
370978-1-5386-6113-0/18/$31.00 ©2018 IEEE

2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE)

Detect Wi-Fi Network Attacks
Using Parallel Genetic Programming

Van Canh Vu

Le Quy Don Technical University
Faculty of Information Technology

Hanoi, Vietnam
canhvuvan@yahoo.com

Tuan-Hao Hoang
Le Quy Don Technical University
Faculty of Information Technology

Hanoi, Vietnam
 haohth@lqdtu.edu.vn

Abstract—Wi-Fi network have been widely used nowadays.
However, Intrusion Detection System (IDS) researches on Wi-Fi
network were few and difficult since there was no common
dataset between researchers on this area. Recently, Kolias et al.
[2] published a comprehensive Wi-Fi network dataset
extracting from real Wi-Fi traces, which is called the AWID
dataset. Gene programming has proven effective in detecting
network attacks, but the processing time is quite slow. Today,
the development of GPU technology for high-speed parallel
processing, the study of parallel programming solutions is
essential. In this paper, we examined the Parallel Genetic
Programming (Karoo GP) [13] in wireless attack detection to
improve detection rates and processing time. The experiments
showed that the processing time of Karoo GP was significantly
improved compared to standard GP.
Keywords— wireless attack detection; intrusion detection

system; genetic programming; GP in parallel.
I. INTRODUCTION

Recently, wireless networks have been used widely.
However, security experts have discovered that all Wi-Fi
networks are vulnerable to hacking though there are several
security protocols for Wi-Fi network such as Wired
Equivalent Privacy (WEP) and Wi-Fi Protected Access 2
(WPA2) [2] to secure Wi-Fi network. Recent researches have
been focused on using machine learning to detect 802.11
MAC layer attacks or impersonation attacks [6]. In this paper,
our work focuses on using Genetic programming with
TensorFlow to detect wireless network attacks to improve the
detection rate and processing time.

Intrusion Detection System (IDS) research on Wi-Fi
network was few and difficult since there was no common
dataset published. Recently, Kolias et al. [2] published a
comprehensive Wi-Fi network dataset, called the Aegean Wi-
Fi Intrusion Dataset (AWID). AWID dataset has three
different types of attacks: Impersonation, Flooding and
Injection Attacks with 14 distinct attacks. Some previous
works used AWID dataset to detect Wi-Fi attacks such as
[1][5]. Other studies based on machine learning methods have
improved the IDS effectively such as in [4][8][9]. Patrick and
A. Nur [8][9] used Genetic Programming to detect de-
authentication attack and Data link layer attacks. However,
computation of their approach was quite heavy. In [10],
Makanju et al. experimented signature-based IDSs and GP-
based IDS in detecting Link Layer Attacks on Wi-Fi
Networks. The results showed that GP-based attack detection

systems are better classified than those based on other
machine learning techniques.

In this paper, we try to examine the parallel genetic
programming in wireless attack detection to improve detection
rates and processing time. The paper is then conducted as
follow. After the Introduction section, Section II describes
some background in wireless intrusion detection and genetic
programming in parallel. Section III presents and discusses
some experiments and results. Conclusions and future works
are shown in the last section.

II. BACKGROUND
A. Wireless Intrusion Detection Systems
Wireless local area network are subject to many types of

threats and attacks such as Denial of Service (DoS), 802.11
attacks – encryption cracking, probe attacks, authentication
attacks, MAC spoofing, wireless hijacking. Hackers can
install rogue Wireless Access Point (rogue WAP) as a
legitimate one to create backdoor into network and/or to steal
sensitive data. Hackers can also send many association
requests to flood WAPs and force them to reboot as
malicious DoS attacks. Moreover, hackers can even use brute
force attacks to decrypt sensitive data if using the standard
802.11 encryption method, WEP.

To against those attacks, Wireless Intrusion Detection
Systems (WIDS) have been developed. As an intrusion
detection system in general, wireless intrusion detection
system gathers and analyzes data to recognize known
attacks’ patterns, identify intrusions and misuse and/or
abnormal activities.

Jonny Miliken in [15] introduced wireless intrusion
detection system structure, which contains 6 components:
Theat identification, Architecture consideration, Data
collection, Detection strategy, Correlation method and
Evaluation as seen in Figure 1.

 Figure 1. WIDS Structure.

B. Genetic Programming in Parallel
Genetic programming (GP) is as an evolutionary algorithm

that follows Darwin’s theory evolution to generate computer
programs. The first step of Genetic program system is to
create the random population of individuals’ program, which
are tree-based structure. The second step is to evaluate the

371

2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE)

fitness of each individual in the initial random population.
After that the evolution process starts to generate the new
population for the next generation, where individuals in the
new population are generated by evolution operators mainly
crossover and mutation. The details of GP process can be seen
in [19].

Thanks to GP system structure, it is easy to apply parallel
computing model to GP to improve its performance.
Particularly, GP is evolved as a classifier that takes a set of
attributes to predict the class. The performance of GP
classifier is significantly depended on the size of the training
dataset. In the field of parallel Genetic Programming, many
research works have been published on both CPU and GPU
architectures. In most cases, two evaluation approaches:
population and/or fitness are divided for simultaneously
processing. H Juille and Pollack first implemented parallel GP
on SIMD system for solving the trigonometric identities
problem [20]. Their attempt aimed to reduce inter-processor
communications. Recently, with the rapid growth of
computing power in graphic cards, GPUs have been used to
perform parallel GP considerably. Darren M. [21]
implemented GP on graphic cards (NVidia GeForce 6400)
using the data parallel approach. The proposed system was
shown significant performance on benchmark problems as
symbolic regressions, 11-way multiplexer and Fisher Iris
dataset classification. M. Franco et al. [16] introduced a
fitness parallel method using GPU with achieving the speed of
up to 52x in certain datasets. Darren in [12] described a
comprehensive summary of over 30 implementation efforts on
computers, FPGAs, Xbox 360s, and GPUs. Augusto and
Barbosa in [11] used OpenCL on GPU cores to parallel
evolutionary algorithm.

C. Karoo GP
Karoo GP [17] is a Genetic Programming framework

written in Object Oriented Python language. Karoo GP was
developed by Kai Staats to analyze data with highly scalable
vector data, multicore CPU and GPU supported through the
TensorFlow library.

Figure. 4. Overall implementation with the GPU.

 Karoo_GP is included in the multicore library process, an
alternative to the standard Python multiprocessing library.

The multivariate expression execution generated by each tree
as symbolic mathematics that was conducted by SymPy
library. SymPy is quite flexible and simple to implement. In
addition, TensorFlow is employed in Karoo-GP to provide
the capacity of engaging massive datasets on single,
multicore, and GPU architectures. With TensorFlow enabled
in Karoo_GP, parallel fitness evaluation method is applied as
in Figures 4 and 5.

Figure 5. GPU implementation of Genetic Programming
Figure 4 shows the overall GP usage on the CPU and

GPU. The phases of the calculation fitness value of each
individual in the population are performed on the GPU,
while other tasks are performed on the CPU. In addition, the
details of the proposed model are shown in Figure 5. The
workflow model is described as follows:

(1) Generate the initial random population
(2) Check termination criteria
(3) Evaluate fitness value of each individual in population.

This step is conducted parallel in GPU supported through
TensorFlow.

(4) Select trees to be to the next generation
(5) Apply genetic operators to generate new individual to

new generation
(6) Repeat from step (2) to step (5) until the termination

criteria is satisfied.
III. EXPERIMENTS AND RESULTS

This section presents the experimental settings in this paper
and the experimental results of applying GP and Karoo_GP on
AWID dataset.

372

2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE)

A. Data settings
We used AWID dataset in [2], which contains the real

trace of Wi-Fi traffic. AWIDS dataset contains two sets
(AWID-CLS, AWID-ATK). AWID-CLS dataset is labeled
based on 4 classes of attacks by purpose: Key cracking,
Keystream, Deny of Service and Man in the Middle (or 4
classes of attacks by methodology: Passive, Injection,
Flooding and Impersonation). While, AWID-ATK dataset is
labeled based on the actual name of attacks: 16 classes of
attacks listed in Table 1. Each of two sets has two subsets: a
full subset and reduced one. In this research work, we only
used the reduced subsets, which are considered the better one
for doing research experiments due to their smaller size.

TABLE 1. LIST OF ATTACK TYPES IN AWID-ATK-R-TR SET
No. Attacks

1 Amok
2 Arp
3 Beacon
4 Caffe-Latte
5 Chop-Chop
6 CTS
7 De-authentication
8 Disassociation
9 Evil-twin
10 Fragmentation
11 Hirte
12 Power-Saving
13 Probe-Request
14 Probe-Response
15 RTS
16 Normal

AWID dataset has 154 features. However, we only used 35
features of them. These features are meaningful with attacks in
our experiments, as listed in Table 2.

TABLE 2. 35 FEATURES
Index Feature Name Description

4 frame.time epoch Epoch Time

7 frame.time relative Time since reference
or first frame

8 frame.len Frame length on the
wire

29 radiotap.present.rxflags RX flags
38 radiotap.mactime MAC timestamp
74 radiotap.datarate Data rate (Mb/s)
62 radiotap.antenna Antenna
66 wlan.fc.type Type
67 wlan.fc.subtype Subtype
68 wlan.fc.ds DS status
70 wlan.fc.retry Retry
72 wlan.fc.moredata More Data
73 wlan.fc.protected Protected flag
77 wlan.da Destination address
79 wlan.sa Source address
80 wlan.bssid BSS Id

Index Feature Name Description
82 wlan.seq Sequence number
88 wlan.ba.bm Block Ack Bitmap

93 wlan_mgt.fixed.capabilities.
privacy Privacy

94 wlan_mgt.fixed.capabilities.
preamble Short Preamble

98 wlan_mgt.fixed.capabilities.
short slot time Short Slot Time

104 wlan_mgt.fixed.listen ival Listen Interva
107 wlan_mgt.fixed.timestamp Timestamp
108 wlan_mgt.fixed.beacon Beacon Interval
112 wlan_mgt.fixed.auth seq Authentication SEQ
113 wlan_mgt.fixed.category code Category code
122 wlan_mgt.tim.dtimperiod DTIM period

125 wlan_mgt.country
info.environment Environment

126 wlan_mgt.rsn.version RSN Version

127 wlan_mgt.rsn.gcs.type Group Cipher Suite
type

140 wlan.wep.iv Initialization Vector
141 wlan.wep.key Key Index
142 wlan.wep.icv WEP ICV

144 wlan.ccmp.extiv CCMP Ext.
Initialization Vector

 148 wlan.qos.ack Ack Policy
In our experiments, we only proceeded to classify the data

samples as normal or attack using GP and Karoo_GP. Based
on the results obtained, we conducted a comparison between
two methods. During the experiment, we used the AWIDS
with 169MB and 1.048.574 samples and we trained on 20% of
AWIDS dataset after that we validated on 80% of the AWIDS
dataset.

B. Hardware Experiments
Our hardware configuration used to implement

experiments, as follows:
� 8 CPU Intel® Xeon® Processor E3-1231 v3 (8M

Cache, 3.40 GHz); 4 cores per CPU,
� Memory: 8GB (1600Mhz)
� 4 NVIDIA Corporation GF100GL [Tesla C2050]

C. Methodology settings
In classification problems where the dataset of the

differential classes is quite large, the commonly used
measurement is Precision-Recall. The method of determining
Precision and Recall is depicted in Figure 7.

Figure 7: Precision and Recall

373

2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE)

(i) Precision: Precision is computed as the ratio of true
positive results to the total predicted positive results. High
precision relates to the low false positive rate and high true
positive rate. The Precision is defined:

��������	
 �
��

�� ��

When Precision = 1, all points found are really positive,
there are no false positive points in the result. However,
Precision = 1 does not guarantee the model is good, because
the model has found all the points are positive, it is not to be a
good model.
 (ii) Recall (Sensitivity): Recall is computed as the ratio of
true positive results to total results. High Recall relates to the
high true positive rate and low false negative rate. The Recall
is defined:

������
 �
��

�� ��

When Recall = 1, all points found are really positive, there
are no false negative points in the result. However, Recall=1
does not guarantee the model is good, because the model has
found all the points are positive, it is not to be a good model.

(iii) F1-Score: F1-Score is the measure of test’s accuracy
F1-score is calculated based on the harmonic mean of
Precision and Recall.

�� � �����
 �
� � ��������	 � ������

��������	 ������

The value of F1-Score is in the range (0, 1]. The higher the
F1-Score, the better the classifier, even in the case of Recall
and Precision are equal to 1.0 (best possible), then F1-Score =
1. When Recall and precision are low, for instance recall = 0.1
and Precision = 0.1, then F1-Score = 0.1.

D. Parameter settings
In our experiments, we configured both of GP and

Karoo_GP with the same parameters settings, as given in
Table 3.

TABLE 3. THE PARAMETER SETTINGS
Parameter Settings

Population size 500
Crossover 70%
Mutation 20%
Reproduction 10%
Type tree Ramped half/half
Tree depth base 10
Tree depth max 15
Min nodes 150
Tournament 10
Function sets +,-,*,/
Generation 50
Terminal Set 35 attributes in AWID dataset

B. Results and Discussion
Our experiment was conducted in 30 runs from 30 random

seeds for the initial population creation, respectively.

The performance results for wireless attack detection using
GP and Karoo_GP system are shown in Table 4 and 5.

TABLE 4. THE RESULT OF WIRELESS ATTACK
DETECTION USING GP

 Precision Recall F1-score Support
Normal 0.93 0.94 0.93 200712
Attack 0.785 0.78 0.78 9003

Avg/Total 0.92 0.93 0.92 209715

TABLE 5. THE RESULT OF WIRELESS ATTACK
DETECTION USING KAROO_GP

 Precision Recall F1-score Support
Normal 0.99 0.99 0.99 200712
Attack 0.82 0.79 0.80 9003

Avg / Total 0.98 0.98 0.98 209715
As can be seen, the results in Table 4 and Table 5 show that

using K_GP to classify wireless attacks has far better results
than using GP standard, the precision rate of normal patterns
when using Karoo_GP is 99% while GP is 93%. For attack
patterns, the Precision rate is 82% with Karoo_GP and 78.5%
for GP. Therefore, Precision rate in classification when using
Karoo_GP is higher than GP standard. Moreover, when using
Recall measurement, Karoo_GP has better results than GP on
classifying normal patterns with 99% and attack patterns with
79%; while GP just achieved 94% for normal patterns and
78% for attack patterns.

F1-Score for both normal and attack patterns classification
results of Karoo_GP are better than that of standard GP.
Particularly, F1-Score of Karoo_GP is 99% for normal
patterns and 80% for attack patterns while its standard GP is
93% and 78% for normal and attack patterns, respectively.

In addition, the average of Precision, Recall and F1-Score of
Karoo_GP are also higher than the standard GP. For
Karoo_GP, the average values of Precision, Recall, and F1-
Score are all 98%, while those of standard GP respectively are
92%, 93%, and 92%.

Figure 8. Fitness values of Karoo_GP and GP techniques
Figure 8 depicts the average of the best fitness in each

generation. It is clearly seen that Karoo_GP converges faster
than the standard GP and the performance of Karoo_GP is
better than its standard GP.

374

2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE)

Figure 9. Compares the processing times of Karoo_GP

(GPU) and GP (CPU).
In our experiments, Karoo_GP and standard GP were

implemented on the same computer system. However,
Karoo_GP was implemented in parallel processing with GPU
configuration as described in Section II.B; while standard GP
was not. Figure 9 shows that the execution time of Karoo_GP
is much faster than the standard GP. Particularly, Karoo_GP
processing time is about 10 hours while standard GP is about
72 hours.

IV. CONCLUSION AND FUTURE WORKS
In this paper, we presented a genetic programming technique

in parallel to classify data patterns for wireless attacks
detection. We conducted experiments to compare the
performance of Karoo_GP and standard GP on the same
configuration of the computer system, the same parameters
setting and datasets. However, Karoo_GP was implemented in
a parallel processing mechanism with the high-speed GPU
configuration, while the standard GP only processed on multi-
core CPUs. The results showed that the execution time of
Karoo_GP is much faster than its standard GP. In addition,
Precision, Recall, and F1-Score rate of Karoo_GP are also
higher than conventional standard GP, the average value is
98% for Karoo_GP and 92% for standard GP.

In the near future, we will conduct experiments for multiple
classifications on Parallel Genetic Programming. In addition,
we will implement Parallel TAG3P (Tree Adjoining Grammar-
Guided Genetic Programming) [18] to get the better
performance on processing and accuracy in data classification.

REFERENCES
[1]. Bandar Alotaibi; Khaled Elleithy: “A majority voting

technique for wireless intrusion detection systems,” 2016 IEEE
Long Island Systems, Applications and Technology
Conference (LISAT), Farmingdale, NY, USA, pp.1-6
[2]. Constantinos Kolias, Georgios Kambourakis, Angelos
Stavrou, Stefanos Gritzalis: “Intrusion detection in 802.11
networks: empirical evaluation of threats and a public dataset,”
IEEE Communications Surveys and Tutorials, Volume 18
Issue, pp. 184-208. IEEE (2015)

[3]. Sabhnani, M. and Serpen, G.: “Application of machine
learning algorithms to KDD intrusion detection dataset within
misuse detection context,” In Proceedings of the International
Conference on Machine Learning: Models, Technologies, and
Applications. pp. 209-215. (2003)

[4]. Sommer, R., Paxson, V.: “Outside the closed world: On
using machine learning for Network Intrusion Detection,”
Security and Privacy, 2010 IEEE Symposium on (2010)

[5]. Usha, M., Kavitha, P.: “Anomaly based intrusion
detection for 802.11 networks with optimal features using
SVM classifier,” Springer Wireless Networks, the Journal of
Mobile Comm., Computation and Information, 22, pp. 1–16.
Springer (2016)

 [6]. Y. Sheng, K. Tan, G. Chen, D. Kotz, A. Campbell:
“Detecting 802.11 MAC Layer Spoofing Using Received
Signal Strength,” INFOCOM 2008. The 27th Conference on
Computer Communications. IEEE

[7]. Cisco Visual Networking Index: “Global Mobile Data
Traffic Forecast Update” 2016–2021 White Paper.
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-
c11-481360.html

[8]. Patrick LaRoche, A. Nur Zincir-Heywood, “802.11 De-
authentication Attack Detection Using Genetic Programming”,
Genetic Programming: 9th European Conference, EuroGP
2006, Budapest, Hungary, April 10-12, 2006.
Proceedings (pp.1-12)

[9]. Patrick LaRoche, A. Nur Zincir-Heywood, “Genetic
Programming Based Wi-Fi Data Link Layer Attack Detection,”
Communication Networks and Services Research Conference,
2006. CNSR 2006. Proceedings of the 4th Annual
Communication Networks and Services Research Conference,
Washington DC, USA, pp.285-292. IEEE Computer Society,
Los Alamitos (2006).

[10]. Makanju, A.; LaRoche, P.; Zincir-Heywood, A.N., “A
comparison between signature and GP-based IDSs for link
layer attacks on Wi-Fi networks,” Proceedings of the 2007
IEEE Symposium on Computation Intelligence In Security and
Defense Applications, CISDA 2007, pp.213-219, 1-5 April
2007

[11]. Douglas A. Augusto and Helio J.C. Barbosa:
“Accelerated parallel genetic programming tree evaluation with
OpenCL”. Journal of Parallel and Distributed Computing,
Volume 73, Issue 1 (2013), pp.86–100.

[12]. Darren M. Chi1y: “Fast parallel genetic programming:
multi-core CPU versus many-core GPU,” Soft Computing
volume 16, Issue 10 (2012), pp.1795–1814.

[13]. Kai Staats, Karoo GP User Guide Genetic
Programming in Python, www.kaistaats.com/research/

[14]. Douglas A. Augusto, Heder S. Bernardino and Helio
J.C. Barbosa: “Genetic programming: Chapter 5. Parallel
Genetic Programming on Graphics Processing Units”, pp.95-
114, http://dx.doi.org/10.5772/48364

[15]. Jonny Miliken, The state of the Art Intrusion
Prevention and Detection: Introduction to Wireless Intrusion
Detection System, pp.335-360.

[16]. M. A. Franco, N. Krasnogor, and J. Bacardit:
“Speeding up the evaluation of evolutionary learning systems
using GPGPUs,” In Proceedings of the 12th annual conference
on Genetic and evolutionary computation, GECCO10,
pp.1039–1046, New York, USA, 2010. ACM.

375

2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE)

[17]. Kai Staats, Edward Pantridge, Marco Cavaglia, 2017,
TensorFlow Enabled Genetic Programming, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO)
Companion, ACM 2017, Berlin, Germany , pp. 1872-1879

[18]. Hoai N.X., McKay R.I.B., Essam D., Hoang Tuan-
Hao: “Genetic Transposition in Tree-Adjoining Grammar
Guided Genetic Programming: The Duplication Operator,”
European Conference on Genetic Programming, EuroGP 2005.
Lecture Notes in Computer Science, vol 3447, pp.108-119
Springer, Berlin, Heidelberg.

[19]. John R. Koza: “Genetic programming - on the
programming of computers by means of natural
selection”. Complex adaptive systems, MIT Press 1993,
ISBN 978-0-262-11170-6, pp.I-XVIII, 1-419

[20]. H. Juillé & J. B. Pollack, Parallel Genetic
Programming and fine-grained SIMD architecture” in Working
Notes for the AAAI Symp. Genetic Programming, E. V. Siegel
and J. R. Koza, Eds. Cambridge, MA: MIT, Nov. 10-12, 1995,
AAAI, pp.31-37.

