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In this paper, the authors present results on dynamic behavior analysis of the stiffened composite plate with piezoelectric patches
under airflow by finite element method and experimental study. The first-order shear deformation plate theory and nine-noded
isoparametric piezoelectric laminated plate finite element with five elastic degrees of freedom at each node and one electric degree
of freedom per element per piezoelectric layer were used in the dynamic analysis of plates by finite element method. The modern
equipment was used in the dynamic behaviors analysis of plates subjected to airflow load by experimental method. In this study,
the results of the theoretical method have been compared with experimental studies.

1. Introduction

The research and development of smart stiffened composite
structures represent one of the most significant recent trends
in the mechanics of structures, especially in the aerospace
industry. These structures can provide significant advantages
over traditional structures, notably active vibration control.
In 1957 and 1959, the first investigations of piezoelectric struc-
tures were published byHaskins andWalsh [1] and Toupin [2]
who considered cylindrical and spherical shells, respectively.
Tiersten’s [3] analysis was in linear vibrations of piezoelectric
plates. Adelman and Stavsky [4] studied vibrations of com-
posite cylinders by piezoceramic and metallic layers. V. Bala-
murugan, S. Narayanon and Rajan L.Wankhade, Kamal M.B
[5, 6] studied consistency technique for vibration control of
smart stiffened plates using distributed piezoelectric sensors
and actuators subjected to cyclic loads. P.veera Sanjeeva
Kumar, B.Chandra Mohana Reddy [7] have presented a
paper on the vibration of smart composite laminate plates
using higher order theory. Sangamesh B. Herakal, Sai Kumar
Dathrika, P. Giriraj Goud, and P. Sravan [8] analyzed bending
of the smart composite plate under thermal environment, and
Kanjuro Makihara, Junjiro Onoda, and Kenji Minesugi [9]
studied flutter of cantilevered plate wing with piezoelectric

material layers by finite element method. In 2016, Zafer K
and Zahit M [10] presented a paper on flutter analysis of
a laminated composite plate with temperature dependent
material properties. N. T. Chung, H. X. Luong, and N.
T. T. Xuan [11] studied the dynamic stability of laminated
composite plate with piezoelectric layers. N. N. Thuy and N.
T. Chung [12] have presented a paper on the dynamic analysis
of smart stiffened composite plates using higher order theory.

In this paper, in order to have more studies about the
dynamic responses of piezoelectric composite plates, the
authors examine the problems with piezoelectric stiffened
composite plates subjected to airflow by finite element and
experimental method.

2. Finite Element Formulation and the
Governing Equations

Consider isoparametric piezoelectric laminated stiffened
plate with the general coordinate system (x, y, z), in which
the x, y plane coincides with the neutral plane of the plate.
The top surface and lower surface of the plate are bonded to
the piezoelectric patches (actuator and sensor). The plate is
subjected to the airflow load acting (Figure 1).
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Figure 1: Smart stiffened plate and coordinate system (a), and lamina details (b).

2.1. Piezoelectric Equations. Consider a laminated composite
plate with integrated sensors and actuators as shown in
Figure 1. It is assumed that each layer of the plate possesses
a plane of elastic symmetry parallel to the x-y plane; the kth
layer’s lamina constitutive equations coupling the direct and
converse piezoelectric equations can be expressed as [13, 14]

{{{{{
𝜎1𝜎2𝜏12

}}}}}k

= [[[
[

Q11 Q12 0
Q12 Q22 0
0 0 Q66

]]]
]k

{{{{{
𝜀1𝜀2𝛾12

}}}}}k

− [[
[
0 0 e310 0 e320 0 0

]]
]k

{{{{{
E1
E2
E3

}}}}}k

,
(1)

{{{{{
D1
D2
D3

}}}}}k

= [[
[

0 0 0
0 0 0
e31 e32 0

]]
]k

{{{{{
𝜀1𝜀2𝛾12

}}}}}k

+ [[
[
p11 0 0
0 p22 0
0 0 p33

]]
]k

{{{{{
E1
E2
E3

}}}}}k

,
(2)

where Qij, eij, pij are, respectively, the plane-stress reduced
elastic constants, the piezoelectric constants, and the permit-
tivity coefficients of the kth lamina in its material coordinate
system; {𝜎}k = {𝜎1 𝜎2 𝜏12}Tk , {𝜀}k = {𝜀1 𝜀2 𝛾12}Tk , {E}k =
{E1 E2 E3}Tk , {D}k = {D1 D2 D3}Tk are the stress, strain,
electric field, and electric displacement matric components,
respectively, to the material coordinate system. If the voltage
is applied to the actuator in the thickness only, then {E}k ={0 0 −1/hk}T 𝜙k = [B𝜙]𝜙k, Vk is the applied voltage across
the kth ply, and hk is the thickness of the k

th piezoelectric layer.
The plane-stress reduced elastic constants Qij are given as

Q11 = E11 − ]12]21
,

Q12 = ]12E21 − ]12]21
,

Q22 = E21 − ]12]21
,

Q66 = G12,

(3)

Upon transformation, the lamina piezoelectric equations
can be expressed in terms of the stress, strains, and electric
displacements in the plate coordinates as [13, 14]

{{{{{{{

𝜎x𝜎y𝜏xy
}}}}}}}k

= [[
[
Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

]]
]k

{{{{{{{

𝜀x𝜀y𝛾xy
}}}}}}}k

− [[
[
0 0 e310 0 e320 0 e36

]]
]k

{{{{{
Ex

Ey

Ez

}}}}}k

,
(4)

{{{{{
Dx

Dy

Dz

}}}}}k

= [[
[

0 0 0
0 0 0
e31 e32 e36

]]
]k

{{{{{{{

𝜀x𝜀y𝛾xy
}}}}}}}k

+ [[
[
p11 p12 0
p12 p22 0
0 0 p33

]]
]k

{{{{{
Ex

Ey

Ez

}}}}}k

.
(5)

Equations (4) and (5) can also be written as

{𝜎}k = [Q]k {𝜀}k − [e]Tk {E}k , (6)

{D}k = [e]k {𝜀}k + [p]k {E}k , (7)
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Figure 2: Smart piezoelectric composite plate element.

The Qij are the components of the transformed lamina
stiffness matrix which are defined as follows:

Q11 = Q11cos
4 𝜃 + Q22sin

4 𝜃
+ 2 (Q12 + 2Q66) sin2 𝜃 cos2 𝜃,

Q12 = (Q11 +Q22 − 4Q66) sin2 𝜃 cos2 𝜃
+Q12 (sin4 𝜃 + cos4 𝜃) ,

Q22 = Q11sin
4 𝜃 +Q22cos

4 𝜃
+ 2 (Q12 + 2Q66) sin2 𝜃 cos2 𝜃,

Q16 = (Q11 −Q12 − 2Q66) cos3 𝜃 sin 𝜃
− (Q22 − Q12 − 2Q66) sin3 𝜃 cos 𝜃,

Q26 = (Q11 −Q12 − 2Q66) sin3 𝜃 cos 𝜃
− (Q22 − Q12 − 2Q66) sin 𝜃 cos3 𝜃,

Q66 = (Q11 +Q12 − 2Q12 − 2Q66) sin2 𝜃 cos2 𝜃
+Q66 (sin4 𝜃 + cos4 𝜃) ,

(8)

where 𝜃 is the lamina orientation angle.
The piezoelectric constants matrix [e] is unavailable

and it can be expressed by the more commonly available
piezoelectric strain constant matrix which is [d] as [13]

[e] = [d] [Q] , (9)

where [d] = [ 0 0 0 d15 0
0 0 d24 0 0
d31 d32 0 0 0

] .
2.2. Smart Piezoelectric Composite Plate Element Formulation.
A smart piezoelectric composite plate element is considered
with coordinates x, y along the in-plane direction and z along
the thickness direction as shown in Figure 2.

Using the Mindlin formulation, the displacements u, v,
and w at a point (x,y,z) form the median surface and are

expressed as functions ofmid-plane displacements u0 , v0 , and
w0 and independent rotations 𝜃x and 𝜃y of the normal in xz
and yz planes, respectively, as [11, 15, 16]

u (x, y, z, t) = u0 (x, y, t) + z𝜃y (x, y, t) ,
v (x, y, z, t) = v0 (x, y, t) − z𝜃x (x, y, t) ,
w (x, y, z, t) = w0 (x, y, t) ,

(10)

The components of the strain vector corresponding to the
displacement field (10) are [7, 11]

{{{{{{{

𝜀x𝜀y𝛾xy
}}}}}}}

= {𝜀lnb } + {𝜀nl} = {𝜀b} , (11)

where {𝜀lnb }, {𝜀nlb } are the linear and nonlinear strain vector,
respectively, and defined as follows:

{𝜀lnb } = {{{{{{{

𝜀x𝜀y𝛾xy
}}}}}}}

= {{{{{{{

𝜀ox𝜀oy𝛾oxy
}}}}}}}

+ z
{{{{{{{

𝜅x𝜅y𝜅xy
}}}}}}}

=
[[[[[[[
[

𝜕𝜕x 0
0 𝜕𝜕y𝜕𝜕y 𝜕𝜕x

]]]]]]]
]
{u0
v0

} + z

[[[[[[[
[

− 𝜕𝜕y 0
0 − 𝜕𝜕x

− 𝜕𝜕y 𝜕𝜕x

]]]]]]]
]
{𝜃x𝜃y}

= {𝜀0} + z {𝜅} ,

{𝜀nlb } = 12
[[[[[[[
[

𝜕w0𝜕x 0
0 𝜕w0𝜕y𝜕w0𝜕y 𝜕w0𝜕x

]]]]]]]
]

{{{{{{{

𝜕𝜕x𝜕𝜕y
}}}}}}}
w0.

(12)

In the finite formulation, the displacement field {u} and
the electric potential {𝜙} over an element are related to
the corresponding node values {u}e of the element and the
electric charges of the piezo layer {𝜙}e by the mean of the
shape functions [Nu], [N𝜙], as follows [15]:

{u} = [Nu] {q}e , (13)

{𝜙} = [N𝜙] {𝜙}e . (14)

Equation (11) can be expressed as

{𝜀} = [Bln
u ] {u}e + [Bnl

u ] {u}e . (15)

where [Bln
u ] and [Bnl

u ] are linear and nonlinear strain matric,
respectively, [Nu] are the shape functions, and [N𝜙] are the
shape functions for the electric potential.



4 Mathematical Problems in Engineering

The dynamic equations of a finite smart laminated com-
posite plate can be derived by using Hamilton’s principle
[15, 17]:

𝛿∫t2

t1
(Te − Ue +We) dt = 0, (16)

where Te is the kinetic energy, Ue is the strain energy, andWe

is the work done by the applied forces.
The kinetic energy at the element level is defined as

Te = 12 ∫
Ve

𝜌 {u̇}T {u̇} dV, (17)

where Ve is the volume of the plate element.
The strain energy can be written as

Ue = 12 ∫
Ve

{𝜀}T {𝜎} dV, (18)

The work done by the external forces

We = ∫
Ve

{u}T {𝑓𝑏} dV + ∫
Se
{u}T {𝑓𝑠} dS + {u}T {𝑓c} , (19)

where {𝑓𝑏} is the body force, Se is the surface area of the plate
element, {𝑓𝑠} is the surface force, and {𝑓𝑐} is the concentrated
load.

Substituting (17), (18), and (19) into (16), noting that the
electric field vector {E} = −[B𝜙]{𝜙}e, and using (6), (7), (13),
(14), and (15), the dynamic matrix equations can be written as

[M]e {ü}e + ([Kln
uu]e + [Knl

uu]e) {u}e + [Ku𝜙]e {𝜙}e
= {𝑓}me , (20)

[K𝜙u]e {u}e + [K𝜙𝜙]e {𝜙}e = {Φ}pze , (21)

Substitute (21) into (20) to obtain

[M]e {ü}e
+ ([Kln

uu]e + [Knl
uu]e − [Ku𝜙]e [K𝜙𝜙]−1e [K𝜙u]e) {u}e

= {𝑓}me − [Ku𝜙]e [K𝜙𝜙]−1e {Φ}pze ,
(22)

where [M]e = ∫Ve
𝜌[Nu]T[Nu]dV, [Kln

uu]e =
∫Ve

[Bln
u ]T[Q][Bln

u ]dV, [Knl
uu]e = ∫Ve

[Bnl
uu]T[Q][Bnl

uu]dV,[Ku𝜙]e = ∫Ve
[Bu]T[e]T[B𝜙]dV, [K𝜙𝜙]e = ∫Ve

[B𝜙]T[p][B𝜙]dV,[K𝜙u]e = [Ku𝜙]Te , which are, respectively, the element mass,
linear mechanical stiffness, nonlinear mechanical stiffness,
mechanical-electrical coupling, piezoelectric permittivity,
and electrical-mechanical coupling matrix. The vector {𝑓}me
and {Φ}pze are element external mechanical force vector and
external voltage applied to the piezo layer, respectively, which
are defined as follows:

{𝑓}me = ∫
Ve

[Nu]T {𝑓𝑏} dV + ∫
Se
[Nu]T {𝑓𝑠} dS

+ [Nu]T {𝑓𝑐} ,
(23)

For the sensor layer, charge sensing is considered. With
zero voltage, from (21), the sensed voltage {𝜙s}e is given by
[13, 16, 18]

{𝜙s}e = − [Ks
𝜙𝜙]−1e [Ks

𝜙u]e {u}e . (24)

The operation of the amplified control loop implies the
actuating voltage is

{𝜙a}e = Gd {𝜙s}e + Gv { ̇𝜙s}
e
, (25)

where Gd and Gv are the feedback control gains for displace-
ment and velocity, respectively.

From (21), the charge in the actuator due to actuator strain
in response to plate vibration modified by control system
feedback is

{Φa}e = [K𝜙u]e {u}e + [K𝜙𝜙]e (Gd {𝜙s}e + Gv { ̇𝜙s}e)
= [K𝜙u]e {u}e − Gd [K𝜙𝜙]e [Ks

𝜙𝜙]−1e [Ks
𝜙u]e {u}e

− Gv [K𝜙𝜙]e [Ks
𝜙𝜙]−1e [Ks

𝜙u]e {u̇}e .
(26)

Substitute (26) into (22) to yield

[M]e {ü}e − Gv [Ku𝜙]e [K𝜙𝜙]−1e [K𝜙𝜙]e [Ks
𝜙𝜙]−1e [Ks

𝜙u]e
⋅ {u̇}e + ([Kln

uu]e + [Knl
uu]e

− Gd [Ku𝜙]e [K𝜙𝜙]−1e [K𝜙𝜙]e [Ks
𝜙𝜙]−1e [Ks

𝜙u]e) {u}e
= {𝑓}me ,

(27)

where [Ks
𝜙u]e = [Ka

𝜙u]e = [K𝜙u]e and [Ks
𝜙𝜙]e = [Ka

𝜙𝜙]e =[K𝜙𝜙]e are the mechanical-electrical coupling and pizoelec-
tric permittivity stiffness matrices, respectively.

Equation (27) can be rewritten as follows:

[M]e {ü}e + [CA]e {u̇}e
+ ([Kln

uu]e + [Knl
uu]e + [KA]e) {u}e = {𝑓}me , (28)

where [CA]e = −Gv[Ku𝜙]e[K𝜙𝜙]−1e [K𝜙𝜙]e[Ks
𝜙𝜙]−1e [Ks

𝜙u]e
is the element active damping matrix and [KA]e =−Gd[Ku𝜙]e[K𝜙𝜙]−1e [K𝜙𝜙]e[Ks

𝜙𝜙]−1e [Ks
𝜙u]e is the element active

stiffness matrix.

2.3. Formulation of Stiffener

2.3.1. Formulation of x-Stiffener

Uxs (x, z) = u0 (x) + z𝜃xs (x) ,
Wxs (x, z) = wxs (x) , (29)

where x-axis is taken along the stiffener centerline and the z-
axis is its upward normal. The plate and stiffener element are
shown in Figure 3.
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If we consider that the x-stiffener is attached to the lower
side of the plate, conditions of displacement compatibility
along their line of connection can be written as

up
󵄨󵄨󵄨󵄨󵄨z=−tp/2 = uxs

󵄨󵄨󵄨󵄨z=txs/2 ,
𝜃xp󵄨󵄨󵄨󵄨󵄨z=−tp/2 = 𝜃xs󵄨󵄨󵄨󵄨z=txs/2 ,
wp

󵄨󵄨󵄨󵄨󵄨z=−tp/2 = wxs
󵄨󵄨󵄨󵄨z=txs/2 ,

(30)

where tp is the plate thickness and txs is the x-stiffener depth.
The element stiffness and mass matrices are defined as

follows [15]:

[Kxs]e = ∫
𝑙𝑒

[Bxs]T [Dxs] [Bxs] dx, (31)

[Mxs]e = ∫
Ae

[P ([Nu0]T [Nu0] + [Nw]T [Nw])
+ Iy ([N𝜃x]T [N𝜃x])] dA,

(32)

where [Bxs] is the strain-displacement relations matrix, [Dxs]
is the stress-strain relations matrix, and 𝑙𝑒 is the element
length. [Nu0], [Nw] and [N𝜃x] are the shape function matrices
relating the primary variables u0, w, x, in terms of nodal
unknowns, Iy is the area moment of inertia related to the y-
axis, and P = ∑n

k=1 ∫hk
hk−1

𝜌kdz, with 𝜌k being density of kth

layer.

2.3.2. Formulation of y-Stiffener. The same as for x-stiffener,
the element stiffness and mass matrices of the y-stiffener are
defined as follows:

[Kys]e = ∫
𝑙𝑒

[Bys]T [Dys] [Bys] dy, (33)

[Mys]e = ∫
Ae

[P ([Nu0]T [Nu0] + [Nw]T [Nw])
+ Ix ([N𝜃y]T [N𝜃y])] dA,

(34)

2.4. Modeling the Effect of Aerodynamic Pressure and Motion
Equations of the Smart Composite Plate-Stiffeners Element.
Based on the first-order theory, the aerodynamic pressure 𝑙ℎ
and moment 𝑚𝜃 can be described as [19, 20]

𝑙𝑤 = 12𝜌a (Ucos 𝛼)2

⋅ B[kH∗1 ẇ
U cos𝛼 + kH∗2

B ̇𝜃
Ucos 𝛼 + k2H∗3𝜃] + 12

⋅ Cp𝜌a (U sin 𝛼)2 ,
𝑚𝜃 = 12𝜌a (Ucos𝛼)2

⋅ B2 [kA∗1 ẇ
U cos 𝛼 + kA∗2

B ̇𝜃
Ucos 𝛼 + k2A∗3𝜃] ,

(35)

where k = b𝜔/U is defined as the reduced frequency, 𝜔 is the
circular frequency of osscillation of the airfoil, U is the mean
wind velocity, B is the half-chord length of the airfoil or half-
width of the plate, 𝜌a is the air density, and 𝛼 is the angle of
attack.

The functions A∗i (K), H∗i (K) are defined as follows:

H∗1 (K) = −𝜋
k
F (k) ,

H∗2 (K) = − 𝜋4k [1 + F (k) + 2G (k)
k

] ,
H∗3 (K) = − 𝜋2k2 [F (k) − kG (k)2 ] ,
A∗1 (K) = 𝜋4kF (k) ,
A∗2 (K) = − 𝜋16k [1 − F (k) − 2G (k)

k
] ,

A∗3 (K) = 𝜋8k2 [k
2

8 + F (k) − kG (k)2 ] ,

(36)

where F(k) and G(k) are defined as

F (k)
= 0, 500502k3 + 0, 512607k2 + 0, 2104k + 0, 021573

k3 + 1, 035378k2 + 0, 251293k + 0, 021508 ,
G (k)
= −0, 000146k3 + 0, 122397k2 + 0, 327214k + 0, 001995

k3 + 2, 481481k2 + 0, 93453k + 0, 089318 .

(37)

Using finite element method, aerodynamic force vector
can be described as

{𝑓}aire = − [Kair]
e {u}e − [Cair]

e {u̇}e + {𝑓}ne , (38)
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where [Kair]e, [Cair]eand {𝑓}ne are the aerodynamic stiffness,
damping matrices, and lift force vector, respectively:

[Kair
e ] = 𝜌a (Ucos𝛼)2 Bk2 ∫

Ae

[H∗3 (k) [Nw]T [N𝜃x]

+ BA∗3 (k) [𝜕N𝜃y𝜕x ]T [N𝜃x]] dA,
(39)

[Cair
e ] = 𝜌a (Ucos 𝛼)Bk[∫

Ae

(H∗1 (k) [Nw]T [Nw]
+ BH∗2 (k) [Nw]T [N𝜃x] dA)
+ ∫

Ae

(BA∗1 (k) [𝜕N𝜃y𝜕x ]T [Nw]

+ B2A∗2 (k) [𝜕N𝜃y𝜕x ]T [N𝜃x] dA)] ,

(40)

{𝑓}ne = Cp𝜌a (Usin 𝛼)2 ∫
Ae

[Nw]T dA, (41)

where Ae is the element area and [Nw], [N𝜃] are the shape
functions.

From (28), (31), (32), (33), (34), and (38), the governing
equations of motion of the smart composite plate-stiffeners
element subjecteced to aerodynamic without damping can be
derived as

[M∗]e {ü}e + [CA]e {u̇}e
+ ([K∗]e + [KA]e + [Kair]

e
) {u}e = {𝑓∗}me , (42)

with [M∗]e = [M]e+[Mxs]e+[Mys]e, [K∗]e = [Kln
uu]e+[Knl

uu]e+[Kxs]e + [Kys]e, {𝑓∗}me = {𝑓}me + {𝑓}ne .
2.5. Governing Differential Equations for Total System.
Finally, the elemental equations of motion are assembled to
obtain the open-loop global equation of motion of the overall
stiffened composite plate with the PZT patches as follows:

[M∗] {ü} + ([CR] + [CA]) {u̇}
+ ([K∗] + [KA] + [Kair]) {u}e = {𝑓∗}m , (43)

where [CR] = 𝛼[Muu] + 𝛽([Kln
uu] + [Knl

uu]), [CA] =−∑NePZT
Gv[Ku𝜙]e[K𝜙𝜙]−1e [K𝜙𝜙]e[Ks

𝜙𝜙]−1e [Ks
𝜙u]e, [KA] =

∑nPZT −Gd[Ku𝜙]e[K𝜙𝜙]−1e [K𝜙𝜙]e[Ks
𝜙𝜙]−1e [Ks

𝜙u]e, 𝛼 and 𝛽 are
Rayleigh’s coefficients, to account for inherent structural
damping.

The solution of nonlinear equation (43) is carried
out using Newmark direct and Newton-Raphson iteration
method [11, 21].

2.6. Numerical Applications. A rectangle cantilever lami-
nated composite plate is assumed to be [0∘/90∘ ]s with total
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Figure 4: History of the plate at a critical airflow velocity Ucr =
30.5m/s.

thickness of 4mm, length of 600mm, and width of 400mm
with three stiffeners along each of the directions x and y.
The geometrical dimension of the stiffener is height of 5mm
and width of 10mm. The material properties for plate and
stiffeners made of graphite/epoxy are E11 = 181GPa, E22 =
E33 = 10.3GPa, E12 = 7.17GPa, ]12 = 0.35, ]23 = ]32 = 0.38,
are 𝜌 = 1,600kg⋅m−3. Material properties for piezoelectric
layer made of PZT-5A are d31 = d32 = -171×10−12m/V, d33 =
374×10−12m/V, d15 = d24 = -584×10−12m/V, G12 = 7.17GPa,G23
= 2.87GPa, G32 = 7.17GPa, ]PZT = 0.3, 𝜌PZT = 7,600kg⋅m−3
and thickness tPZT = 0.15876mm, 𝜉 = 0.05, Gv = 0.5, Gd
= 15. The effects of the excitation frequency and location
of the actuators are presented through a parametric study
to investigate the vibration shape of the composite plate
activated by the surface bonded piezoelectric actuators. The
iterative error of the load 𝜀D = 0.02% is chosen.

The stiffened plate is subjected to the airflow in the
positive x direction as shown in Figure 1(a).

Figure 4 presents the time history response of the plate at
critical airflow velocity and 𝛼 = 0∘.

Figure 7 shows the history of plate dynamics at 𝛼 = 0∘
and critical airflow velocity Ucr = 30.5m/s. In this case, at t =
15s, tip displacement (point A in Figure 1(a)) reached 1.75cm.
The plate begins to be instable and, at this time, piezoelectric
voltage was 125V due to the piezoelectric effect.

3. Experimental Validation

3.1. Experimental Model. A rectangle cantilever laminated
composite plate is assumed to be [45∘/0∘/ − 45∘]s with
total thickness of 4mm, length of 500mm, and width of
300mm with three stiffeners along each of the directions x
and y ([45∘/0∘/ − 45∘]s). The geometrical dimension of the
stiffener is height of 8mm and width of 10mm (Figure 5).The
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piezoelectric slice is 200mmby 90mmdimension and placed
in the location as in Figure 6. The plate and stiffeners made
of T300/2500 graphite/epoxy are produced by Torayca Co.,
Japan. The mean values and coefficients of variation of the
experimentally determinedmaterial constants are given as E1
= 124.68GPa, E2 =9.6GPa,G12 =8.64GPa,G23 =2.32GPa, and
]12 = 0.33.

3.2. The Diagram of Experiment. The diagram of an exper-
iment is shown in Figure 7. Alternating current from the
electric grid running through transmitter is linearly amplified
to generate voltage V with frequency 𝑓 imposing on PZT
slice. The PZT slices attaching on the shell are playing a
role to arouse the vibration of the whole system. Through
two acceleration sensors attached to the shell, the dynamic
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(a) The speaker test oscillator (b) The linear amplifier

Figure 8: The signal generator.

(a) (b)

Figure 9: The open wind tunnel and the bracket.

response of the shell at the location of the measurement
points will be captured, displaying on the oscilloscope display
and then storing in the computer.

The main experiments are shown herein:
(i) Measurement of the acceleration response of the

structure at the measuring points arranged on the top
of the plate corresponding to different voltage and fre-
quency stimulation levels placed on two piezoelectric
plates.

(ii) Measurement of the first free vibration of the struc-
ture.

3.3. Measuring Devices

3.3.1. The Signal Generator. The signal generator has a func-
tion to generate randomly the sinusoidal alternating current
with voltage V and frequency f placing on 2 piezoelectric
plates attached to the shell to establish vibration of the
structure. In this experiment, the signal generator is used by
combining the speaker test oscillator and a linear amplifier
as in Figure 8. The speaker test oscillator is used in this
experiment is Onsoku branch (Japan) model OG-422A. The
specifications of the machine are as follows: the maximum
output voltage: ± 200 V, the response frequency range
(output): 10 ÷ 20 kHz, capacity compliant amplifier: 20
(W), compatible power supply: 100V, 115V, 220V and 240 V,
frequency 50/60Hz.

3.3.2. Generating Load Equipment. Theairflow load is created
through an open wind tunnel with capacity 11kW, the area of
test cross section is 1000mm×1000mm, and airflow speed can

be changed from 0 to 40 m/s (Figure 9). The experimental
model is placed on a bracket with a diameter 𝜙500 mm; this
bracket can rotate with different angles compared to the wind
direction.

3.3.3. The Oscilloscopes. The oscilloscope has a function
which is capturing the acceleration response of the plate at
the point of measurement, then displaying on screen and
storing the data in the computer. The devices to measure
the vibrations used in this experiment include accelerometer
sensor (2 sensors), two piezoelectric data receivers HnB75B,
oscilloscope display Tektronix TDS-1012, and a computer.
The accelerometer sensors used in this experiment are
type ACH01-02 (Figure 9(a)). The specifications of these
accelerometer sensors include parameters: the sensitivity
10mV/g, frequency band 1,0Hz ÷ 20kHz, dynamic range: ±
250g, resolution 40𝜇g√Hz, resonant frequency: > 35kHz,
linearity: 0.1%, and the maximum pick: 1000g (g: gravity
acceleration).

Two piezoelectric channels’ data acquisition HnB75B has
a function to amplify the electrical signals from the sensor
to the oscilloscope and the computer (Figure 9(b)). The
specifications of this device include: number of channels - 2
simultaneous channels, voltage range measurement: 0 ÷ 5V,
accuracy: +/- 0.2%, sampling frequency: maximum 10 kHz,
connection port: 1 com port, 2 AC ports.

Through the simulation program set up already in devices
and computer, the vibrations of the plate at measurement
points are displayed on the screen of Tektronix TDS-1012
machine with the vibration parameters at each oscillation
cycle (Figure 10(c)).
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(a) The acceleration sensor (b) HnB75B data receiver (c) The oscilloscope display

Figure 10: The oscilloscopes.

Table 1: The maximum acceleration at U = 5m/s.

Method amax [m/s2] 𝛼[deg] Error [%]
Experiment 0.050 45 11.8
FEM 0.0559
Experiment 0.061 22.5 10.7
FEM 0.0675
Experiment 0.072 0 10.1
FEM 0.0793
Comment: The theoretical and experimental results for the acceleration response of the plate at the point of measurement over time are fairly uniform, with
maximum error of 11.80% for acceleration being acceptable. Thus, the results of the experiment showed the relevance of algorithms and programs in published
theoretical research.

Figure 11: The acceleration response in one measurement with 𝛼 =
0∘, U = 5m/s.

Figure 12: The acceleration response and frequency spectrum with
f = 13.672Hz, U = 10m/s, 𝛼 = 45∘.

3.4. The Results of Measuring Acceleration Response Experi-
ment. In this experiment, the authors conduct three cases: 𝛼
= 0∘, 𝛼 = 22.5∘, and 𝛼 = 45∘.

For 𝛼 = 0∘:The speed of the airflow U = 5m/s and 10 m/s;
the voltage𝑉in = 9.30V, and𝐾amp = 20. Hence the voltage level
will be𝑉in×𝐾amp = 9.30 V × 20 = 186.0V; sampling frequency𝑓samp = 1000 Hz; frequency of stimulation f = 6.944 Hz.

For 𝛼 = 22.5∘: The speed of the airflow U = 5m/s
and 10m/s; the voltage 𝑉in = 9.50V, and 𝐾amp = 20. Hence
the voltage level will be 𝑉in × 𝐾amp = 9.50 V × 20 =
190.0V; sampling frequency 𝑓samp = 1000 Hz; frequency of
stimulation f = 6.981 Hz.

For𝛼 = 45∘:The speed of the airflow U = 5m/s and 10m/s;
the voltage𝑉in = 9.20V, and𝐾amp = 20.Hence the voltage level
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Figure 13: The acceleration response of plate at the measuring
position (U = 5m/s).

will be𝑉in×𝐾amp = 9.20V × 20 = 184.0 V; sampling frequency𝑓samp = 1000 Hz; frequency of stimulation f = 6.993 Hz.
The acceleration-time and amplitude-frequency response

at the measuring point of the above stiffened composite plate
with PZT patches are shown in Figures 11 and 12.

We calculate the acceleration response for the above
stiffened composite plate with PZT patches by our computer
program.The acceleration response at the measuring point of
the plate will be compared with those of experimental ones
and is given in Figure 13 and Table 1.
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4. Conclusion

The nonlinear dynamics analysis of the piezoelectric stiff-
ened composite plate subjected to airflow using the finite
element and experimental method has been presented. In
this paper, we have presented a nine-noded stiffened rect-
angular composite plate element with PZT patches for the
nonlinear vibration analysis of the piezoelectric stiffened
composite plates subjected to airflow. The critical velocity of
the airflow is determined by numerical calculations.Thefinite
element results compare well with experimental ones. It is
recommended that the present formulation can be used to
determine the characteristics of the vibration and stability
in the analysis and design of the piezoelectric stiffened
composite plate structures subjected to airflow applied to the
flying instruments.
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