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Abstract. This paper presents a study on the optimization of matching phase
between two outer frames of a MEMS tuning fork gyroscope by using a
diamond-shaped frame. The differential motion equations of the system are
established and solved via the second Newton law. The obtained results show
that the anti-phase mode in driving direction is guaranteed when the exciting
forces are applied to two outer frames. Remarkably, when the spring coefficient
of the diamond-shaped frame increases 150%, the matching phase between two
outer frames raises up 95%.

Keywords: Matching phase � Tuning fork gyroscope � Anti-phase

1 Introduction

MEMS (Micro-Electro-Mechanical System) Vibratory Gyroscope (MVG) is a kind of
sensors that is common to measure angular velocity or rotational angle of a subject [1].
Basing on Coriolis principle, the energy transfers from primary vibration to secondary
one to support the operation of this sensor [1–3]. The MVGs have many advantages
over traditional gyroscopes for their small size, low power consumption, low cost,
batch fabrication and high performance [1–7], so they are widely used in a variety of
industries.

The MEMS tuning fork gyroscope (TFG) includes two identical tines that vibrate in
opposite direction (anti-phase mode) [4–6]. Thanks to this state, the performance of
TFG increases significantly. However, an in-phase mode easily appears in the traditional
TFG structure with the direct mechanical coupling between two tines [6]. Moreover, any
phase deviation of external forces could cause the phase error for two tines of TFG in
driving direction, so that the matching phase between two outer frames of TFG
decreases considerably. Therefore, it is necessary to design a mechanism to directly
connect two tines for the purpose of creating anti-phase mode, where this mechanism
plays an important role in optimizing of matching phase between two tines [7].

This paper focuses on demonstrating the ability to increase the matching phase
between two outer frames in driving direction of the proposed TFG when they are
connected directly by a novel structure called diamond-shaped frame. These outer
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frames are expected to vibrate with the absolute anti-phase mode in order to create the
anti-phase mode for sensing vibrations of proof-masses in proposed TFG model.

2 Differential Motion Equations of the Proposed TFG

The proposed model TFG consists of two identical tines as shown in Fig. 1. Each tine is
defined as a single gyroscope which includes a proof massmS and an outer framemf. The
configuration and dynamic characteristics of every single gyroscope are shown in the
reference numbered [8]. They are connected together by a spring-damping system
(kyi-cyi) and suspended on substrate thanks to another system (kxi-cxi). Two single
gyroscopes are connected together by a diamond-shaped frame to create the proposed
TFG. The diamond-shaped frame has four rigid bars with length L and the rectangular
cross-section. The bars are connected to the connectors by elastic stems (A, B, C, and D).
The diamond-shaped frame is suspended on the substrate by a spring system (ky).

The four beams of the diamond-shaped frame are assumed to be absolutely rigid.
The displacement at the end of the beams is carried out by the elasticity of stems with
the smaller section. The displacement of the point A is x1, while the point C displaces
y1 from their initial position. The points B and D are the same displacement with A and
C except their direction of motion (see Fig. 2a). These displacements depend on each
other and have a relation as follows:

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL1 � x1Þ2

q
� L2; y2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL1 � x2Þ2

q
� L2 ð1Þ

where L1 = Lcosa0; L2 = Lsina0; a0 is the angle to define initial position of rigid bars of
the diamond-shaped frame.

Fig. 1. The configuration of the proposed TFG
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The elastic force applied to the outer frames in the x-direction is determined as the
followed expression:

Fx ¼ 1
2
ðFCy þFDyÞcotga ð2Þ

with, a is an angular rotation of a rigid bar at the determined moment.
In this issue, both outer frame and proof mass vibrate in driving direction, so that

they are considered as one element with total mass m1 and m2 (where mi = mfi + mSi) in
order to simplify for the description. The component forces applied to the masses m1

and m2 are shown in Fig. 3 after splitting them.

Where, ~F1, ~F2 are external forces applied to the outer frames; ~FL1, ~FL2 are elastic
forces of the beams with the stiffness coefficients kx1, kx2 respectively; ~FC1, ~FC2 are
damping forces with damping coefficients cx1, cx2 known as the slide air damping
between the masses and the substrate, ~Fx is elastic force mentioned above.

FL1 ¼ kx1x1; FL2 ¼ kx2x2; FC1 ¼ cx1 _x1; FC2 ¼ cx2 _x2 ð3Þ

Fig. 2. Schema of deformation (a) and elastic forces (b) of diamond-shaped frame

Fig. 3. The schema of forces applied to two outer frames
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The differential equations of motion for the system are obtained by using the
second Newton law and adding some equations describing the geometric relations
between the displacements x1, x2, and y1, y2, as follows:

m1€x1 þ cx1 _x1 þ kx1x1 þ ky
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL1 � x1Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL1 � x2Þ2

q
� 2L2

� �
cotga ¼ F1

m2€x2 þ cx2 _x2 þ kx2x2 þ ky
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL1 � x1Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL1 � x2Þ2

q
� 2L2

� �
cotga ¼ F2

a ¼ atan ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � ðL1 � x1Þ2

q
� L2Þ

�
x1

� �

L1 ¼ L cos a0; L2 ¼ L sin a0

8>>>>>>>>>><
>>>>>>>>>>:

ð4Þ

3 Matching Phase in Driving Direction

The characteristic parameters of the proposed TFG are shown in Table 1.

3.1 Amplitude-Frequency Response

The external harmonic force applied to outer frames has a form as follows:

F1 ¼ F0 sinð2pftþ a1Þ; F2 ¼ F0 sinð2pftþ pþ a2Þ ð5Þ

Expressions (5) are defined by the force value F0 and the exciting frequency f. The
phase deviation of two external forces is defined by the followed expression:

ad ¼ a1 � a2 ð6Þ

Table 1. The parameters of TFG

Parameter Value Unit

Mass of the left single gyroscope: m1 2.65 � 10−7 kg
Mass of the right single gyroscope: m2 2.65 � 10−7 kg
Driving stiffness of the left single gyroscope: kx1 25.2 N/m
Driving stiffness of the right single gyroscope: kx2 25.2 N/m
Damping coefficient in left drive direction: cx1 2 � 10−5 kg/s
Damping coefficient in right drive direction: cx2 2 � 10−5 kg/s
Length of a rigid bar: L 10−4 m
Initial angle of rigid bar: a0 60° degree
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where a1 and a2 is the phase angle of external force F1 and F2 respectively. The phase
deviation which is called the external phase deviation is ad = 0 to guarantee the
absolutely opposite direction of two external forces.

The parameters f and F0 are determined by surveying amplitude - frequency
response for the system. In order to reduce the time of the calculation and guarantee the
efficiency, the exciting frequency of the system is considered from 1400 to 1800 Hz.
According to the results shown in Fig. 4, the exciting frequency should be 1590 Hz.

When the external force with the above expression (5) applied to two outer frames,
their stable vibrations in driving direction are harmonic functions as shown in Fig. 5.
Due to the absolute opposite direction of two exciting force, the anti-phase mode of
these vibrations is assured completely.

Fig. 4. Amplitude-frequency response

Fig. 5. Driving mode with external harmonic forces
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3.2 Matching Phase Between Two Outer Frames

The external forces applied to the outer frames are defined as electrostatic forces with
opposite phases (anti-phase). However, in fact, the error may appear in the phase
between two external forces (ad 6¼ 0), hence, the mechanical phase deviation in the
responses of the outer frames will appear.

When kx is changed with some specific values, the effect of spring coefficient ky on
the matching phase between two outer frames is shown in Fig. 6. According to this
result, when the stiffness of the beam in the y-direction increases, the system could
adjust to decreasing the mechanical phase deviation of two outer frames in driving
direction. Especially, when ky increase from 10 N/m to 25 N/m, with the external
phase deviation (20°), the matching phase increases from 91.25% (1.75°/20°) to 95%
(1°/20°) respectively (see Table 2). So, the diamond-shaped frame could optimize of
matching phase between the outer frames.

4 Conclusion

The paper introduces a TFG model with connecting frame named diamond-shaped
frame for the purpose of directly linking two single gyroscopes in two sides of this
frame to create a TFG with an anti-phase mode in driving direction. The differential
equations of two outer frames are set up to describe the displacements of TFG outer
frames and their relation. The vibrations of outer frames are studied to demonstrate that
the driving vibrations of the outer frames have completely opposite phase thanks to the

Fig. 6. Phase deviation in driving direction between two outer frames

Table 2. Optimizing of matching phase in driving mode

Spring coefficient of frame ky (N/m) 10 15 18 25
Phase deviation of driving mode (°) 1.75 1.5 0.065 0.05
Matching phase in driving mode 91.25% 92.5% 93.5% 95%
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diamond-shaped frame. The results show that the matching phase is improved from
91.25% to 95% in comparison with without diamond-shaped frame. It is a base to study
the sensing mode in the proposed TFG for the purpose of increasing the performance of
the sensor.
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