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Abstract—Wi-Fi network have been widely used nowadays. 
However, Intrusion Detection System (IDS) researches on Wi-Fi 
network were few and difficult since there was no common 
dataset between researchers on this area. Recently, Kolias et al. 
[2] published a comprehensive Wi-Fi network dataset 
extracting from real Wi-Fi traces, which is called the AWID 
dataset. Gene programming has proven effective in detecting 
network attacks, but the processing time is quite slow. Today, 
the development of GPU technology for high-speed parallel 
processing, the study of parallel programming solutions is 
essential. In this paper, we examined the Parallel Genetic 
Programming (Karoo GP) [13] in wireless attack detection to 
improve detection rates and processing time. The experiments 
showed that the processing time of Karoo GP was significantly 
improved compared to standard GP. 
Keywords— wireless attack detection; intrusion detection 

system; genetic programming; GP in parallel. 
I. INTRODUCTION 

Recently, wireless networks have been used widely. 
However, security experts have discovered that all Wi-Fi 
networks are vulnerable to hacking though there are several 
security protocols for Wi-Fi network such as Wired 
Equivalent Privacy (WEP) and Wi-Fi Protected Access 2 
(WPA2) [2] to secure Wi-Fi network. Recent researches have 
been focused on using machine learning to detect 802.11 
MAC layer attacks or impersonation attacks [6]. In this paper, 
our work focuses on using Genetic programming with 
TensorFlow to detect wireless network attacks to improve the 
detection rate and processing time. 

Intrusion Detection System (IDS) research on Wi-Fi 
network was few and difficult since there was no common 
dataset published. Recently, Kolias et al. [2] published a 
comprehensive Wi-Fi network dataset, called the Aegean Wi-
Fi Intrusion Dataset (AWID). AWID dataset has three 
different types of attacks: Impersonation, Flooding and 
Injection Attacks with 14 distinct attacks. Some previous 
works used AWID dataset to detect Wi-Fi attacks such as 
[1][5]. Other studies based on machine learning methods have 
improved the IDS effectively such as in [4][8][9]. Patrick and 
A. Nur [8][9] used Genetic Programming to detect de-
authentication attack and Data link layer attacks. However, 
computation of their approach was quite heavy. In [10], 
Makanju et al. experimented signature-based IDSs and GP-
based IDS in detecting Link Layer Attacks on Wi-Fi 
Networks. The results showed that GP-based attack detection 

systems are better classified than those based on other 
machine learning techniques.  

In this paper, we try to examine the parallel genetic 
programming in wireless attack detection to improve detection 
rates and processing time. The paper is then conducted as 
follow. After the Introduction section, Section II describes 
some background in wireless intrusion detection and genetic 
programming in parallel. Section III presents and discusses 
some experiments and results. Conclusions and future works 
are shown in the last section.  

II. BACKGROUND 
A. Wireless Intrusion Detection Systems 
Wireless local area network are subject to many types of 

threats and attacks such as Denial of Service (DoS), 802.11 
attacks – encryption cracking, probe attacks, authentication 
attacks, MAC spoofing, wireless hijacking.  Hackers can 
install rogue Wireless Access Point (rogue WAP) as a 
legitimate one to create backdoor into network and/or to steal 
sensitive data. Hackers can also send many association 
requests to flood WAPs and force them to reboot as 
malicious DoS attacks. Moreover, hackers can even use brute 
force attacks to decrypt sensitive data if using the standard 
802.11 encryption method, WEP.  

To against those attacks, Wireless Intrusion Detection 
Systems (WIDS) have been developed. As an intrusion 
detection system in general, wireless intrusion detection 
system gathers and analyzes data to recognize known 
attacks’ patterns, identify intrusions and misuse and/or 
abnormal activities.   

Jonny Miliken in [15] introduced wireless intrusion 
detection system structure, which contains 6 components: 
Theat identification, Architecture consideration, Data 
collection, Detection strategy, Correlation method and 
Evaluation as seen in Figure 1. 

 
 Figure 1. WIDS Structure. 

B. Genetic Programming in Parallel 
Genetic programming (GP) is as an evolutionary algorithm 

that follows Darwin’s theory evolution to generate computer 
programs. The first step of Genetic program system is to 
create the random population of individuals’ program, which 
are tree-based structure. The second step is to evaluate the 
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fitness of each individual in the initial random population.  
After that the evolution process starts to generate the new 
population for the next generation, where individuals in the 
new population are generated by evolution operators mainly 
crossover and mutation. The details of GP process can be seen 
in [19]. 

Thanks to GP system structure, it is easy to apply parallel 
computing model to GP to improve its performance. 
Particularly, GP is evolved as a classifier that takes a set of 
attributes to predict the class. The performance of GP 
classifier is significantly depended on the size of the training 
dataset. In the field of parallel Genetic Programming, many 
research works have been published on both CPU and GPU 
architectures. In most cases, two evaluation approaches: 
population and/or fitness are divided for simultaneously 
processing. H Juille and Pollack first implemented parallel GP 
on SIMD system for solving the trigonometric identities 
problem [20]. Their attempt aimed to reduce inter-processor 
communications. Recently, with the rapid growth of 
computing power in graphic cards, GPUs have been used to 
perform parallel GP considerably. Darren M. [21] 
implemented GP on graphic cards (NVidia GeForce 6400) 
using the data parallel approach. The proposed system was 
shown significant performance on benchmark problems as 
symbolic regressions, 11-way multiplexer and Fisher Iris 
dataset classification.  M. Franco et al. [16] introduced a 
fitness parallel method using GPU with achieving the speed of 
up to 52x in certain datasets. Darren in [12] described a 
comprehensive summary of over 30 implementation efforts on 
computers, FPGAs, Xbox 360s, and GPUs. Augusto and 
Barbosa in [11] used OpenCL on GPU cores to parallel 
evolutionary algorithm. 

C. Karoo GP 
Karoo GP [17] is a Genetic Programming framework 

written in Object Oriented Python language. Karoo GP was 
developed by Kai Staats to analyze data with highly scalable 
vector data, multicore CPU and GPU supported through the 
TensorFlow library. 

 
Figure. 4. Overall implementation with the GPU. 

 Karoo_GP is included in the multicore library process, an 
alternative to the standard Python multiprocessing library. 

The multivariate expression execution generated by each tree 
as symbolic mathematics that was conducted by SymPy 
library. SymPy is quite flexible and simple to implement. In 
addition, TensorFlow is employed in Karoo-GP to provide 
the capacity of engaging massive datasets on single, 
multicore, and GPU architectures. With TensorFlow enabled 
in Karoo_GP, parallel fitness evaluation method is applied as 
in Figures 4 and 5. 

 
Figure 5. GPU implementation of Genetic Programming 
Figure 4 shows the overall GP usage on the CPU and 

GPU. The phases of the calculation fitness value of each 
individual in the population are performed on the GPU, 
while other tasks are performed on the CPU. In addition, the 
details of the proposed model are shown in Figure 5. The 
workflow model is described as follows: 

(1) Generate the initial random population 
(2) Check termination criteria 
(3) Evaluate fitness value of each individual in population. 

This step is conducted parallel in GPU supported through 
TensorFlow. 

(4) Select trees to be to the next generation 
(5) Apply genetic operators to generate new individual to 

new generation 
(6) Repeat from step (2) to step (5) until the termination 

criteria is satisfied.  
III. EXPERIMENTS AND RESULTS 

This section presents the experimental settings in this paper 
and the experimental results of applying GP and Karoo_GP on 
AWID dataset.  
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A. Data settings  
We used AWID dataset in [2], which contains the real 

trace of Wi-Fi traffic. AWIDS dataset contains two sets 
(AWID-CLS, AWID-ATK). AWID-CLS dataset is labeled 
based on 4 classes of attacks by purpose: Key cracking, 
Keystream, Deny of Service and Man in the Middle (or 4 
classes of attacks by methodology: Passive, Injection, 
Flooding and Impersonation). While, AWID-ATK dataset is 
labeled based on the actual name of attacks: 16 classes of 
attacks listed in Table 1. Each of two sets has two subsets: a 
full subset and reduced one. In this research work, we only 
used the reduced subsets, which are considered the better one 
for doing research experiments due to their smaller size.   

TABLE 1. LIST OF ATTACK TYPES IN AWID-ATK-R-TR SET 
No. Attacks 

1 Amok 
2 Arp  
3 Beacon 
4 Caffe-Latte 
5 Chop-Chop 
6 CTS 
7 De-authentication 
8 Disassociation
9 Evil-twin 
10 Fragmentation
11 Hirte 
12 Power-Saving
13 Probe-Request
14 Probe-Response 
15 RTS 
16 Normal 

AWID dataset has 154 features. However, we only used 35 
features of them. These features are meaningful with attacks in 
our experiments, as listed in Table 2. 

TABLE 2. 35 FEATURES 
Index Feature Name Description

4 frame.time epoch Epoch Time 

7 frame.time relative Time since reference
or first frame 

8 frame.len Frame length on the 
wire 

29 radiotap.present.rxflags RX flags 
38 radiotap.mactime MAC timestamp 
74 radiotap.datarate Data rate (Mb/s) 
62 radiotap.antenna Antenna 
66 wlan.fc.type Type 
67 wlan.fc.subtype Subtype 
68 wlan.fc.ds DS status 
70 wlan.fc.retry Retry 
72 wlan.fc.moredata More Data 
73 wlan.fc.protected Protected flag 
77 wlan.da Destination address 
79 wlan.sa Source address 
80 wlan.bssid BSS Id 

Index Feature Name Description
82 wlan.seq Sequence number 
88 wlan.ba.bm Block Ack Bitmap 

93 wlan_mgt.fixed.capabilities. 
privacy Privacy 

94 wlan_mgt.fixed.capabilities. 
preamble Short Preamble 

98 wlan_mgt.fixed.capabilities. 
short slot time Short Slot Time 

104 wlan_mgt.fixed.listen ival Listen Interva 
107 wlan_mgt.fixed.timestamp Timestamp 
108 wlan_mgt.fixed.beacon Beacon Interval 
112 wlan_mgt.fixed.auth seq Authentication SEQ 
113 wlan_mgt.fixed.category code Category code 
122 wlan_mgt.tim.dtimperiod DTIM period 

125 wlan_mgt.country 
info.environment Environment 

126 wlan_mgt.rsn.version RSN Version 

127 wlan_mgt.rsn.gcs.type Group Cipher Suite 
type 

140 wlan.wep.iv Initialization Vector 
141 wlan.wep.key Key Index 
142 wlan.wep.icv WEP ICV 

144 wlan.ccmp.extiv CCMP Ext. 
Initialization Vector 

 148 wlan.qos.ack Ack Policy 
In our experiments, we only proceeded to classify the data 

samples as normal or attack using GP and Karoo_GP. Based 
on the results obtained, we conducted a comparison between 
two methods. During the experiment, we used the AWIDS 
with 169MB and 1.048.574 samples and we trained on 20% of 
AWIDS dataset after that we validated on 80% of the AWIDS 
dataset.  

B. Hardware Experiments 
Our hardware configuration used to implement 

experiments, as follows: 
� 8 CPU  Intel® Xeon® Processor E3-1231 v3 (8M 

Cache, 3.40 GHz); 4 cores per CPU, 
� Memory: 8GB (1600Mhz) 
� 4 NVIDIA Corporation GF100GL [Tesla C2050]  

C. Methodology settings  
In classification problems where the dataset of the 

differential classes is quite large, the commonly used 
measurement is Precision-Recall. The method of determining 
Precision and Recall is depicted in Figure 7. 

 
Figure 7: Precision and Recall 
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(i) Precision: Precision is computed as the ratio of true 
positive results to the total predicted positive results. High 
precision relates to the low false positive rate and high true 
positive rate. The Precision is defined:  
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When Precision = 1, all points found are really positive, 
there are no false positive points in the result. However, 
Precision = 1 does not guarantee the model is good, because 
the model has found all the points are positive, it is not to be a 
good model. 
 (ii) Recall (Sensitivity): Recall is computed as the ratio of 
true positive results to total results. High Recall relates to the 
high true positive rate and low false negative rate. The Recall 
is defined:  
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When Recall = 1, all points found are really positive, there 
are no false negative points in the result. However, Recall=1 
does not guarantee the model is good, because the model has 
found all the points are positive, it is not to be a good model. 

(iii) F1-Score: F1-Score is the measure of test’s accuracy 
F1-score is calculated based on the harmonic mean of 
Precision and Recall.  
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The value of F1-Score is in the range (0, 1]. The higher the 
F1-Score, the better the classifier, even in the case of Recall 
and Precision are equal to 1.0 (best possible), then F1-Score = 
1. When Recall and precision are low, for instance recall = 0.1 
and Precision = 0.1, then F1-Score = 0.1. 

D. Parameter settings 
In our experiments, we configured both of GP and 

Karoo_GP with the same parameters settings, as given in 
Table 3. 

TABLE 3. THE PARAMETER SETTINGS 
Parameter Settings 

Population size 500 
Crossover  70% 
Mutation 20% 
Reproduction 10% 
Type tree Ramped half/half 
Tree depth base 10 
Tree depth max 15 
Min nodes 150 
Tournament 10 
Function sets +,-,*,/ 
Generation 50 
Terminal Set 35 attributes in AWID dataset

B. Results and Discussion 
Our experiment was conducted in 30 runs from 30 random 

seeds for the initial population creation, respectively.  

The performance results for wireless attack detection using 
GP and Karoo_GP system are shown in Table 4 and 5.  

TABLE 4. THE RESULT OF WIRELESS ATTACK 
DETECTION USING GP 

 Precision Recall F1-score Support 
Normal 0.93 0.94 0.93 200712 
Attack 0.785 0.78 0.78 9003 

Avg/Total  0.92 0.93 0.92 209715 
 

TABLE 5. THE RESULT OF WIRELESS ATTACK 
DETECTION USING KAROO_GP 

 Precision Recall F1-score Support
Normal 0.99 0.99 0.99 200712 
Attack 0.82 0.79 0.80 9003 

Avg / Total  0.98 0.98 0.98 209715 
As can be seen, the results in Table 4 and Table 5 show that 

using K_GP to classify wireless attacks has far better results 
than using GP standard, the precision rate of normal patterns 
when using Karoo_GP is 99% while GP is 93%. For attack 
patterns, the Precision rate is 82% with Karoo_GP and 78.5% 
for GP. Therefore, Precision rate in classification when using 
Karoo_GP is higher than GP standard. Moreover, when using 
Recall measurement, Karoo_GP has better results than GP on 
classifying normal patterns with 99% and attack patterns with 
79%; while GP just achieved 94% for normal patterns and 
78% for attack patterns. 

F1-Score for both normal and attack patterns classification 
results of Karoo_GP are better than that of standard GP. 
Particularly, F1-Score of Karoo_GP is 99% for normal 
patterns and 80% for attack patterns while its standard GP is 
93% and 78% for normal and attack patterns, respectively. 

In addition, the average of Precision, Recall and F1-Score of 
Karoo_GP are also higher than the standard GP. For 
Karoo_GP, the average values of Precision, Recall, and F1- 
Score are all 98%, while those of standard GP respectively are 
92%, 93%, and 92%. 

 
Figure 8. Fitness values of Karoo_GP and GP techniques 
Figure 8 depicts the average of the best fitness in each 

generation. It is clearly seen that Karoo_GP converges faster 
than the standard GP and the performance of Karoo_GP is 
better than its standard GP. 
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Figure 9. Compares the processing times of Karoo_GP 

(GPU) and GP (CPU). 
In our experiments, Karoo_GP and standard GP were 

implemented on the same computer system. However, 
Karoo_GP was implemented in parallel processing with GPU 
configuration as described in Section II.B; while standard GP 
was not. Figure 9 shows that the execution time of Karoo_GP 
is much faster than the standard GP. Particularly, Karoo_GP 
processing time is about 10 hours while standard GP is about 
72 hours. 

IV. CONCLUSION AND FUTURE WORKS 
In this paper, we presented a genetic programming technique 

in parallel to classify data patterns for wireless attacks 
detection. We conducted experiments to compare the 
performance of Karoo_GP and standard GP on the same 
configuration of the computer system, the same parameters 
setting and datasets. However, Karoo_GP was implemented in 
a parallel processing mechanism with the high-speed GPU 
configuration, while the standard GP only processed on multi-
core CPUs. The results showed that the execution time of 
Karoo_GP is much faster than its standard GP. In addition, 
Precision, Recall, and F1-Score rate of Karoo_GP are also 
higher than conventional standard GP, the average value is 
98% for Karoo_GP and 92% for standard GP. 

In the near future, we will conduct experiments for multiple 
classifications on Parallel Genetic Programming. In addition, 
we will implement Parallel TAG3P (Tree Adjoining Grammar-
Guided Genetic Programming) [18] to get the better 
performance on processing and accuracy in data classification. 
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