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Abstract. In the present work, we consider the electronic properties of graphene with Kekule
structure formed from two different C–C bonds in its hexagonal lattice. When the C–C bond
alternation was introduced, a small band gap has been opened in the band structure of graphene
and it increases linearly by a difference in the bond lengths δ. While the applied strain along the
zigzag or armchair direction causes band gap to decrease rapidly to zero, the strain in the other
directions can increase the band gap. Interestingly, when the graphene with Kekule structure
is strained, its band gap is inversely proportional to the bond length difference δ. Opening
a band gap in graphene due to bond alternation and strain can open up new applications in
nanoelectronic devices.
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1. Introduction

The discovery of graphene in 2004 [1] opened up a great turning point in the studies of
layered materials and their applications in nanotechnology. Graphene became a hot topic for
both theoretical and experimental research for more than a decade due to its extraordinary
and outstanding physical and chemical properties [2]. In the semimetal form with zero
energy gap, however, graphene has certain limits in applications in nanoelectronics, such
as graphene-based transistors cannot be switched off because the band gap of graphene is
zero [3]. Scientists have looked for other materials to overcome this disadvantage [4]. The
fact that many graphene-like materials have been found and considered in recently, such as
silicene [5], phosphorene [6–8], antimonene [9], or two-dimensional (2D) transition metal
dichalcogenides [10]. Along with the search for alternative materials, one also finds ways
to open up the band gap in graphene. Fortunately, we can control the band gap of graphene.
Recent theoretical studies have indicated that we can alter the electronic energy band structure
of graphene by applying strain [11], by placing it on semiconductor substrates [12, 13], or
forming graphene-based heterostructures [14–17].

The electronic properties of graphene have been studied by various methods [18–21].
Pereira and his co-workers have shown that an energy gap has occurred in graphene when
it is uniaxially deformed. However, these calculations have shown that the deformation
threshold for band gap appears to be large (larger than 23.5%). Similarly, first-principles
calculations also demonstrated that in the presence of strain larger than 30%, graphene
becomes a semiconductor with a small energy gap [22]. Besides, the electronic properties
of graphene also depend strongly on the direction of the applied strain [22–24].

Bond alternation in the carbon nanomaterials has been studied for a long time [25, 26].
Actually, Peierls instability suggested in Ref. [27] always appears in 1D systems [28, 29]
and ring atoms [30] and does not often appear in 2D materials. One has shown that
Peierls distortions [31, 32] can lead to the formation of the Kekule structure [33, 34]
in carbon nanotubes. Effect of the bond alternation on electronic properties of carbon
nanotubes [35] and graphene nanoribbons [36] was also investigated using different methods.
Interestingly, Frank and Lieb have demonstrated the possibility of the Peierls distortions in
2D graphene [37]. As new quantum phases of graphene, the Kekule distortion phase has
been recently studied [38–40]. However, experimental evidence of the Kekule distortion in
graphene just recently published [41,42]. Recent experimental work has shown that an adatom
on the graphene lattice can break the sublattice symmetry of the graphene. The adatom–
graphene interaction leads to displacement of the C atoms and forming the Kekule distortion
phase [41]. Gutiérrez’s group has observed the formation of Kekule bonds in a graphene
monolayer that is epitaxially grown on the copper substrate [41]. Also, Ma and co-workers
showed that ordered S monatomic superlattice on a graphene lattice can lead the forming the
Kekule structure in graphene with a small band gap of 245 meV [42]. Recently, the formation
C–C bond alternation of the Kekule type in graphene due to strain and the change of the
hopping parameters in this structure has also been investigated [43].

In this work, we consider the structure of graphene with unequal C–C bonds arranged
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Figure 1. Model of graphene with Kekule structure of two different bond lengths a and b. The
dotted rhombus containing six cabon atoms is the primitive cell of the model. θ is the angle
by the applied tension and the x-axis. tξ is the hopping parameter corresponding to the C–C
bond length rξ.

alternately in the honeycomb lattice to form the Kekule structure. We focus on the effect
of bond alternation on electronic properties of graphene in the presence of the strain. The
dependence of the energy gap on the difference in bond lengths and applied strain direction
has also been studied and discussed in this work.

2. Model and theoretical framework

We design the model of graphene of Kekule structure which is formed by two C–C bonds of
different lengths a and b alternating arranged in a hexagonal lattice as shown in Fig. 1. From
Fig. 1 we can see that the Kekule structure in graphene is formed by two C–C bonds a and
b (a 6= b) alternated in its hexagonal lattice. When the Kekule structure was introduced, the
primitive cell of graphene contains six carbon atom (three m and three n). In this case, the
periodic lattice constant along the y-axis Ly = 4ay + 2by is about three times as large as
pristine graphene. The translational period along the x-axis is Lx = 2ax + 2b. Compared
with the pristine graphene, the area of the Brillouin zone for graphene with Kekule structure
as shown in Fig. 1 is one-third of that of the pristine graphene (see also in Ref. [31]).

In presence of in-plane strain, the position vector of carbon atoms can be defined via the
strain tensor Λ in the elasticity theory as the following [11]

~ri = (1 + Λ)~r0i, (1)

where ~r0i and ~ri are the position vectors of the C atoms respectively before and after
deformation. The strain tensor Λ can be expressed as [11]

Λ =

(
ε11 ε21
ε12 ε22

)
= ε

(
sin2 θ − σ cos2 θ (1 + σ) cos θ sin θ

(1 + σ) cos θ sin θ cos2 θ − σ sin2 θ

)
, (2)

where σ is the Poision’s ratio and θ is the angle between the x axis and the tension direction
as shown in Fig. 1.
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We can define the difference in bond length δ using the suggestion of Fujita and co-
workers [44] that the difference in the C–C bond length bond can be expressed via the
undeformed C-C bond a0 as a = a0 + δ and b = a0 − δ with δ can be positive or negative.

In the framework of tight binding model, the Block wave functions in the graphene with
the primitive cell containing six C atoms can be written as [31]

ψν~k(~r) =

√
6

N

∑
~Rη

exp(i~k ~Rη)φ(~r − ~Rη), (3)

where ~k = (kx, ky) is wave vector, η = mi, ni (i = 1, 2, 3), N is number of C atoms in the
unit-cell, ~Rν is position of the ν-th kind of the carbon atoms, and φ(~r) is the wavefunction
built from the pz orbital for an isolated C atoms located at the origin. We can obtain the band
structure of graphene by diagonalization of Hamiltonian H which is built based on number
of atoms in the primitive cell. As shown in Fig. 1, the primitive cell of the graphene with the
Kekule structure contains six C atoms, the Hamiltonian matrixH is (6× 6) matrix

H =

[
0 Hmn

H∗
mn 0

]
, (4)

whereHmn is the (3× 3) matrix which can write as the following

Hmn =


m1 m2 m3

n1 t1e
i~k~r1 t3e

i~k~r3 t2e
i~k~r2

n2 t2e
i~k~r2 t4e

i~k~r4 t6e
i~k~r6

n3 t3e
i~k~r3 t5e

i~k~r5 t4e
i~k~r4

, (5)

where tξ (ξ = 1, 2, . . . 6) is the hopping parameters corresponding to the C–C bond ~rξ. Here,
the vectors of bonds between carbon atoms are ~r1 = m1n1, ~r2 = m1n2, ~r3 = m1n3 = m2n1,
~r4 = m2n2 = m3n3, ~r5 = m2n3, and ~r6 = m3n2. In the presence of the C–C bond alternation
and strain, hopping parameter tξ is changed due to the change in the length of the C–C bond.
The dependence of the hopping parameter tξ on the C–C bond length rξ can be expressed via
the Harrison fomular [45]

tξ = t0

(
a0
rξ

)2

, (6)

where a0 = 0.142 nm and t0 = 2.7 eV are the C–C bond length and hopping parameter of
pristine graphene, respectively [46].

3. Results and discussion

In the presence of bond alternation with the bond lengths a and b as show in Fig. 1, there
are only two different hopping parameters t1 = t5 = t6 = t0(a0/a)2 and t2 = t3 = t4 =

t0(a0/b)
2. This assumption is agreement with the previous quantum Monte Carlo calculations

that there are two different hopping magnitudes when the Kekule structure is introduced [43].
However, when the strain is applied, depending on the applied tension direction θ, there will
be four to six different values of hopping parameters that appear in the strained graphene
with the Kekule structure. This is different from the case of undimerized (pristine) graphene
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Figure 2. Dependence of hopping parameters tξ on tension angle θ of graphene with Kekule
structure of δ = 0.02 Å at ε = 5%.

Figure 3. Cut of energy dispersion E(kx, 0) along ky = 0 of graphene with Kekule structure
of bond length difference δ = 0 (a) and δ = 0.02 Å. (c) Dependence of band gap of graphene
with Kekule structure on the bond length difference δ.

with two hopping values when strain is applied along the armchair or zigzag axis [47]. As an
example, we show dependence of the hopping parameters tξ on tension angle θ of graphene
with Kekule structure of δ = 0.02 Å at ε = 5% in Fig. 2. We can see that, when the is
applied along armchair (θ = 0) or zigzag (θ = π/2) direction, only four hopping parameters
are occurred due to the symmetry of graphene with Kekule structure as shown in Fig. 1. In
these cases, the t2 = t3 and t5 = t6. Also, the symmetry of this structure leads the t2 = t4 and
t1 = t5 at the applied tension angle of π/6.

By diagonalization of Hamiltonian (4) we can obtain energy dispersion relations of
graphene with Kekule structure. In Fig. 3, we show a cut of energy dispersion E(kx, 0) along
ky = 0 of graphene with Kekule structure. In the model of graphene with Kekule structure
containing six carbon atoms in the primitive cell, at δ = 0, the area of its first Brillouin zone
is one-third of that of the pristine graphene as shown in Fig. 3(a). In this case, the conduction
and valence bands intersect at the first Brillouin zone center at the Fermi level. When the
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bond alternation was introduced, i.e. δ 6= 0, graphene with Kekule structure becomes a
semiconductor with an energy gap opening at the center of the first Brillouin zone as shown
in Fig. 3(b). Dependence of energy gap of graphene with Kekule structure on the bond length
difference δ is also in Fig. 3(c). Our calculations demonstrate that the band gap of graphene
with Kekule structure depends linearly on the C–C bond length difference δ. Also, the lowest
conduction band is always located at the center of the first Brillouin zone.

We next investigate the effect of the in-plane strain on the electronic properties of
graphene with Kekule structure. Our calculations demonstrate that the electronic properties of
graphene with Kekule structure is greatly altered by the in-plane strain, especially the lowest
(highest) subband of the conduction (valence) band. In this study, the overlap matrix is chosen
by the unit matrix, therefore the conduction and valence bands are symmetric across the Fermi
levelEF = 0. In Fig. 4 we show the energy dispersion of graphene with Kekule of δ = 0.01 Å
under strain. The band gap of graphene with Kekule of δ = 0.01 Å at ε = 0 (unstrained) is
0.152 eV as shown in Fig. 4(a). When strain is applied along the x-axis (θ = 0) or the y-
axis (θ = π/2), the band gap rapidly dropped to zero (at around 2% of elongation). The
conduction band minimum is no longer located at the first Brillouin zone center, the lowest
subband of the conduction band changes its shape and forms two minimums locating near
the center of the first Brillouin zone. In these cases, as shown in Figs. 4(b,c) the conduction
and valence bands intersect at the Fermi level. In other tension directions (θ 6= 0; θ 6= π/2),
strained graphene with Kekule structure is a semiconductor with small band gap being opened

Figure 4. Cut of energy dispersion along ky = 0 of deformed graphene with Kekule structure
of bond length difference δ = 0.01 Å at various elongation ε: (a) undeformed Kekule structure
ε = 0, (b) θ = 0, (c) θ = π/2, (d) θ = π/6, (e) θ = π/4, and (f) θ = π/3.
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Figure 5. Dependence of band gap graphene with Kekule structure on strain elongation ε (a)
and tension angle θ (b).

Figure 6. Effect of bond alternation δ on band structure of strained graphene with Kekule
structure at ε = 10% and θ = π/3.

near the Fermi level as shown in Figs. 4(d,e,f). Dependence of the band gap of graphene with
Kekule structure on strain ε and tension angle θ is shown in Fig. 5. In Fig. 5(a), we show
the calculations for the dependence of band gap on the ε at various θ in the case of the bond
length difference δ = 0.01 Å. In this case, we can see that the band gap decreases rapidly as
the strain increases from 0 to 2%. Then, except for the applied strain along the x and y axes as
mentioned above, the strain causes the energy gap of graphene to increase linearly by strain.
Our calculations also show that energy gap is greatest when graphene is strained along the
applied tension direction θ = π/6. However, as shown in Fig. 5(b), the difference in band gap
in the cases of the applied strain direction θ from π/6 to π/3 is very small. In addition, under
the same applied strain, the band gap is inversely proportional to the bond length difference δ.

In the case of undimerized graphene, an energy gap may appear in graphene due to strain
engineering. However, previous calculations have shown that, in small strain limits, the shape
of the subbands near the Femi level is almost unchanged by the applied strain and the energy
gap can only be opened at the K point [11, 47]. Focusing on the effect of bond alternation on
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band structure, as an example, in Fig. 6, we plot the band structure of graphene with Kekule
structure under strain of 10% along tension direction θ = π/3. We can see that the bond
alternation in the hexagonal lattice of graphene not only affects the energy gap but also the
shape of the lowest conduction and highest valence subbands. In the presence of the same
strain, the two-peak shape that is symmetric across the vertical line passing through the center
of the first Brillouin zone tends to occur in small δ cases. Further, the shape of these subbands
depends also on the tension direction θ as shown in Fig. 4.

4. Conclusion

In conclusion, using the tight binding approximation, we considered the effect of the C–
C bond alternation on electronic properties of graphene. When the Kekule structure was
introduced, a small energy gap appears in graphene and one can manipulate it by strain.
Energy gap depends not only on the difference in the C–C bond length δ but also on the
applied strain, especially the direction of applied strain on the graphene. The appearance
of the energy gap in graphene is important in the application of graphene to nanoelectronic
devices.
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