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Abstract—In this paper, we develop a new detection algorithm,

called Parallel Group Detection (PGD), which enables the clas-

sical detectors to improve Bit Error Rate (BER) performance of

Massive MIMO systems. In the algorithm, the Massive MIMO

system equation is converted into an extended form and divided

to provide two sub-systems, which can subsequently be detected

by the classical detectors to recover transmitted signals. Based

on the PGD, the conventional QRD and SQRD detectors, we

propose two efficient detectors, called QRD based PGD (QRD-

PGD) and Sorted QRD based PGD (SQRD-PGD). Numerical and

simulation results for different antenna configurations show that

the proposed detectors can achieve a gain of more than 4 dB in

BER performance as compared to that of the Minimum Mean

Square Error (MMSE) one while their computational costs are

comparable.

Index Terms—Massive MIMO, Parallel Group Detection, Lin-

ear Detector, QR decomposition, Successive Interference Cancel-

lation.

I. INTRODUCTION

In recent years, Massive Multiple Input Multiple Output
(Massive MIMO) systems have attracted the interest of many
researchers all over the world. By using hundreds of antennas
at the Base Station (BS) to simultaneously serve dozens of
multiple-antenna-users, Massive MIMO can provide not only
very high spectral efficiency but also but also high energy
efficiency [1]–[4].

In the up-link scenario, signals from active users are trans-
mitted through a wireless medium to the BS. At the BS, the
signals need to be recovered reliably via the use of suitable
detectors. Typically, the number of antennas equipped at the
BS is much larger than that of all activated users. This leads
to very low load factor, which is defined by the ratios of total
transmit antennas and receive ones. In such scenarios, linear
detectors, such as Matched Filter (MF), Zero Forcing (ZF)
or Minimum Mean Square Error (MMSE) can provide nearly
optimal Bit Error Rate (BER) performances [2]. In [5] the
authors showed that QR decomposition based detector (QRD)
and Sorted QRD (SQRD) are suitable for Massive MIMO
systems when the channel coefficients are correlated. In [4]
the ZF-GD and ZF-IGD (ZF based Iterative Group Detection)
detectors based on the Group Detection (GD) concept were

proposed. The ZF-IGD was shown to outperform both the ZF
and MMSE detectors at the cost of slightly higher detection
complexity. Unfortunately, at high load factors, the ZF-GD and
ZF-IGD detectors suffer from performance loss and noticeably
underperform the MMSE one.

In [6] the authors pointed out that there is no strict re-
quirement on the relation between the number of antenna
equipped at the BS and the number of users. This means that
Massive MIMO system can be defined unconventionally as
large number of BS antenna to serve very large number of
users simultaneously. In reality, it is desirable to maximize
the number of users served by the BS at a time. Thus, it is of
necessity to develop high-performance detectors for Massive
MIMO systems under high load condition, especially as the
load factor approaches unity.

High performance detectors such as the Maximum Likeli-
hood (ML) detector and Sphere Detector (SD) can be used to
address the issue of high load condition. Nevertheless, these
detectors require huge amount of computational resources,
thereby preventing them from being adopted in practice.
Similarly, other conventional detectors, such as Bell Labo-
ratory Space Time (BLAST) [7] or Lattice Reduction (LR)
aided detectors, can not be applied directly. To overcome the
problem, the Local Ascent Search (LAS) and Random Tabu
Search (RTS), proposed for very large MIMO systems in [8],
can be considered in Massive MIMO scenario. Other way of
improving the performance of the conventional detectors is to
use the Spare Error Recovery approach, which was presented
in [9].

In this paper, we propose a Parallel Group Detection (PGD)
algorithm so as to improve BER performance of classical
detectors when they are used in high-load Massive MIMO
systems. In the proposed approach, the Massive MIMO system
equation is first converted into an extended form and divided
into two sub-systems. After that conventional detectors are
applied to the sub-systems to recover the transmit signals
in a parallel fashion. Based on the PGD as well as the
conventional QRD and SQRD detectors, we develop two
complexity-efficient and high performance detectors, called
QRD based PGD (QRD-PGD) and Sorted QRD based PGD
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Fig. 1. Up-link Massive MIMO system model

(SQRD-PGD). Numerical and simulation results demonstrate
that the proposed detectors remarkably outperform various
existing detectors at comparable complexity levels.

The rest of the paper is presented as follows. Section II
shows an up-link model of a Massive MIMO system. The PGD
algorithm and the proposed detectors are described in Section
III. Section IV and Section V respectively presents BER
performance comparison and complexity analysis. Finally, the
conclusions are drawn in Section VI.

Notations: A(:, l : k) is taking lth to kth columns of matrix
A while b(l : k) denotes the taking of lth to kth elements of
column vector b; (�)T and (�)H are transpose and Hermitian
transpose of a matrix or vector; E [�] and ⊗ denote expectation
operation and Kronecker product, respectively; A† is pseudo
inverse of matrix A (i.e A† = (AHA)−1AH ).

II. SYSTEM MODEL

Consider an up-link scenario of a single cell Massive MIMO
system as illustrated in Fig. 1. The Base Station is assumed to
be located at the origin of the circular cell with radius r and
reference distance d0. All users are located randomly in the
cell such that d0 ≤ dk ≤ r, where dk is the distance from kth
user to the BS. The BS equipped with Nr receive antennas
simultaneously serves K multi-antennas users. The received
signals at the BS can be expressed as follows:

y =

√
pu

NTEs
Ūx+ n, (1)

where y ∈ CNr×1, Ū ∈ CNr×N and n ∈ CNr×1 are
the received signal vector, the channel matrix, and the noise
vector, respectively; NT and N respectively denote number
of antennas placed at each user and total transmit antennas
from K users (i.e N = KNT ); Es is the average symbol
energy of M -QAM signals. Assuming that all users have the
same transmit power (pu) and the transmit power of each
user is divided equally among NT transmit antennas, i.e.,
E

[
xxH

]
= EsIN . It is further assumed that the entries of

n are i.i.d1 random variables with zero mean and variance
1independent identical distributed

σ2
n = 1. Generally, the entries of Ū can be illustrated by the

product of large scaled fading (shadowing and path loss) and
small scaled fading coefficients. Therefore, Ū can be modeled
as the following expression [10]:

Ū = HD1/2. (2)

In (2), H ∈ CNr×N is the matrix, whose entries represents
small scaled fading coefficients and they can be assumed to be
N (0, 1) i.i.d random variables; D is a N×N diagonal matrix
where its diagonal elements represent large scale fading coef-
ficients. The large scale fading coefficients from the antennas
of kth user to the BS is assumed to be identical because the
distances between the antennas placed at each user are much
smaller than those between the users and the BS. Hence, the
channel matrix Ū is further represented as:

Ū = H(B⊗ INT
)1/2, (3)

where B is K × K diagonal matrix with the kth entry at
the main diagonal, bk,k, representing the large scaled fading
coefficients between kth user and the BS. Let zk be the
variance of shadowing from kth user to the BS and γp
denotes path loss factor. Then bk,k can be calculated using
bk,k = zk

(dk/d0)
γp [11].

For simplicity, Let us define U =
√

pu

NTEs
Ū. Then equation

(1) can be rewritten as:

y = Ux+ n, (4)

Equation (4) can be represented in the following extended
form [12]:

yex = Uexx+ nex, (5)

where yex=
[
yT 0T

N

]T
; Uex =

[
UT

√
1
Es

IN

]T
and

nex =
[
nT −

√
1
Es

xT
]T

are the (Nr +N)× 1 extended
received vector, (Nr +N)×N extended channel matrix and
(Nr +N)× 1 extended noise vector, correspondingly.

III. PARALLEL GROUP DETECTION AIDED DETECTORS

A. Proposed Parallel Group Detection Algorithm

In general, the extended system (6) can be divided into l
sub-systems, where l is an integer satisfying 2 ≤ l ≤ N . How-
ever, the more sub-systems are created, the higher complexity
the detection will be. Therefore, in this paper, we set l = 2
in order to keep the complexity at the lowest level. The block
diagram of the system using the PGD algorithm with 2 parallel
sub-systems is shown in Fig. 2.

Let us assume that the number of users in the sub-system
equals to each other and equals to L = N

2 . In addition, without
loss of generality, it is assumed that K is an even number.
Under the above assumptions, equation (5) can be rewritten
as:

yex = G(1)s(1) +G(2)s(2) + nex, (6)
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Fig. 2. Block diagram of the system using the PGD algorithm

where both G(1) and G(2) are (Nr + N) × L sub-matrices
defined by G(1) = Uex(:, 1 : L), G(2) = Uex(:, L+ 1 : N).
Similarly, s(1) = x(1 : L) and s(2) = x(L + 1 : N) are
transmitted sub-vectors.

In order to create the 1st sub-system, the interference term
G(2)s(2) in (6) need to be canceled out. Thanks to the pseudo-
inverse projection property2, multiplying both side of (6) by
A(1) = (I−G(2)G(2)†) we obtain:

A(1)yex = A(1)G(1)s(1) +A(1)nex. (7)

Define ỹ(1) = A(1)yex, G̃(1) = A(1)G(1) and ñ(1) =
A(1)nex as the respective received vector, channel matrix
and noise vector of the 1st sub-system. Equation (7) can be
rewritten as:

ỹ(1) = G̃(1)s(1) + ñ(1). (8)

Similarly, using the projection term A(2) = (I−G(1)G(1)†)
in order to cancel the interference of G(1)s(1) in (6), the 2nd
sub-system is generated as:

ỹ(2) = G̃(2)s(2) + ñ(2), (9)

where ỹ(2) = A(2)yex, G̃(2) = A(2)G(2) and ñ(2) =
A(2)nex are respectively the received vector, channel matrix
and noise vector of the 2nd sub-system.

Now, the transmitted sub-vectors can be easily estimated
by applying some conventional detector in a parallel manner.
Finally, by stacking the recovered sub-vectors, we obtain the

overall estimated vector as x̂ =

[
ŝ(1)

ŝ(2)

]
. The PGD algorithm

is summarized in Algorithm 1.
It is worthy noting that the channel matrices’ dimensions

of both the sub-systems are (Nr + N) × (N/2), which
provide much higher degree of freedom and lower β than
those of the original system. Hence, the BER performance
of sub-systems are improved significantly, as illustrated later.
However, the noise terms ñ(1) and ñ(2) are altered be-
cause their co-variances respectively are E

[
ñ(1)ñ(1)H

]
=

(I − G(2)G(2)†)(I − G(2)G(2)†)H and E
[
ñ(2)ñ(2)H

]
=

(I − G(1)G(1)†)(I − G(1)G(1)†)H . This will degrade BER

2(I−AA†)A = 0

performance of a detector based on PGD if these noise terms
are not considered properly.

Algorithm 1 PGD Algorithm
Input: y,U, K, NT

Output: x̂
1: Convert system to equivalent extended form as

yex=
[
yT 0T

N

]T
; Uex =

[
UT

√
1
Es

IN

]T
.

2: Set L = N
2 and define the channel sub-matrices as G(1) =

Uex(:, 1 : L),G(2) = Uex(:, L+ 1 : N).
3: Compute projection terms: A(1) = (I − G(2)G(2)†) and

A(2) = (I−G(1)G(1)†).
4: Generate two sub-systems in parallel, where their equiv-

alent received vectors and channel matrices are defined
as:

ỹ(1) = A(1)yex, G̃(1) = A(1)G(1), ỹ(2) = A(2)yex,
G̃(2) = A(2)G(2).

5: Estimate both transmitted sub-vectors ŝ(k), (k = 1, 2), by
applying suitable detectors to each sub-system.

6: Stacking recovered sub-vectors as x̂ =
[
ŝT1 ŝT2

]T
.

B. Proposed QRD-PGD and SQRD-PGD detectors

Basically, any classical MIMO detector can be adopted
for signal recovery in the sub-systems. However, taking per-
formance and complexity into consideration, in Step 5 of
Algorithm 1, we apply the QRD and Sorted QRD detectors to
obtain the so-called QRD-PGD and SQRD-PGD detectors.

1) QRD-PGD Detector: In this method, the transmitted
signals on two branches (see Fig. 2) are simultaneously
recovered using the conventional QRD detector. The details
of the detection process is described as follows.

Using QR decomposition (which can be found in [13]) to
decompose the sub-channel matrices G̃(k), k = 1, 2, we get:

G̃(k) = Q(k)R(k), (10)

where Q(k) is (Nr +N)×L unitary matrix (i.e Q(k)HQ(k) =
I) and R(k) denotes L× L upper triangle matrix.

Multiplying both sides of (8) and (9) by Q(k)H we get

v(k) = Q(k)H ỹ(k) = R(k)s(k) +Q(k)H ñ(k). (11)

Finally, the transmitted symbols are estimated symbol by
symbol using the following rule:

ŝ
(k)
i = Q

(
s̃
(k)
i

)
= Q




v

(k)
i −

L∑
j=i+1

r
(k)
ij ŝ

(k)
j


 /r

(k)
ii (k)


 ,

(12)
where ŝ

(k)
i , i = L, L− 1, ...1, denotes the estimated symbol,

Q (•) denotes the quantization operator, v(k)i is ith entries of
v(k), r(k)ij denotes (ith, jth) entries of R(k).
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2) SQRD-PGD: It is noteworthy that in the QRD-PGD,
the Lth symbol is always recovered first. Then it is used to
cancel its interference for the detection of subsequent symbols.
Hence, if the Lth symbol is not the strongest signal (i.e., the
symbol corresponds to the strongest channel gain), the BER
performance of system will be degraded. By using the classical
SQRD [14] as a detector in the PGD, the strongest symbol
will be detected first. Therefore, BER performance given by
SQRD-PGD is better than that of QRD-PGD one.

In the SQRD-PGD, the channel sub-matrices, G̃(k), k =
1, 2, are first decomposed to generate the matrices Q(k), R(k)

and the permutation vectors p(k). After that the transmitted
signals are recovered in exactly the same steps as the QRD-
PGD detector. Finally, the estimated signals are resorted as

ŝ(k) = ŝ(k)
(
p(k)

)
, (13)

where b
(
p(k)

)
denotes sorted operation, which rearranges the

rows of b in the same order of p(k).

IV. BER PERFORMANCE COMPARISON

In this section, BER performances of the proposed detectors
are compared to those of classical linear detectors, including
QRD, SQRD and MMSE-BLAST (referred to as BLAST in
this paper) ones. The simulation parameters are set as follows.
Cell radius and reference distance are r = 1000 meters and
d0 = 100 meters, respectively; All users are assumed to locate
randomly in the cell such that the distance from the kth user
to the BS satisfying 200m ≤ dk ≤ 990m. In addition, the
distances are unchanged within the channel coherent time;
Path loss factor equals to γp = 3.5 and the variance of
shadowing is zk = 8 dB. The channel between the users and
the BS is assumed to be block fading. It keeps unchanged
from one block to another. All transmitted data are modulated
using 4-QAM scheme. In the following representations, all
the BER curves are drawn versus SNR, which is defined as
pu/σ

2
n, where σ2

n is assumed to be unity.
Fig. 3 and Fig. 4 show the BER curves of the aforemen-

tioned detectors for Nr = 64, K = 16, NT = 4 and
Nr = 128, K = 32, NT = 4 antennas. It can be seen from
both Fig. 3 and Fig. 4 that when SNR is sufficient high, the
proposed detectors remarkably outperform the classical QRD
and SQRD ones. Specifically, in Fig. 3, at BER = 10−4, the
QRD-PGD and SQRD-PGD respectively achieve SNR gains
of more than 8 dB and 15.5 dB as compared the MMSE.
When compared to the SQRD, the respective SNR gains
are approximately 6.5 dB and 14 dB. Among the detectors,
the BLAST has the highest performance. It outperforms the
SQRD-PGD by about 3.7 dB at BER = 10−4, as illustrated
in Fig. 3. This is obvious because the BLAST requires a huge
computational effort as shown in the next section.

These achievements of proposed detectors can be explained
through load factors of the systems. Note, low load factor
is equivalent to high degree of freedom and hence BER
performance is enhanced significantly. For classical detectors,
the load factor given by original system is N/Nr while in

SNR(pu/σn
2) in dB

0 5 10 15 20 25 30 35 40 45

BE
R

10-5

10-4

10-3

10-2

10-1

100

ZF
MMSE
SQRD
QRD
BLAST
QRD-PGD
SQRD-PGD

Fig. 3. BER curves versus SNR (dB) of classical ZF, MMSE, QRD, SQRD,
BLAST, QRD PGD and SQRD-PGD detectors when Nr = 64, K = 16,
NT = 4, 4-QAM.

the equivalent load factor of a sub-system in PGD is just
N/ (2 (Nr +N)), which is much taller than N/Nr . This
means that proposed detectors obtain much higher degree
of freedom than those of original ones resulted significant
enhancement in their BER performances.

The results from the two figures also demonstrate that at full
load condition, i.e., unity load factor, the proposed detectors
are able to achieve more SNR gains as the number of antennas
increases. For example, the required SNR for the QRD-PGD
and SQRD-PGD to obtain at BER = 10−4 are respectively
about 37 dB and 28 dB when Nr = N = 64. The numbers
reduce to 35 dB and 25 dB for the case of Nr = N = 128
antennas.

V. COMPLEXITY ANALYSIS

In this section, we evaluate the complexities of the proposed
detectors as well as the classical ones by counting the required
number of floating point operation (Flops) per recovered signal
vector. In order to do so, we assume that each real algebraic
operation is counted as a flop and the complexities of slicing
operation and matrix/vector transposed are ignored [4], [15].
Under the above assumptions, a complex multiplication and a
complex division are respectively counted as 6 and 11 flops,
while a complex addition or complex subtraction equals 2
flops. Note that multiplying a m×n matrix by a n×l one needs
to compute total mln multiplications and ml(n−1) additions;
an inversion of m×m matrix requires m3 multiplications and
m3 additions [16].

It is worth noting that the complexity of a detector can also
be computed on the equivalent real system as in [4]. However,
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SNR (pu/σn
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Fig. 4. BER curves versus SNR (dB) of classical ZF, MMSE, QRD, SQRD,
QRD PGD and SQRD-PGD detectors when Nr = 128, K = 32, NT = 4,
4-QAM.

the complexity evaluated based on the equivalent real system
requires higher flops than that based on the complex one [13].

Using above expressions, the complexities of classical ZF,
MMSE, QRD, SQRD and BLAST detectors, in terms of flops,
are computed to be as follows:

CZF = 8N3 + 16N2Nr − 2N2 + 6NNr − 2N, (14)

CMMSE = 8N3 + 16N2Nr − 2N2 + 6NNr, (15)

CQRD = 6N2Nr + 3N2 + 12NNr + 4N, (16)

CSQRD = 6N2Nr + 5N2 + 12NNr + 3N, (17)

CBLAST =
15

4
N4+2N3Nr+N2N2

r +N (16Nr − 2) . (18)

For the proposed detectors, we can observe that two sub-
systems are generated in the same way. Besides, the dimen-
sions of the two sub-systems are equal. Hence, the overall
computational cost of proposed detectors is double the com-
plexity of one sub-system. It is also noted that, the required
flops for each sub-system include those of generating the
sub-system and those of detection process. Therefore, the
complexities of proposed detectors are given by:

CsubD−PGD = 2 (CGe + CsubD) , (19)

herein, CsubD−PGD denotes overall complexity of QRD-PGD
or SQRD-PGD detector; CGe and CsubD are respectively the
complexity of generating a sub-system and that of detection
process.

TABLE I
COMPLEXITY COMPARISON

Detector Number of flops per recovered vector

ZF 8N3 + 16N2Nr − 2N2 + 6NNr − 2N
MMSE 8N3 + 16N2Nr − 2N2 + 6NNr

QRD 6N2Nr + 3N2 + 12NNr + 4N
SQRD 6N2Nr + 5N2 + 12NNr + 3N

BLAST

15
4
N4 + 2N3Nr +N2N2

r +N (16Nr − 2)

QRD-PGD

2N3 + 8N2Nr + 3aN2 + 3
2
N2 + 8a2N − 2NNr

+8aNrN − 4aNr + 28aN − 2a+ 6N

SQRD-PGD

2N3 + 8N2Nr + 3aN2 + 5
2
N2 + 8a2N − 2NNr

+8aNrN − 4aNr + 28aN − 2a+ 5N
*. Note, N = KNT and a = Nr +N

In order to evaluate the complexities, we first represent the
channel matrix Uex as follows:

Uex =
[
G(1) G(2)

]
=




F1 F2

D1 02

01 D2


 , (20)

where both F1 and F2 are complex matrices with dimensions
of Nr × L, which are generated by taking the first L and
the remaining columns of the original channel matrix U,
correspondingly; D1 and D2 are L×L diagonal real matrices;
01 and 02 are L× L zero matrices, L = N/2.

Let a = Nr +N , the complexity CGe is evaluated to be:

CGe = CA(1) + CG̃(1) + Cỹ(1) (21)

= N3 + 4N2Nr + 4a2N +N −NNr + 4aNNr

− 2aNr + 8aN − a (flops) .

Since the dimensions of each sub-system is (Nr +N)×L,
the complexity of applying the QRD or SQRD detector to
each syb-system can be extended easily from equation (16)
and (17) by replacing Nr and N respectively by a = Nr +N
and L = N/2. Thus, we get:

CsubQRD =
3

2
aN2 +

3

4
N2 + 6aN + 2N (flops) , (22)

CsubSQRD =
3

2
aN2 +

5

4
N2 + 6aN +

3

2
N (flops) . (23)

Once CGe, CsubQRD and CsubSQRD are determined, the total
complexities of proposed detectors are obtained by replacing
properly (21) , (22) and (23) to (19). The complexities of the
detectors under consideration are summarized as in Table I.

The results in Table I show that the complexities of the
proposed detectors are proportional to the 3rd order of N ,
i.e., O

(
N3)

)
, which are the same as those of linear detec-

tors. Shown in Fig. 5 the complexities of the detectors as
Nr = N varies in the range of [60, 200] antennas. The results
demonstrate that the proposed detectors have much smaller the
complexities than the BLAST, particularly when the number of
antenna increases, thereby making the propose more practical.
It can also be seen that the computational costs of the QRD-
PGD and SQRD-PGD are almost the same to those of linear
detectors when Nr is less than a hundred and the gaps
between them slightly increase when Nr increases. The higher
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Fig. 5. Complexity curves versus number of antenna when N = Nr =
[60, 200] .

computational costs of proposed detectors are rewarded by a
huge enhancement in BER performance as shown in Section
IV.

VI. CONCLUSION

In this paper, we have proposed the so-called PGD algo-
rithm, the QRD-PGD and SQRD-PGD detectors for signal re-
covery in Massive MIMO systems. Numerical and simulation
results show that the proposed detectors significantly outper-
form their conventional counterparts, such as MMSE, QRD,
and SQRD, at comparable detection complexities. Although
they still suffers from noticeable performance degradation as
compared to the BLAST, they have much lower detection
complexities, particulary when the system size increases. Thus,
they are potential candidates for signal detection in high load
Massive MIMO systems.
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