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Abstract. A multi-scale numerical method for viscoelastic micro-cracked 

masonry is proposed. Firstly, the effective viscoelastic properties of the 

masonry are modelled by a periodic homogenization approach. The 

Modified Maxwell (MM) model is chosen for the creep. Secondly, an 

incremental procedure is proposed. Thirdly, an incremental formulation is 

used to get the overall viscoelastic behaviour of the two dimensional 

periodic cell. Finally, the result of the method is validated against 

analytical solution. 

1 Introduction 

In recent year, more and more high buildings are being constructed in developing countries 

such as Vietnam. These structures are explicitly required to withstand the movement 

induced by wind and earthquake. They are also expected to avoid the occurrence of severe 

damage within non-structural elements which can cause risks for people living inside the 

building as well as the main structure. Masonry infill is known as the building envelope 

with or without load-bearing role. Indeed, infill walls contribute significantly to the 

stiffness and resistance of the building. The experimental and analytical results indicate that 

the infill masonry can remarkably improve the performance of reinforced concrete or steel 

frames [1-3] and that the probability of failure of the frames with regularly distributed infill 

is much smaller than that of the bare frame [4-6]. To avoid irreparable damage and 

catastrophic failure, efficient methods for modelling and predicting mechanical 

deformations of infill masonry walls are strongly needed. 

In addition, the non-linear phenomena occurred in masonry infill must be adequately 

considered in the design of masonry infilled RC frame for the model to be realistic. Creep 

strains should be taken into account because it significantly contributes towards the 

material properties of masonry [7]. Similar to the concrete and other materials, at constant 

stress, the masonry exhibits viscoelastic behaviour [8-11]. Effectively, the nonlinear 

mechanical behaviour for the masonry is due to the creep behaviour of the mortar [12]. 

Among a number of rheological models examined to predict the creep of mortar, the 
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Modified Maxwell model is likely the most accurate and will be used in this paper to 

describe the mortar joint's creep [11]. 

Besides, the decay in material properties may occur in masonry due to cracking. Micro-

cracks appear lead to the loss of the load bearing capacity of masonry structure which can 

be accompanied by a facilitation of main structure collapse in dynamic loads (earthquake, 

blasting load, for example). This is especially important for high buildings, which consist of 

RC frame structure and masonry infill. 

The goal of this paper is to provide a finite element procedure for micro-cracked 

viscoelastic masonry. In Section 2, the basis of the periodic approach for effective 

viscoelastic properties of fractured masonry is reported. Section 3 describes a finite element 

procedure to determine the effective behaviour of micro-cracked viscoelastic masonry. The 

accuracy of the results is verified by a preliminary comparison with existent results in the 

case without crack. An infilled frame structure containing micro-cracked viscoelastic 

masonry will be modelled in Section 4. The role of masonry infill on the whole structure 

will be discussed in section 5.  

2 Periodic approach  

This section describes a periodic approach based on finite element simulation to determine 

the viscoelastic properties of masonry. Mechanical properties of masonry depend on the 

mechanical properties of components (bricks and mortar) and their arrangement, in which 

the brick is supposed to be uncracked and elastic while the mortar is described by Modified 

Maxwell (MM) linear viscoelastic model (see Fig. 1). Obviously, MM  might be properly 

able to represent the creep behaviour of masonry ages at loading (see [11]). 

Following the micro-macro approach, Anthoine [13] firstly used finite element 

method (FEM) applied on a REV to obtain the macroscopic properties of masonry. 

However, his work was limited in the elastic behaviour of two components.  This study 

focuses on the micro-macro approach where an extension of FEM for the viscoelastic 

behaviour will be developed. However, this model cannot be applied directly to masonry in 

which the mortar is micro-cracked and linear viscoelastic. The Laplace-Carson (LC) 

transform is used to transform the behaviour non-aging linear viscoelastic (NALV) of the 

component from the real-time space to linear elastic one in symbolic space. .  
Nguyen et al. [14] modelled the effective behaviour of a NALV cracked concrete, in 

which the cement is represented by the Burger model, by using the coupling between the 

homogenization method and Griffith's theory. In the symbolic space, the displacement jump 

is linearly dependent on the macroscopic stress (dilute scheme) and  the behaviour of  

micro-cracked viscoelastic concrete still follows the same class of model (i.e. Burgers) in 

the short and long terms. The originality of this work is that we can use this idea to define 

effective linear viscoelastic behaviour of micro-cracked mortar with Modified Maxwell 

(MM) model which then has to be used in the periodic homogenization of the 

heterogeneous masonry. 

 

Fig. 1. Rheological model for mortar 
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2.1 Basic of the periodic approach  

In most cases of building practice, bricks and mortar are periodically arranged. A micro-

macro approach of homogenization bases on three steps. The first step is to define a REV. 

We are reminded that the choice of REV is not unique [13, 15, 16]. A good choice can 

reduce the computational cost. As the considered basic cell plane is symmetrical to two 

axes, the study can be carried out on a quarter cell with ordinary boundary conditions 

resulting from the combination of periodicity and symmetry (see Fig. 2).  

 
Fig. 2. A chosen REV (a) and its quarter (b) 

Then, the second step consists in analysing the local consequence of a global load in terms 

of stress and strain fields in the REV. By applying a uniform displacement load at the edge 

of REV (see Fig. 3), Nguyen et al. [14] noted that the macroscopic stress is an average of 

the stress field in REV as follows: 

1

S

ds
S

                                                  (1) 

with S is the total area of REV. Eq. (1) can be rewritten by: 
m m b b                                                (2) 

Where ,m b  are respectively volume fractions of mortar and bricks; ,  m b  are the 

averages of the stress in mortar and bricks. 

 
Fig. 3. Periodic boundary conditions at the edges of a quarter cell. Simple displacement u along the 

first axis (a), the second axis (b) and simple shear (c) 

 

The last step is homogenization to obtain the effective properties of a homogeneous 

medium equivalent to the considered heterogeneous REV from the properties of 

components and their arrangement. Under the plane stress assumption, the macroscopic 

tensor of elastic stiffness has five independent coefficients to be determined (for more 

detail, see [13, 18]). Then, equivalent elastic moduli ijE and Poisson's ratios ij  are derived 

by: 
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2.2 Modified Maxwell model for uncracked viscoelastic mortar  

The rheological MM model described the viscoelastic behaviour of mortar reads: 

                 v e v e e e

M M M R M R      S S S C I  S C                                 (4) 

where    ,  ,  ,  v e e e

M M R RS S C C   are model’s parameters given in [18].  

In the symbolic space of LC, Eq. (4) is linear: 

 * * * *                    v e v e e e

M M M R M Rp p      S S S C I  S C                           (5) 

Since the apparent “stress-strain'' relation (5) can be written as * * *  C with 
* * *3     2   s sk  C J K , so the apparent bulk and shear moduli for the uncracked mortar can 

be written as follows: 

* *1 1
,        

1 1 1 1

/ 3 / 2

e e

s R s R

e s e d

M M M M

k k

k p p

 



   

 

                  (6) 

Replacing a  byits approximation 
   

 
a t dt a t

a
dt

 
  in Eq. (4) results in 

               5  6  7  8  1  2  3  4        c c t dt c c t c c t dt c c t           J K J K J K J K    (7) 

with: 
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, ,       ,    

3  2  3  2 

e e e e e e
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s e d e e e
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s e d e e e
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k k k
c c c c

dt k dt dt k dt

c c c c
dt k dt dt k dt

  

 

 

       
                

       

     

  (8) 

2.3 Effective properties of micro-cracked viscoelastic mortar     

According to Nguyen et al. [14, 19], the apparent effective bulk and shear moduli of 

concrete are obtained  in the symbolic space by a combination of the Eshelby-based 

homogenization scheme and the Griffith’s theory: 

  * ** *2 *
* *

* * * * **

1 51 1   11 16 1 32
    with    ;     with   

9 1 2  45 2
cc

s sc s c

s s d s sd

v vd Q v d M
Q M

k v vk  

   
   

 
   (9) 

where * * * ,   ,   s s sk v are respectively the apparent bulk, shear moduli and Poisson’s ratio of 

the uncracked mortar.  cd is crack density parameter defined by 3.  cd N l ; N is number of 

cracks per unit of volume and l is radius of the cracks. 

Then, the inversion of the LC transform (ILC) is required to determine the effective 

behaviour in the temporal real space. The presence of cracks makes the formula of moduli 

to be complex, hence the ILC is carried out exactly only in some simple cases by 

calculating the integral of Bromwich [20]. It is interesting to approach in the symbolic 

space the symbolic effective moduli by the ones of an existing rheological model, at least in 

short and long terms. Nguyen et al. [14] suggested using the same model of the uncracked 

concrete for the cracked one. In this study, the similar idea is followed to the mortar. We 

will try to approach the cracked mortar by the MM model (for more detail, see [18, 21]). 

We have the effective stiffness and viscosity parameter related to the MM model: 
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where  ,Q M 

  are given in Nguyen et al. [18]. For each value of crack density 

parameter
cd , characteristics of cracked mortar are determined by (10). The viscoelastic 

properties of hybrid mortar with or without cracks are given in Table 1. 

Table 1. The effective properties of hybrid mortar 

c
d   e

M c
k d  

(MPa) 

 e

M c
μ d (

MPa) 

  s

M c
d  

(MPa.s) 

 d

M c
d  

(MPa.s) 

 e

R c
k d  

(MPa) 

 e

R c
μ d  

(MPa) 

0.0 2404 1655 3.35 108 1.54 108 1257 866 

0.1 1846 1440 2.57 108 1.33 108 965 754 

0.2 1498 1275 2.09 108 1.19 108 784 667 

3. The finite element procedure  

3.1. The incremental procedure 

Levin et al., [22] presented a theorem that can address the homogenization of linear elastic 

materials with pre-stress or initial deformation. Follow this theorem, macroscopic stress 

field at the time (t+dt) is written in the form: 

     :INC p

MM MMt dt t dt t     C                                   (11) 

with   p

MM t   the pre-stress, which concern the stress and strain at time t  and given by: 

     3  4  7  8 

5  6  5  6 

          p

MM

c c c c
t t t

c c c c
  

   
       

   
J K J K               (12) 

and the stiffness tensor of viscoelastic mortar: 1  2 

5  6 

 INC

MM

c c

c c
 C J K , where                      

1 2 3 4

5 6 7 8

3 21 1 1 1
(1 ), (1 ) (1 ), (1 )

1 1 1 1 1 1 1 1 1 1
, , ,

3

,

2 3 2

e e e e e e

R R R R R R

s e d e e e

M M M M M M

s e d e e e

M M M M M M

k k k
c c c c

dt k dt dt k dt

c c c c
dt k dt dt k dt

  

   

   

         

     

  

For the incremental algorithm, we effectuate as follows: 

+ At t=0s, instant response is elastic, only the elastic parts of the spring and Maxwell 

contribute to the rigidity of the material. The constitutive law is:
1 1 1 :INC

MM C with  

1

INC e e e

MM RM R M  C C C C .  

+ At t = dt, the relation between 2  and 2  reads:
2 2 2 1 :INC p

MM MM   C  where the pre-

stress  MM1

p   given by eq. (12) corresponding to the stress 1  and the strain 1 .  

The creep behaviour of a hollow sphere is now considered to validate the incremental 

procedure.  This sphere, constituted by a porous material, is   subjected to a traction on the 
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edge
3l and fictive press mass on the edge 

1l  that gives the nodal force P (see Fig. 4-a). The 

macroscopic strain is determined by:  ε ε 1 εp s     where   is the volume fraction 

of the porous phase, ,s p  are respectively the average strains of the solid phase and 

porous phase: 

 1 .
ε ε

3 3.s

s p

s p

tr PU
d


 

Ω

Ω,
Ω Ω

                                       (13) 

with U the nodal displacement vector, sΩ  and pΩ  are the volumes of the solid phase and 

porous phase, respectively. The strain for the elastic case is determined analytically by the 

relation: 
 
0ε

3.k 



 where    k   is the effective bulk modulus estimated by Hashin’s 

model:  
3  4 
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3  4 

e e
e s s
s e e

s s

k
k k
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 (see [23]). As the material is linear viscoelastic, the 

strain is obtained by the inverse LC transform of this equation:
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s s
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k


 

 

 
  

 
;  *

sk  and *

s  are given by (6). When dt  is small enough 

(ie. 4  10  dt s ), we have a very good validation between two calculations (see Fig. 4-b). 

  
                    (a)                                                    (b) 
Fig.  4.  A hollow sphere with a volume factor 0.125   under 1MPa   (a) and validation of the 

incremental procedure (b), 0.0cd  . 

3.2. The numerical approach for two dimensional REV   

The calculations of stress and strain are carried out step by step with the finite element 

method for 4  10  dt s , using the rheological behaviour law of mortar (i.e. Modified 

Maxwell) through an incremental formulation. It should be noted that the relationship 

between the pre-stress p

MM expressed at previous time t in the mortar and the fictive nodal 

force P is:  

  : m p

MMP A                                                             (14) 

with mA  transformation from stress into forces in the mortar. p

MM  is then transformed into 

fictive nodal force on the mortar. This force is then considered as an external force on the 

mortar in addition to displacement load at the edge of REV. Therefore, the overall 
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behaviour of the periodic cell is elastic for each step of the time and written in the following 

form: 

     cell ,  , :    , c cell c cell ct dt d t dt d t dt d    C                           (15) 

In this relation, variables are function of the crack density and time. 
Besides, Cecchi and Tralli [12] proposed a multi-parameter analytical homogenization 

study for the two-dimensional uncracked viscoelastic masonry. In this way, the reduction of 

joints to interfaces is based on the hypothesis of rigid bricks (which is suitable when bricks 

generally much stiffer than mortar) and small thickness of mortar compared with bricks. 

The viscoelastic behaviour is also only observed in mortar joints. It is useful to use this 

analytical approach to validate the numerical approach. 

The geometric dimensions and the mechanical characteristics of elastic bricks are: 

250x250x55 (mm3), 615.510bE   (MPa) [24]. A good agreement between the present 

work and analytical calculation of [12] are showed in Fig. 5 for simple uncracked case 

where the bricks are much stiffer than the mortar and the thickness of mortar joint is very 

small (i.e. 2 mm). 

It is then possible to evaluate the following properties of a periodic masonry cell (2D) with 

micro-cracked viscoelastic mortar 0.1,   10m

cd e  (mm), bE  , 0.2b   under the 

assumption of plane stress. We see in Table 2 that when t exceeds 11 days, effective 

modules tend to a finite asymptotic limit. 

Table 2 The effective properties of REV 

Time(days) 
1E  (MPa) 

2E (MPa) 
12G (MPa) 12ν  

21ν  

0 9761 9257 3821 0.196 0.186 

1 8823 7250 2914 0.191 0.156 

7 8312 6066 2405 0.186 0.136 

11 8305 6060 2403 0.185 0.135 

 
Fig. 5. Comparison of effective modules and coefficient of a masonry derived from numerical and 

analytical models in uncracked case. The modules and viscosity coefficients of hybrid mortar are 

presented in Table 1. 
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4 Conclusions 

This work provides a numerical tool to predict the effective behavior of a 2D periodic 

masonry with micro-cracked viscoelastic mortar and elastic brick. MM model is used to 

represent the mortar behaviour. An FEM incremental procedure was described to compute 

the effective properties of the assemblage of bricks and mortar. A comparison between the 

results obtained from the analytical and numerical approaches for two dimensional REV 

showed that the presented procedure gives reliable results. Future work will focus on crack 

propagation that is still limited in this study and the numerical model will be developed by 

using mortar-brick nonlinear interface. This study should be improved for other creep 

models and some examples of the masonry infilled frame test should also be simulated 

using this proposed model to show good agreement with experimental results.  
 

This research is funded by Vietnam National Foundation for Science and Technology Development 

(NAFOSTED) under grant number 107.01-2017.307. 
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