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Abstract—This paper presents an accelerated proximal
gradient technique for depth image reconstruction from
incomplete data samples. One of the most technical chal-
lenges in depth imaging is to estimate a depth image from
sparse measurements obtained due to missing depth val-
ues or fast sensing. Recent advances in signal processing,
i.e., compressive sensing (CS) allows the depth image to be
reconstructed precisely from far reduced measurements
provided that the image has sparse representations in
proper bases. Inspired by the CS theory, this paper
formulates the task of depth channel reconstruction as a
sparsity-regularized least squares optimization problem.
To solve this problem efficiently, an iterative algorithm
based on the accelerated proximal gradient technique is
developed, which not only speeds up the convergence
rate, but also enhances the quality of depth image
estimation. Several experiments are conducted and the
results confirm the efficiency of the proposed approach.

I. INTRODUCTION

Over the past two decades, depth sensing has witnessed
increasing research interests due to its abilities to
provide the depth channel information together with
the conventional 2-D image of the desired scene. The
capability of generating the depth channel image and
thereby yielding the 3-D model of the desired scene
is highly desirable in numerous applications, including
autonomous driving, robot navigation, and augmented
reality [1]–[3]. However, depth sensing technologies
produce the depth channel images with prolonged
data acquisition time and missing values despite re-
cent developments in RGB-D cameras like Microsoft
Kinect, Intel RealSense, and Google Tango. Thus, new
approaches for fast data acquisition and efficient depth
reconstruction are needed to enhance the efficiency and
practicality of the depth sensing technology.

Techniques for recovering missing values of the
depth channel image have been reported in several
studies. Classic methods based on shapes were pro-
posed in [1] and [2]. While the method in [1] used
shading shapes, the technique in [2] exploited the
defocusing shape to fill the missing pixels on the
depth image. Other conventional approaches consid-
ered hand-tuned models and assumed the availability
of the surface orientations [4], [5]. Image inpainting
approaches have also introduced to depth estimate.

The work in [6] enhanced depth image using region
growing and bilateral filtering, whereas the approach
in [7] used Kalman filter to smooth the depth map.
However, these approaches require the availability of
a color image of the scene, which prolongs data
acquisition time. Furthermore, such existing methods
are related to low-resolution depth map effects.

Recent approaches based on compressive sensing
(CS) [8], [9] for depth estimate were proposed in [10],
[11]. The emerging CS framework enables the depth
image to be reconstructed precisely from incomplete
pixels (measurements) by exploiting sparse structures
of the depth channel image in proper bases. More
importantly, CS enables the reconstruction and com-
pression to be performed simultaneously, resulting in
simple and cost-effective hardware sensing systems. In
the sparsity-based technique, the task of depth recon-
struction is posed as a sparse-regularized least squares
(LS) optimization problem. To solve this problem, the
study in [10] applied first-order subgradient method,
while the alternating direction method of multipliers
algorithm was used in [11]. These algorithms can be
regarded as special instances of the proximal gradient
(PG) method [12], [13]. The PG technique is able to
solve non-smooth and large-scale optimization prob-
lems, but it typically needs a large number of iterations
when high accuracy is required.

In this paper, motivated by the CS-based approaches,
we develop an iterative algorithm based on the acceler-
ated proximal gradient (APG) method to estimate the
depth channel image. The main aim is to keep the
splitting capability from the PG counterpart and more
importantly to enhance the convergence rate and qual-
ity of depth image reconstruction. This goal is achieved
mainly by employing a smart strategy of computing
an auxiliary point used for gradient evaluation and
estimate of the solution. APG evaluates the auxiliary
point as a linear combination of the previous estimates
of the solution, whereas the standard PG uses only
the current estimate. As a result, APG integrates both
the splitting and accelerating capabilities. Extensive
experiments and analysis on depth data are conducted
and the results show that the APG requires far fewer
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iterations to converge and achieves higher accuracy of
depth image reconstruction in comparison with the PG
counterpart.

The remainder of the paper is organized as fol-
lows. Section II introduces the depth sparse sensing
model. Section III describes the proposed APG ap-
proach for depth image reconstruction from sparse
measurements. Section IV presents the experimental
results. Section V gives concluding remarks.

II. DEPTH SPARSE SENSING MODEL

Consider the depth map Z ∈ R
h×w of a scene

acquired by an active disparity sensor. Ideally, the
sensor produces m = h × w entries representing
the depth values from the sensor to the surrounding
obstacles. However, due to fast sensing or missing
effects, only n (n � m) measurements are obtained.
Let z ∈ R

m denote the vector obtained by vectorizing
the corresponding unknown image Z. Let y ∈ R

n be
the known measurements. The relation between y and
Z can be mathematically expressed as

y = Φ z, (1)

where Φ ∈ R
n×m is the sampling matrix representing

the down-sampling protocol in CS operations or the
linear operator modeling missing-valued effects.

The depth image Z typically comprises large ho-
mogenous regions of pixel values with only a few
discontinuous at the transitions between those regions.
This important property makes the depth image be
much more sparse compared to natural images when
representing in proper domains, such as wavelets [11],
[14]. The sparsity associated with the wavelet trans-
form can be interpreted by the fact that large homoge-
neous regions are compressively represented by only
a small number of significant wavelet coefficients. Let
Ψ ∈ R

m×q be the dictionary matrix containing in its
columns q (q ≥ m) wavelet bases. The sparse repre-
sentation of image z can be mathematically modeled
as

z = Ψx, (2)

where x ∈ R
q is a coefficient vector containing

only s nonzero components, i.e., s = ‖x‖0. For a
sparse representation, s is significantly smaller than
q (s � q). It is worth noting here that the �0-norm
measures exactly the number of nonzero components
of a vector or matrix, but in practice its counterpart, the
�1-norm, is used to enforce the sparsity of the problem
since it is a convex relaxation for the �0-norm [15].

From Eqs. (1) and (2), given the observation vector
y, the reconstruction of x can be formulated as an �1-
regularized LS optimization problem:

x̂ = argmin
x

f(x) =
1

2
‖y −A x‖22 + λ ‖x‖1, (3)

where we have defined A = ΦΨ and λ is a positive
parameter used to trade off between the error (LS) and
the �1 penalty terms. Solving Problem (3) yields an
estimate x̂, then an image ẑ is approximated using
Eq. (2), i.e., ẑ = Ψ x̂. In this representation, Ψ

can be constructed from any bases. However, this
paper considers only wavelet bases for depth image
representations. Now, the remaining task is to solve
the �1-regularized LS optimization problem (3). We
propose an iterative algorithm based on APG method
presented in the next section.

III. APG DEPTH RECONSTRUCTION

This section presents an APG-based algorithm to solve
the �1-regularized LS problem in (3). Before presenting
the APG method, it is convenient to describe the orig-
inal PG technique for solving a generic minimization
problem with a composite objective function.

A. Proximal gradient method

Consider a general case of minimizing a composite
objective function:

min
x

f(x) = g(x) + λ h(x), (4)

where g(x) is convex, differentiable, and smooth, e.g.,
the quadratic term in (3) and h(x) is convex but not
necessary smooth, e.g., the �1-norm term in (3). In
general, it is hard or complicated to deal with Problem
(4) directly. One common strategy is to split the
objective function using a proximal gradient iterative
technique. Let xk denote an estimate of the solution
at the k-th iteration. Then, the next estimate of the
minimizer is obtained by solving:

xk+1 = argmin
x

1

2
‖ak − x‖22 + λα h(x), (5)

where
ak = xk − α∇g(xk). (6)

Here, ∇g(xk) denotes the gradient of g(x) evaluated
at the current estimate xk. When ∇g is a Lipschitz
continuous function with constant C, this method
converges if α ∈ (0, 1/C]. This generic optimization
technique and its convergence guarantees have been
widely used to solve the minimization problem (4)
under different names: proximal gradient method [12],
thresholded Landweber iteration [16], iterative shrink-
age/thresholding [17], or separable approximation [18].

The iterative technique in (5)–(6) can be used to
solve Problem (3) directly. Let xk denote an estimate
of the wavelet coefficient vector at the k-th iteration,
Problem (3) can be minimized iteratively:

xk+1 = argmin
x

1

2
‖ak − x‖22 + λα ‖x‖1, (7)
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where the auxiliary ak is defined as

ak = xk − αAT (A xk − y). (8)

A typical condition ensuring convergence of {xk} to
a minimizer of (3) is to require that α ∈ (0, 1/‖A‖22].
Hereafter, ‖A‖2 denotes the spectral norm of matrix
A (i.e., maximum singular value of the matrix). Now
the problem is to solve Subproblem (7), which ad-
mits a closed-form solution that will be presented in
Subsection III-C.

Obviously, the PG technique is useful for solving
the �1-regularized LS optimization problem. The com-
putation effort at each iteration involves only simple
matrix computation for the gradient evaluation in (8),
followed by solving a subproblem with a closed-form
solution. This makes the iterative PG method compu-
tationally efficient, and very suitable for solving the
large-scale depth reconstruction problem. However, the
PG technique converges slowly with a worst-case com-
plexity result of O(1/k). Detail proofs are described in
the general framework of proximal forward-backward
splitting [12], [19], special PG instances of iterative
shrinkage technique [20], and projected gradient [21].
To enhance the efficiency and practicality of depth
imaging, the next subsection introduces an accelerated
scheme that holds the computational efficiency at each
iteration of the standard PG, but enhances the global
rate of convergence considerably.

B. Accelerated proximal gradient method

To accelerate the convergence rate, it is crucial to mod-
ify the computation for the next estimate xk+1 in the
original PG scheme presented in Eqs. (5) and (6). Here,
the next estimate of the solution xk+1 is obtained using
an auxiliary point ak, which is computed using only
the previous estimate xk. In [22], Nesterov showed
that in the smooth case, i.e., h(x) ≡ 0, the global
rate of convergence for Problem (4) can be improved
to O(1/k2) by choosing a smart auxiliary point that
is easy to compute. In particular, the point ak should
be evaluated from another auxiliary point uk which
is chosen from a linear combination of the previous
estimates xk and xk−1:

uk = xk +
tk−1 − 1

tk
(xk − xk−1), (9)

ak = uk − α∇g(uk), (10)

for a sequence {tk} satisfying

t2k − tk ≤ t2k−1. (11)

In the non-smooth case, i.e., h(x) 	≡ 0, Beck and
Teboulle in [23] and Nesterov in [24] have proved
that the updating schemes in Eqs. (5), (9), and (10) are
valid to ensure the convergence rate of O(1/k2).

Using the APG scheme, the �1-regularized LS depth
imaging problem in (3) can be solved effectively
incorporating both splitting and accelerating features.
After uk is defined as in (9), the auxiliary point ak
is obtained in a similar manner as in the original PG
scheme given by (8):

ak = uk − αAT (Auk − y). (12)

Now the remaining task is to solve Subproblem (7).
Detailed steps are presented in the following subsec-
tion.

C. Solving subproblem

This subsection presents an efficient technique to solve
Subproblem (7). This problem is convex, which can
be recast as a semidefinite program and solved based
on interior-point methods. This technique, however,
is slow and problematic when the size of x is large
(e.g., q > 10, 000) because it needs to solve huge
systems of linear equations to compute the Newton
direction. In this paper, this minimization problem is
solved efficiently using the soft-thresholding/shrinkage
technique, which provides a closed-form solution. Let
us consider the following theorem [20], [25]:

Theorem 1: For each τ ≥ 0 and a ∈ R
q , the

shrinkage T (a, τ) obeys

T (a, τ) = argmin
x

1

2
‖a− x‖22 + τ ‖x‖1 . (13)

Theorem 1 is proved based on the concept of prox-
imal gradient operator of convex functions (here
the �1-norm). In (13), the soft-thresholding operator
T (a, τ) is a nonlinear function which applies a soft-
thresholding at level τ to the entries of the input vector
a:

T (a, τ)=sgn(a)max(|a|−τ, 0)=
a

|a| max(|a|−τ, 0).

(14)
Note that when applied to vectors or matrices, the
soft-thresholding operator T (·, τ) performs entrywise.
Using Theorem 1, the solution to Subproblem (7) is
given by

xk+1 = T (ak, λ α). (15)

In summary, the iterative steps of the original and
accelerated PG algorithms for solving depth imaging
Problem (3) are provided in Table I and Table II,
respectively. The two algorithms take an input set of
the data measurements y, the parameters α, λ, and
a predefined tolerance tol. The parameter α can be
regarded as a gradient stepsize and should be set
to the largest possible values for fast convergence,
whereas the regularization parameter λ is problem-
dependent and needs to be tuned appropriately. Further
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discussion on selecting suitable parameters is given
in experimental section IV-A. In the processing steps,
the two algorithms obviously perform two major tasks:
gradient evaluation (Step 2) and depth image estimate
(Step 3) by soft-thresholding.

The main difference between the two algorithms is
the computation of the auxiliary points for performing
gradient splitting at Step 2. In the original PG, the
auxiliary point is computed using only the current
estimate of xk, whereas in the APG scheme, the
auxiliary variable is obtained from uk evaluated as
a linear combination of the two previous estimates
xk and xk−1. By doing so, the computational effort
in the APG keeps as simple as the original PG, but
accelerates the global rate of convergence. For fastest
convergence, the sequence {tk} should increase as fast

as possible and here, the update tk+1 ← 1+
√

4t2
k
+1

2
is

chosen by solving (11) with the inequality replaced
by equality. The algorithms stop when they converge
to a global optimum (f(x) is a convex function). In
implementation, the algorithms terminate if the relative
change of the objective function is negligible (see Step
4). After that, the column vector z is reshaped into a
2-D map representing the reconstructed depth image.

TABLE I
ALGORITHM 1: PG-BASED ITERATIVE ESTIMATION OF DEPTH

IMAGE.

1) Initialize x0 ← 0, z0 ← Ψx0, and k ← 0.

2) Perform gradient splitting using (6):

ak ← xk − αAT (A xk − y).

3) Estimate depth image using (15) and (2):

xk+1 ← T (ak, λ α),
zk+1 ← Ψxk+1.

4) Evaluate the cost function f(xk+1) using (3) and

if
|f(xk+1)−f(xk)|

|f(xk)|
< tol then terminate the algorithm,

otherwise increment k ← k + 1 and go to Step 2.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results on
real depth imaging data. Subsection IV-A describes the
experiment setup. Subsection IV-B provides results and
performance analysis for several imaging methods.

A. Experimental setup

The proposed APG algorithm is evaluated based on
the Middlebury Stereo Dataset [26], where the ground
truth disparity maps are available. Using the same input

TABLE II
ALGORITHM 2: APG-BASED ITERATIVE ESTIMATION OF DEPTH

IMAGE.

1) Initialize x1=x0←0, k←1, t1= t0←1.

2) Perform gradient splitting using (9) and (12):

uk ← xk +
tk−1−1

tk
(xk − xk−1),,

ak ← uk − αAT (Auk − y).

3) Estimate depth image using (15) and (2):

xk+1 ← T (ak, λ α),
zk+1 ← Ψxk+1.

4) Evaluate the cost function f(xk+1) using (3) and

if
|f(xk+1)−f(xk)|

|f(xk)|
< tol then terminate the algorithm,

otherwise tk+1←
1+

√
4t2

k
+1

2
, k←k+1, go to Step 2.

depth data, we aim to compare the performances of
the PG and APG in terms of reconstruction quality
and convergence rate. To quantify the quality of depth
image reconstruction, the peak signal-to-noise ratio
(PSNR) is used (in dB):

PSNR = 10 log10

(
I2peak
MSE

)
, (16)

where Ipeak is the peak intensity of reconstructed
image I , and MSE is the mean-square-error between
the reconstructed image I and the ground-truth image
Ig defined as

MSE =
1

h× w

h∑
i=1

w∑
j=1

|I(i, j)− Ig(i, j)|2 . (17)

The dictionary transform Ψ is constructed from 2-
D symmetric wavelets with symmetric boundary treat-
ments using lifting implementation. The parameters
for both PG and APG-based algorithms are chosen
as follows. The parameter α (gradient stepsize) is
selected as α = 1/‖A‖22 for accelerated convergence.
The regularization parameter λ is set to λ = 0.03.
The algorithm converges if the relative change of the
objective function is smaller than tol = 10−5 (see
Step 4).

B. Experimental results

In the first experiment, we aim to evaluate the per-
formances of the APG and PG-based algorithms un-
der CS contexts where the compressive sensor ac-
quires only far reduced measurements for imaging.
In doing so, only 50% measurements of the total
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pixels are randomly sampled from a ground-truth depth
image of an art, shown in Fig. 1(a). Because only
50% measurements are acquired, the depth image
is corrupted as shown in Fig. 1(b). Using the 50%
data measurements, the depth images reconstructed
by the PG and APG-based algorithms are presented
in Figs. 1(c) and (d), respectively. Both PG and APG
recover the depth image well, but APG yields a higher
quality image (PSNR=31.10 dB) than does the PG
method (PSNR=28.56 dB).

��� ���

��� ���

Fig. 1. Depth image reconstructed using different sparsity-based
CS methods: (a) Ground-truth depth image of art, (b) Corrupted
depth image with only 50% data measurements (PSNR=7.02 dB),
(c) reconstructed image by PG [10], [11] (PSNR=28.56 dB), and (d)
reconstructed image by the proposed APG (PSNR=31.10 dB).
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Fig. 2. PSNRs of the depth image reconstructed by PG (dashed line)
and APG (solid line) recorded during the minimization using 50%
of total measurements. At initialization, PSNRs by both algorithms
are the same, at 7.02 dB. The proposed APG converges after 35
iterations and achieves an PSNR of 31.10 dB, whereas PG converges
after 115 iterations and obtains an PSNR of 28.56 dB.

For further insights into PG and APG algorithms,
we record the PSNR values of the estimated image
and the cost function during the loop for depth image
reconstruction. Fig. 2 shows the PSNRs of the images
estimated by PG and APG during minimization. It
can be observed that APG requires far fewer number
of iterations to achieve high quality of depth image
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Fig. 3. Objective function values f(x) recorded during minimiza-
tion by PG (dashed line) and APG (solid line) using 50% of total
measurements. At initialization, the values of the cost function is
530.72 for both algorithms. The cost function by the proposed APG
reaches 94.75 after 35 iterations, whereas the cost function by PG
decreases to 94.77 after 115 iterations.

��� ���

��� ���

Fig. 4. Depth image reconstructed using sparsity-based APG
method: (a) Ground-truth depth image of an jade plant, (b) A mask
representing missing values (black pixels), (c) corresponding depth
image with missing values (PSNR=18.25 dB), and (d) reconstructed
image by APG (PSNR=31.37 dB).

reconstruction. For example, to reach PSNR=28 dB,
APG needs only 20 iterations whereas PG requires 60
iterations. Fig. 3 depicts the objective function during
the loop. Obviously, both algorithms converge, but the
converange rate of APG is much faster than that of PG
counterpart.

In the second experiment, we aim to test the pro-
posed APG method for recovering depth images with
missing values. The missing-value depth image is
generated by using a mask. The ground-truth depth
image of a jade plant and the mask are shown in
Figs. 4(a) and (b), respectively. Due to missing values,
the image is distorted as demonstrated in Fig. 4(c).
Using the available pixel measurements, the image
reconstructed by APG method is presented in Fig. 4(d),
where the missing pixels are restored.
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V. CONCLUSION

This paper presented an accelerated proximal gradient
method for depth image reconstruction from sparse
measurements. Compressive depth sensing yields cor-
rupted images with missing values. The APG approach
allows a high-quality image to be reconstructed from
the CS measurements via solving a sparse-regularized
LS optimization problem. By incorporating both split-
ting and accelerating features, APG produces accurate
image reconstruction while speeds up global rate of
convergence. Experimental results are conducted and
the results show that the proposed APG approach
enhances the quality of image reconstruction and
convergence rate, especially in comparison with its
PG counterpart. Future work will investigate different
sparse representation dictionaries, including dictionary
learning, for further enhancing the performance of the
APG model.
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