the steering wheel the following coordinate frames,
shown in Fig. 1, are utilised.

Tire plane~— —\,

~ 5
~._  Ground plane

Fig. 1. The wheel coordinate frame W and the wheel-body coordinate frame C.

Wheel coordinate frame W(x,,, y,, z,,) is the frame that its origin W is attached to
the wheel centre. Its x,, axis is initially parallel to the ground plane and directed
forward; the z,, axis is vertical to the ground and upward, as long as the wheel is not
steering. The y,, is spin axis and directed to the left (of the driver). The (x,,Wz,,) plane
coincides with the tyre plane. The W-frame is fixed to the wheel. Therefore, it follows
every motion of the wheel except the spin.

When the wheel is not steering, a wheel-body coordinate frame C(x., y., z.) that
initially coincides with the wheel coordinate frame is attached to the car body. The
wheel-body coordinate frame is motionless with the car body, so it does not follow any
motion of the wheel when steering.

As defined, the orientations and locations of the two coordinate frames will not be
affected by the spin motion of the wheel. Therefore, the spin motion is excluded from
this kinematic analysis.

3 Steering Motions and Homogeneous Transformation

With the defined coordinate frames, the steering motion of the wheel is actually a rotation
of the W-frame about the steering axis with respect to the C-frame. It is convenient to
express the kinematics of the steering tyre in the C-frame, which is motionless with the car
body. In order to do so, first we have to describe the steering axis in the C-frame. The
steering axis is denoted by its unit vector and an arbitrary point on it.
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Figure 2 illustrates the location and orientation of the kingpin axis. The kingpin
axis has a caster angle ¢ with (y,, z.) plane and lean angle 0 with (z., x.) plane. They
are measured about y. and X, axes, respectively. The steering axis is the intersection
line of two planes: caster plane p, and lean plane py. The caster plane is the plane that
has an angle 0 with the (z., x.) plane whist the lean plane has an angle ¢ with (y., z.)
plane; and both of them contain steering axis. The two planes can be indicated by their
normal unit vectors in the wheel-body coordinate frame, respectively:

Sp ’qi —{ Sg [—
Front view Side view

Fig. 2. The location and orientation of kingpin axis

0 —cos ¢
fip=|cosO|; n, = 0 (1)
sin 6 sin ¢

The direction unit vector of the steering axis # can be determined as:

R R " cos 0 sin ¢

R Cn Uy X Nnp, 1 1

goCoo tmXi — —sin 0 cos ¢ (2)
[ U3 \/ cos? G+ cos? 0 sin” b | ¢os 0 cos 0}

The point on the steering axis is the intersection P between it and the ground:

d1 Sa
dp = Cdp = d2 = Sp (3)
d; —Ry,

According to [6], the transformation matrix to map coordinates from the W-frame
to the C-frame is:
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Ras dp —Rgsdp

C —
=1 1 “)

where R, 5 is the transformation matrix between the two frames with the rotation axis
passing though the origin; dpis position vector of the point P on the rotation axis
expressed in the C-frame.

u%vers 6+ cos d ujupvers d — uzsin & ujuzvers d +up sin o
Ris = | wjupvers § +uz sin & u3vers 8 + cos & uuzversd —ugsin 8 | (5)
ujuzversd — up sin &  uouzvers 4 +u; sin & u%vers O+ cos d

Transforming coordinates from the wheel frame to the wheel-body frame is gov-
erned by:

Cr = CTyWr (6)

where €r and " r are homogeneous coordinates of a point expressed in the C-frame and
the W-frame, respectively [6].

I Rl

c,_|2|.w._ |R

e= |2 R ™)
1 1

4 Kinematics of a Steering Tyre

Apply the homogeneous transformation in Eq. (6), we can calculate the coordinates of
any point on the steering wheel expressed in the C-frame. By this way, the steering tyre
kinematics is developed. Here, we derive some kinematic parameters using this
transformation.

4.1 The Wheel Center

Because the coordinates of the centre of the wheel in the W-frame is:

I'w =

=
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Its coordinates expressed in the wheel-body frame will be:

Xw 0

c. _cprw. _ |yw| _|Ras dp—Rgsdp| [0 |dp—Rgsdp

I'w = TW I'w = Tw == 0 1 0 - 1 (9)
1 1

4.2 Wheel Camber

Camber is the angle y that the tyre plane rotates about the x, axis, from the vertical
position. It is convenient to calculate camber through the angle p between the normal
vector of the tyre plane and the normal vector of the ground plane (Fig. 3).

T-frame
l/ 7
Ze Z A /
4
C-frame/ '
Il :
. |
I VA Y i Ground
T

Fig. 3. The front view of the steered wheel.

If i, J ,K, are the unit vectors of the wheel-body coordinate frame; and, i, j, ﬁ, are the
unit vectors of the wheel coordinate frame; the angle p must be:

ciCp
77K
= a cos(——— 10
p = acostcrego (10)
where
0
K = (1) (11)
0
0 ujuy(1 — cos 8) —uzsin §
c®_ Cmp CF Rf,’g dp — R@,adp 1 _ u%(l — COS 8) + cos 9
= Twi= 0 1 0| | uuz(l —cos 8)+uysin 8 (12)
0 0
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Substituting CK and Cj from (11) and (12) in (10), we have:

i°K

p:acos(CC

) = a cos[upuz (1 — cos ) +uy sin J) (13)

As camber is negative if its plane is turned about - x, axis [7], it can be defined by
the following equation:

-p (14)

_TC
¥=3

Substituting (2) in (13) and then (14) we have:

T cos 0 sin ¢ ) cos? ¢ sin 0 cos 0
— —a cos| sin 8 — ——versd] (15)
2 V/cos? & + cos? 0 sin” ¢ cos? ¢+ cos? 0 sin” ¢

’Y:

4.3 The Change of Ground-Contact Point Along the Tyre Perimeter

In this section, we show that the point on the tyre being in contact with the ground
moves along its perimeter when steering, and that the movement is significant for large
steering angles.

Here, T, and T respectively denote the ground-contact points (on the tyre perimeter)
associated with zero and ¢ steering angles. The homogeneous representation of T in
the W-frame is:

WI'TO = v ( l6>

The expression in the C-frame is written as:

C
XT0

C
= C}ZITU = “Tw"rr, (17)
To

1

C
I,

Substituting (4) and (16) in (17) yields:

c 1s,cos? 0 sin2¢ — sy, sin 20 cos® d
1, = — = — vers 9
2 cos? ¢ + cos? 0 sin® ¢

Sacos ¢ sin 8+ s, cos O sin ¢
V/cos? ¢ + cos? 0 sin’ ¢

sin 8 — Ry, (18)
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CzTO shows the vertical distance between point T, on the tyre and point C fixed to
the car body when the wheel is steering. It can be verified that when caster and lean
angles are zero, Ty is the tyre radius below C.

According to [8], the z-coordinate of the point T'in the C-frame after being steered is:

Czr = Czw — Rycosy (19)
where Czyw is determined by (9).

We can determine the angle f§ that the ground-contact point on the tyre makes when
it moves along the tyre perimeter (Fig. 4).

To

T

WT —HT R, —HT HT Cz1, — Czr

cosB =W, R, Ry Rycosy

Substituting (18) and (19) in (20) yields:

cos 0 cos? 0 cos® d
“cosy  (cos? d+ cos? O sin® )

(1 —cos d) (21)

As can be seen by (21), B depends only on the orientation of the steering axis and
the steering angle. Furthermore, with a non-zero practical steering angle
(90° < 4 < 90°), and an inclined steering pivot (¢, 6 # 0), B is always non-zero.

The angular motion that the ground-contact point makes along the tyre perimeter,
for an exemplary configuration (¢ = —5°, 0 = 13°), is illustrated in Fig. 5. The
dependence of the motion on the caster and lean angles, for a large steering angle
(—45°), is also visualised in Fig. 6.

It can be clearly seen from the graphs that the displacement of the ground-contact
point along the tyre perimeter is considerable for large steering angles (around 7° for
30° of steering angle). Therefore, when determining kingpin axis moment, especially at
low speed with large steering angles, this effect should not be neglected.
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Fig. 5. The angular motion of the ground-contact point as a function of d.
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Fig. 6. The angular motion of the ground-contact point as a function of ¢ and 6.

5 Validation

To validate the tyre kinematics, a model of the rigid steerable wheel was built using
multi-body software ADAMS. Parameters derived from the homogeneous transfor-
mation were compared with those from the multi-body model.

Figure 7 illustrates how much the camber is generated using the homogeneous
transformation method and ADAMS model for different orientations. We also compare
the results with those developed by Alberding [5] and by Dixon [4]. For the sake of
mathematical exactness, the comparison was made over the steering angle range of 0°
to 360° which is even much more than practical steering angles.

It can clearly be seen that, there is no difference between the generated camber
values derived from the homogeneous transformation method and the multi-body
model for different steering pivot’s orientations. In contrast, the gained camber using
Alberding-formula [5] and Dixon-formula [4] only shows a good agreement with that
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Fig. 7. A comparison of generated camber between different models

of the multi-body model when there is no lean angle or the steering angle is very small;
when there is a lean angle and the steering angle is relatively large the camber values
significantly differ from the multi-body data. The comparison convinces that the
kinematics of the steered wheel developed here using the homogeneous transformation
is mathematically accurate. Therefore, it is applicable to the case of large steering
angles.

6 Conclusion

The homogeneous transformation, utilized in this investigation, is an effective method
to develop a more accurate kinematic model of a steering tyre than those in the
literature. In order to do so, a number of coordinate systems is defined first. The
homogeneous transformation is then applied to map the coordinates between the
frames. The results show that this model can take the change of the road-tyre contact
point along its perimeter into account, which is more accurate than the existing models.
Thereby, this kinematic model of the steering tyre can be applicable to the case of any
steering angles, and kingpin orientation angles.
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