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ABSTRACT

Recently, the problems of clothes recognition and clothing
item retrieval have attracted a number of researchers, due
to its practical and potential values to real-world applica-
tions. The main task is to automatically find relevant clothing
items given a single user-provided image without any extra
metadata. Most existing systems mainly focus on clothes
classification, attribute prediction, and matching the exact
in-shop items with the query image. However, these systems
do not mention the problem of latency period or the amount
of time that users have to wait when they query an image
until the query results are retrieved. In this paper, we pro-
pose a fashion search system that automatically recognizes
clothes and suggests multiple similar clothing items with an
impressively low latency. Through extensive experiments, it is
verified that our system outperforms almost existing systems
in term of clothing item retrieval time.
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1 INTRODUCTION

Nowadays, online shopping has become much more popular
than in-store shopping because of its convenience. The shop-
pers can browse a shopping website to buy anything without
leaving their comfortable houses. It makes the online shop-
ping a very potential market. According to the Shopifyplus1,
the online shopping worldwide revenue is expected to rise
from $481.2 billion in 2018 to $712.9 billion by 2022 and
much of the revenue comes from clothing item shopping.

Despite the huge convenience of online shopping, online
shoppers usually encounter the problem of information over-
load. Shoppers often difficultly find the desired clothing items
to their needs, since there are many online shopping web-
sites. In literature, the problem of in-shop clothes retrieval
has been recently mentioned in [15]. The main challenge lies
in the fact that photos of clothing items taken by users in
real-world situations are often different from photos on online
shopping websites. Photos from online shopping websites
are professionally taken under controlled settings, whereas
photos from users are often taken under uncontrolled settings
and at lower resolution. Moreover, there are large variations
of clothing items in style, texture, and cutting. Therefore,
the problem of in-shop clothes retrieval is a real challenge to
researchers. A number of systems have been built to address
this problem. Though these methods achieve good accuracy,
the searching for similar images in large database and the
retrieval time of the system are hardly mentioned.

In this paper, we focus on the specific issue of existing
fashion search systems. It is the latency time when search-
ing in large image database. When users want to search a
similar clothing items, they often expect the query results
to be retrieved soon. Therefore, we propose a new fashion
search system based on state-of-the-art method to address
this problem. The workflow of our system is described as
in Fig. 1. There are four stages including: object detection
on mobile device, generating image embedding, quantization
indexing, and searching for similar images in a large database.

1https://www.shopify.com/enterprise/ecommerce-fashion-industry
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In this paper, two new features are introduced to make our
system distinct from other systems. (1) The clothes recog-
nition network is trained on a high-end computer as usual,
and the trained model is, then, deployed on mobile device
itself. (2) A new indexing method is designed to effectively
represent image embedding in a new space. Further details
of the indexing method will be later explained in 4.3. Finally,
the searching for similar images in large image database is
carried out with the well-known Elasticsearch engine [5].

In summary, the main contribution of this paper is the pro-
posal of a fashion search system with two new added features
and state-of-the-art methods. Extensive experiments are car-
ried out to support the superiority of our system in term of
real-time retrieval. The proposed system are well capable of
suggesting multiple clothing items based on a query image at
a short delay. As such, our system can meet the requirements
of real-time applications in real-world situations.

The rest of this paper is organized as follows. Section 2
presents a brief review of related works. The procedure of
system setup for experiment and data collecting and process-
ing for both training and evaluating phase is mentioned in
Section 3. In Section 4, our proposed method is thoroughly
discussed. Experimental results and evaluation are presented
in Section 5 to support the superiority of our system to
all other systems in term of real-time retrieval. Finally, we
conclude the paper in Section 6.

2 RELATED WORKS

2.1 Clothes recognition

The problem of clothes recognition has attracted tremendous
attention from researchers for over the past decade. Many ap-
proaches have been proposed to address this problem. Earlier
works mainly use heavily hand-crafted features from images
such as SIFT, HOG, and color information. These features are,
then, employed to train different machine learning algorithms.
For instance, in [2], SURF, HOG, and color information were
used as learning features; or in [3], the clothes recognition
system used four types of features including SIFT, texture
descriptors from the Maximum Response Filters, color in
the LAB space, and skin probabilities. In term of machine
learning algorithms, these systems above used simple meth-
ods as classifier. [2] employed Random Forests algorithm
for clothes type classification and linear SVM algorithm as
visual attribute classifier, [3] also used SVM algorithm for
learning clothing attributes. However, the systems based on
hand-crafted features have some drawbacks due to the limited
power of these features. Recently, a number of systems [8]
[12] [17] have adopted end-to-end deep learning technique in
order to learn more distinct representation of clothes image
and mitigate the variations of cross-scenarios and pose types.
Some new network architectures such as Dual Attribute-
aware Ranking Network (DARN) [12] and FashionNet [17]
have been proposed to address both clothes recognition and
clothing item retrieval problem with a single deep network.
It’s noteworthy that all clothes recognition systems of pre-
vious related works were built to run on desktop. However,

in our approach, the neural network for clothes recognition
is trained with a high-end computer and, the trained model
is exported to mobile-ready version to run on mobile device.
It enables the whole system to achieve low-latency retrieval
time.

2.2 Clothing retrieval

The task in clothing retrieval is to find relevant clothing
items given a user-provided image automatically. Some re-
lated works tackled the clothing retrieval problem using global
or fine-grained attribute prediction [26], or using parsing [27].
Recently, deep convolutional neural network has been success-
fully applied to feature representation. In literature, many
deep models have been built for image similarity learning.
Most of them are trained with the tripletloss function [25]. In
general, each image is represented by an unique embedding
vector by a deep convolutional neural network. During the
training phase, the parameters of the network are fine-tuned,
so that Euclidean distance between embeddings of similar
images are smaller and much larger for embeddings of dif-
ferent images. For instance, M. Hadi Kiapour et al. applied
the ImageNet pre-trained model [14] as the base network
and two fully-connected layers (4096 dimensions) for feature
representation [8]. Since [8] directly used the pre-trained Ima-
geNet features, their method is not suitable for clothing items
representation. In [17], Ziwei Liu et al. defined a new network
structure named FashionNet, which is similar to VGG-16 [22].
The last convolutional layer in FashionNet consisted three
components and was designed to capture both global and
local features of the image, as well as, to predict landmarks’
locations and their visibility. Though the accuracy of clothes
retrieval is high in [17], the FashionNet is not suitable for
real-time clothes retrieval system because there are too many
components in a single network. In our system, the network
for clothes retrieval is based on the Inception network [23]; for
feature representation, we use only 128 dimensions instead
of 4096 dimensions as in previous works. That fact enables
our system to achieve impressively low latency and meet the
requirements of real-time retrieval.

2.3 Indexing methods

Similarity search or nearest neighbor search in large database
is a core task in many applications such as data analytics,
data processing, and multimedia content analyzing. The task
is to find an item from a large database that is nearest to
the query item. This task can be defined as follows: given a
set of items 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁} and a query item 𝑞, the job
is to find 𝑛 ∈ 𝑋, which is the nearest neighbor of 𝑞 so that
the distance between 𝑛 and 𝑞 is minimum across all items
in the dataset. Euclidean distance is often employed as the
distance metric, however, 𝑙1 distance and cosine similarity
are also possible.

The nearest neighbor search in large database is extremely
challenging because computing the distance between the
query item and each item in database in high dimensional
space can be costly. Moreover, nearest neighbor search is often
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Figure 1: The architecture of the fashion search system.

time-consuming, especially when the size of the database is
large. In literature, this problem has been well explored
[24]. Instead of finding the exact nearest neighbor, a number
of methods have been proposed to approximately find the
nearest neighbor. Most of these methods try to transform
data from the original space into a lower space where the
nearest neighbor search can be accurately carried out. Their
computational cost and time are greatly reduced.

3 IMAGE DATASET AND SYSTEM
SETUP

3.1 Image dataset for training

Since data is the utmost important factor in any machine
learning tasks, the data preparation procedure must be car-
ried out carefully. As for training the clothes detection net-
work, we specifically use the well-known dataset from Deep-
Fashion [17] and the street-to-shop dataset from [8]. The main
reason to choose these datasets is that they are from different
domains and have a large number of images with bounding
box annotations. All images from both DeepFashion and
street-to-shop are annotated with bounding box information
and type of clothes. In this experiment, we classify clothes
into three categories, namely upper clothes, lower clothes,
and full-body clothes. As such, each image is labeled with
one category and four parameters, which define the bounding
box: 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥, 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥. After merging all images from
the two datasets above, we end up with the final dataset of
about 445𝐾 images in total. 90% of the final dataset goes
for training, and 10% goes for validation.

As for training the image similarity network, we also use
data from the street-to-shop dataset. All images are well
categorized and stored in different folders so that images
from the same directory are of similar clothing items and
images from different directories are of different clothing
items. There are 175𝐾 images in total, and about 545𝐾
triplets are generated for training.

3.2 Image dataset for evaluation

In the evaluation phase, we specifically use data of the In-Shop
Clothes Retrieval benchmarks from DeepFashion dataset [17]
to evaluate both the retrieval time and the retrieval accuracy
with the top-𝑘 recall rate as in [7]. The main reason to choose
this dataset is that it contains a relatively large number of
images of clothing items for both men and women. This
dataset also contains clothing items from different categories
such as shirts, cardigans, leggings, pants, tees tanks and,
sweaters. There are 52712 images in total including 8081
query images and 44631 corresponding relevant images (about
5.5 relevant items per query image). As such, this dataset
can be effectively used to evaluate our proposed indexing
method and compare it with other indexing methods.

In order to support the superiority of the proposed indexing
method in large scale application, we use two additional
datasets including the Oxford building dataset [18] and the
MIRFLICKR retrieval dataset [13]. The Oxford building
dataset consists of 5062 images collected from Flickr2 by
searching for particular Oxford landmarks. The collection
has been manually annotated to generate a comprehensive
ground truth for 11 different landmarks, each represented by
5 possible queries. This gives a set of 55 queries over which an
object retrieval system can be evaluated. The MIRFLICKR
retrieval dataset is offered by the LIACS Medialab at Leiden
University, The Netherlands. This is the largest image dataset
in our experiment, which contains up to one million images.
For each of the two additional datasets, we also analyze the
retrieval accuracy with the top-k recall rate and the retrieval
time among different indexing methods.

3.3 System setup

Our experiment is conducted on a computer with Intel Core
i5-7500 CPU @3.40GHz 4 cores, 32GB of RAM, GPU GeForce
GTX 1080 Ti, and 1TB SSD Harddisk. We use Elasticsearch
version 2.3.1 which runs on Java 9. The operating system

2https://www.flickr.com/
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is Ubuntu 16.04 64 bit. Both the clothes recognition net-
work and image similarity network are implemented with
the well-known TensorFlow framework [1]. The source code
for Locality Sensitive Hashing (LSH) scheme is from this
repository3 on Github.

4 OUR APPROACH

4.1 Clothes recognition on mobile device

Clothes recognition is the first item in our workflow. Its
task is to identify the bounding box where clothing item
is presented. This process is necessary since we are only
interested in the region where clothing item is presented.
In literature, the problem of object detection has been well
explored. Multiple network structures have been proposed
to address this problem such as Fast R-CNN [6], Faster R-
CNN [20], and YOLO [19]. Though Fast R-CNN [6], Faster
R-CNN [20] gain good accuracy, they cannot be applied to
real-time applications since they are too slow. The YOLO
[19] and Fast YOLO [21] can run at high FPS, however,
their accuracy is relatively low when compared to other
methods. In [16], Wei Liu et al. proposed a new network
structure called Single Shot MultiBox Detector (SSD) that
can both enhances the detection accuracy and reduce the
detection time. On the Pascal VOC2007 test, SSD framework
(VGG16 as the base network) achieved 74.3% mAP at 46
FPS whereas the Faster R-CNN, YOLO, and Fast YOLO
can only achieved 73.2%, 66.4%, 52.7% at 7 FPS, 21 FPS,
155 FPS respectively [16]. In our experiment, the MobileNet
[10] is adopted as the base network since MobileNet is a light
weight convolutional neural network which is specially built
for mobile and embedded applications. Employing MobileNet
SSD as the clothes recognition network can result in better
accuracy and performance because it utilizes the merits of
both the SSD framework and the MobileNet.

In our experiment, clothing items are classified into three
categories, namely upper clothes, lower clothes, and full-body
clothes. The methodology to train the MobileNet SSD is
the same as in [16]. After the training phase is done, the
trained model is, then, exported to mobile-ready version with
TensorFlow Mobile framework. Deploying clothes recognition
network on mobile device can make full use of the compu-
tational resource of a mobile device and share a lot of load
with the backend server. Therefore, it can help to improve
the retrieval time of the system.

4.2 Image similarity network

Earlier works on image similarity usually employ the VGG-16
[22] as the base network and add one or two fully-connected
layer for feature representation. It is noteworthy that in previ-
ous works, the embedding of each image is a 4096-dimensional
vector. Though the mentioned method results in good accu-
racy in term of clothes retrieval, it is not suitable for real-time
application since the embedding vector is too large. In our

3https://github.com/kayzhu/LSHash

Figure 2: Image similarity network.

approach, we use the Inception network [23] as the base net-
work and two fully-connected layer for feature representation.
The architecture of our image similarity network is described
as in Fig. 2.

The Inception network has been widely and successfully
used in many computer vision tasks. The reason is both
the width and depth of the Inception network are increased
while the computational budget is kept constant. In fact, the
Inception network has outperform the VGG-16[22] in many
task such as the ILSVRC 2014 Classification Challenge [23]
and the ILSVRC 2014 Detection Challenge [23]. As such,
we choose the Inception network over the VGG-16[22] to be
the base network. As for feature representation, we use two
fully-connected layers with 512 neurons for the first layer and
128 neurons for the second layer. Therefore, the embedding
of an image is a 128-dimensional vector. With this approach,
important features of the image are still kept whereas the
retrieval speed of the system is significantly improved because
the size of the embedding vector is greatly reduced.

The methodology to train our image similarity network is
the same as in [25]. The goal is to train an image similarity
model via a large number of triplets. A triplet is a set of three
images denoted by 𝑡𝑖 = (𝑝𝑖, 𝑝

+
𝑖 , 𝑝

−
𝑖 ) where 𝑝𝑖 is the anchor

image, 𝑝+𝑖 is the positive image, and 𝑝−𝑖 is the negative
image. In this experiment, both anchor image and positive
image are of the same or similar clothes whereas the negative
image contains completely different clothing item from that
of the anchor image. The similarity between two image 𝐴
and 𝐵 is defined according to their Euclidean distance in the
embedding space:

𝐷(𝑓(𝐴), 𝑓(𝐵)) = ‖𝑓(𝐴)− 𝑓(𝐵)‖22 (1)

where 𝑓(.) is the embedding function and 𝐷(., .) is the Eu-
clidean distance in this space. The triplet loss function of 𝑡𝑖
can, then, be defined as follows:

𝐿(𝑝𝑖, 𝑝
+
𝑖 , 𝑝

−
𝑖 ) = 𝑚𝑎𝑥(0,𝑚+𝐷(𝑓(𝑝𝑖), 𝑓(𝑝

+
𝑖 ))−𝐷(𝑓(𝑝𝑖), 𝑓(𝑝

−
𝑖 )))
(2)

where 𝑚 is the margin parameter of the distance between
(𝑝𝑖, 𝑝

+
𝑖 ) and the distance between (𝑝𝑖, 𝑝

−
𝑖 ). Specifically, the

margin parameter 𝑚 is chosen to be 1.0 in our experiment.
During the training phase, all the parameters of the net-
work are fine-tuned to minimize the triplet loss function
𝐿(𝑝𝑖, 𝑝

+
𝑖 , 𝑝

−
𝑖 ). In other words, the objective is to make the

109



Large Scale Fashion Search System with Deep Learning and
Quantization Indexing SoICT 2018, December 6–7, 2018, Danang City, Viet Nam

Euclidean distance between anchor image and positive image
as small as possible and the distance between anchor image
and negative image as large as possible.

4.3 Quantization Indexing

As mentioned above, the image similarity network takes an
image as input and returns a feature representation of that
image. It is noteworthy that the representation of each image
is a 128-dimensional vector. The searching for similar images
can be done by comparing the similarity metric (cosine simi-
larity or Euclidean distance) between the query image and
each of the images in the database. This approach is known
as the brute force search approach. The main drawback of
this method is that its speed is slow and will grow exponen-
tially when the size of the image database grows. That fact,
along with the increasing demands on real-time retrieval in
real-world applications, requires a new indexing method to
minimize the processing time while searching in large image
database.

Quantization indexing is an indexing method that trans-
forms the image embedding vector from numerical space to
text space. Then, the searching for similar images in database
can be carried out by a full text search engine. The proposed
indexing method has to meet the following criteria:

∙ The properties of the feature representation of an im-
age must remain unchanged after being indexed by the
proposed method. In other word, the searching for sim-
ilar images in numerical space (before being indexed)
and text space (after being indexed) must return the
same results.

∙ Words which are generated by the proposed indexing
method in the text space must have a suitable length
so that the trade-off between accuracy and latency is
acceptable.

Based on the mentioned criteria, we propose a new indexing
method called quantization indexing, which uses 𝑄 as the
quantization factor to transform the embedding vector from
numerical space to text space. Let the embedding vector
(output of the image similarity network) be denoted by 𝑤 =
[𝑤1, 𝑤2, ..., 𝑤𝑛] where 𝑛 is the length of the embedding vector
(𝑛 = 128 in this case), then, the encoding function is given
in the following formula:

𝑒𝑛𝑐𝑜𝑑𝑒(𝑤) =

𝑛⋃︁
𝑖

𝑓𝑙𝑜𝑜𝑟(|𝑄*𝑤𝑖|))⋃︁
𝑗

𝜎𝑖 (3)

where 𝑄 is the quantization factor, 𝑄 is equal or greater than
1 and 𝜎𝑖 is defined as follows:

𝜎𝑖 = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑤𝑖) =

{︂
”𝑝 ” + 𝑖 𝑖𝑓 𝑤𝑖 > 0
”𝑛 ” + 𝑖 𝑖𝑓 𝑤𝑖 < 0

(4)

For each element 𝑤𝑖 in the feature vector 𝑤, the term 𝜎𝑖

is repeated for a 𝑓𝑙𝑜𝑜𝑟(|𝑄 * 𝑤𝑖|) times. For instance, given
𝑄 = 50, the feature vector 𝑤 = [0.02,−0.04, 0.06], then
|𝑄 * 𝑤𝑖| will be [1, 2, 3] and encoded vector in text space is
p1 n2 n2 p3 p3 p3. With quantization indexing, all image
embedding vectors are transformed into text space and the

searching for similar images can be easily and effectively
carried out with Elasticsearch engine.

The quantization factor 𝑄 has a crucial impact on the
accuracy and performance of this indexing method. If 𝑄 is a
small value, then, the length of the indexed vector will also be
small. Thus, the retrieval time will decrease and the accuracy
will, also, decrease. In contrast, when the value of 𝑄 is large,
the length of the indexed vector will also be large. Therefore,
both the retrieval time and accuracy will increase. The value
of 𝑄 is a human chosen convention and varies with different
dataset. As such, the value of the quantization factor 𝑄 must
be carefully chosen.

5 RESULTS AND EVALUATION

In this section, we further analyze the retrieval accuracy
(mean average precision at top-𝑘) and the retrieval time of
our proposed indexing method with other indexing methods.
Specifically, we compare our proposed method with the brute-
force search approach and the Locality Sensitive Hashing
scheme [4].

5.1 Mean average precision and retrieval
time on the In-Shop Clothes Retrieval
benchmarks

In this subsection, we compare our proposed indexing method
with the traditional brute-force search method and the LSH
scheme. Images used in this experiment are from the In-Shop
Clothes Retrieval benchmarks of the DeepFashion dataset.
The mean average precision is measured at top-10 retrieval
accuracy. For the brute-force search, both Euclidean distance
and cosine similarity are used as evaluation metric and for
the LSH technique, the Euclidean distance is used. As men-
tioned earlier, the quantization factor 𝑄 has strong impact on
both accuracy and performance of the proposed quantization
indexing method. Therefore, in this experiment, we choose
to use three different quantization factors 𝑄 ∈ {10, 50, 100}
to fully investigate the performance of our proposed method.
Details on the retrieval accuracy and retrieval time are shown
in Table 1.

It can be easily observed that the brute-force search method
achieves the highest mAP (79.36 % and 76.42 % for cosine
similarity and Euclidean distance respectively). However, the
retrieval time of this method is also highest since this ap-
proach computes distance between query item and all items in
database directly in the original embedding vector space. The
LSH scheme has a slightly worse retrieval accuracy (72.32%
mAP) than the brute-force search but the retrieval time is
significantly reduced from 2.178 seconds (brute-force with co-
sine similarity) and 2.982 seconds (brute-force with Euclidean
distance) down to 0.068 s. As for the proposed method, we
can notice that both the retrieval time and retrieval accuracy
increase as 𝑄 increases. This can be easily explained because
when the value of 𝑄 is small, the length of the indexed vector
in the text space is small and a lot of information is lost
after indexing. When the value of 𝑄 is large, the length of
the indexed vector in the text space is large, which leads
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to higher accuracy and also more time for searching. When
𝑄 = 50, the accuracy of the proposed method is 76.45%,
which is better than the LSH scheme (72.32%) and the re-
trieval time is improved from 0.068 to 0.024 second (≈ 64%
faster). When 𝑄 = 100, our quantization indexing method
achieves comparable accuracy when compared to brute-force
search approach (78.21% and 79.36%) while the retrieval
time is greatly reduced from 2.178 to 0.032 second.

In summary our proposed indexing method can signifi-
cantly improve the retrieval time while the retrieval accuracy
is still kept at a high rate. Moreover, our proposed method
can can outperform the LSH scheme in term of both retrieval
accuracy and retrieval time.

5.2 Mean average precision and retrieval
time on the Oxford building dataset
and the MIRFLICKR retrieval
dataset

In previous experiment, we use our image similarity network
for evaluating the proposed indexing method. In this experi-
ment, we use different pre-trained models including VGG-16
[22], VGG-19 [22], ResNet50 [9], and DenseNet121[11] for gen-
erating image embedding vector. It is noteworthy that image
embedding vector are of different dimensions instead of 128
dimensions as previously. Specifically, image embedding gen-
erated by VGG-16 [22] and VGG-19 [22] is a 4096-dimensional
vector. Embedding by ResNet50 [9] and DenseNet121 [11]
is a 2048, 1664-dimensional vector respectively. In this time,
the mean average precision is measured at top-5 retrieval
accuracy.

As for the Oxford building dataset, our proposed method
is, again, compared with the brute-force search approach and
the LSH scheme. The retrieval accuracy is much lower than
that in previous experiment since all the pre-trained model
are not trained with the triplet loss function. However, it
is noticeable that our proposed method (with 𝑄 = 100)can
achieve relatively high retrieval accuracy when compared
to the brute-force search approach regardless of pre-trained

Table 1: Mean average precision and retrieval time
on the In-Shop Clothes Retrieval benchmarks

Neural network Indexing mAP Retrieval
model methods (%) time (s)

Brute-force search 79.36 2.178
(cosine similarity)
Brute-force search 76.42 2.982

Our (Euclidean distance)
image similarity LSH (8bits) 72.32 0.068

network Quantization indexing 68.12 0.013
(128-dimensions) (𝑄 = 10)

Quantization indexing 76.45 0.024
(𝑄 = 50)

Quantization indexing 78.21 0.032
(𝑄 = 100)

Table 2: Mean average precision and retrieval time
on the Oxford building dataset

Pre-trained Indexing mAP Retrieval
model methods (%) time (ms)

Brute-force search 26.24 0.132
(cosine similarity)
Brute-force search 24.23 0.129

(Euclidean distance)
LSH (8bits) 18.54 0.038

Quantization indexing 8.4 0.012
VGG16 (𝑄 = 10)

Quantization indexing 21.08 0.023
(𝑄 = 50)

Quantization indexing 25.04 0.048
(𝑄 = 100)

Brute-force search 22.06 0.122
(cosine similarity)
Brute-force search 20.48 0.134

(Euclidean distance)
LSH (8bits) 16.43 0.042

Quantization indexing 13.42 0.012
VGG19 (𝑄 = 10)

Quantization indexing 18.32 0.024
(𝑄 = 50)

Quantization indexing 19.21 0.041
(𝑄 = 100)

Brute-force search 26.77 0.126
(cosine similarity)
Brute-force search 25.43 0.123

(Euclidean distance)
LSH (8bits) 27.37 0.062

Quantization indexing 13.43 0.013
ResNet50 (𝑄 = 10)

Quantization indexing 24.32 0.024
(𝑄 = 50)

Quantization indexing 26.21 0.032
(𝑄 = 100)

Brute-force search 23.42 0.128
(cosine similarity)
Brute-force search 22.98 0.127

(Euclidean distance)
LSH (8bits) 18.32 0.048

Quantization indexing 11.32 0.015
DenseNet121 (𝑄 = 10)

Quantization indexing 15.43 0.032
(𝑄 = 50)

Quantization indexing 19.32 0.046
(𝑄 = 100)
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Table 3: Mean average precision and retrieval time
on the MIRFLICKR retrieval dataset

Pre-trained Indexing mAP Retrieval
model methods (%) time (ms)

Brute-force search 49.3 208.923
(cosine similarity)
Brute-force search 48.23 210.934

(Euclidean distance)
LSH (8bits) 44.54 3.3240

Quantization indexing 17.54 0.2338
VGG16 (𝑄 = 10)

Quantization indexing 35.21 0.4342
(𝑄 = 50)

Quantization indexing 46.72 0.9376
(𝑄 = 100)

Brute-force search 49.3 229.147
(cosine similarity)
Brute-force search 44.74 220.321

(Euclidean distance)
LSH (8bits) 42.16 3.2950

Quantization indexing 13.42 0.2354
VGG19 (𝑄 = 10)

Quantization indexing 26.85 0.3265
(𝑄 = 50)

Quantization indexing 48.21 0.8623
(𝑄 = 100)

Brute-force search 47.25 248.62
(cosine similarity)
Brute-force search 45.78 234.09

(Euclidean distance)
LSH (8bits) 44.43 3.408

Quantization indexing 18.65 0.2351
ResNet50 (𝑄 = 10)

Quantization indexing 28.71 0.4561
(𝑄 = 50)

Quantization indexing 43.42 0.8721
(𝑄 = 100)

Brute-force search 48.14 245.29
(cosine similarity)
Brute-force search 45.91 239.07

(Euclidean distance)
LSH (8bits) 42.11 3.258

Quantization indexing 18.32 0.3561
DenseNet121 (𝑄 = 10)

Quantization indexing 32.47 0.4576
(𝑄 = 50)

Quantization indexing 46.74 0.9802
(𝑄 = 100)

model in-use. In most case of pre-trained models, the pro-
posed quantization indexing method (𝑄 = 100) can easily
outperform LSH scheme in term of both retrieval accuracy
and time. Details on both retrieval accuracy and retrieval
time on the Oxford building dataset are presented in Table
2.

Finally, we benchmark our proposed indexing method
with the 1𝑀 image MIRFLICKR retrieval dataset. From the
experimental result, we can observe that retrieval accuracy of
the brute-force search approach is still highest. However, the
retrieval time of this method increases significantly as the
size of the database is up to 1𝑀 images. With the average
retrieval time of above 200 seconds, this method can not
be applied in real-time application though its accuracy is
highest. The LSH approach achieves much better retrieval
time (about 3 seconds) but its accuracy is slightly lower
when compared to the brute-force method. Our proposed
indexing method (𝑄 = 100) gives a great performance with
an accuracy of about 45% mAP and retrieval time of about
0.9 second. The retrieval time of our method is much lower
than the LSH scheme while its accuracy almost the same as
LSH scheme. Details on both retrieval accuracy and retrieval
time on the MIRFLICKR retrieval dataset are presented in
Table 3.

To sum up, it is verified that our proposed indexing method
is a novel approach. It can both gain good accuracy and im-
prove the retrieval time regardless of image domains, methods
to generate image embedding, and the dimension of the em-
bedding vector. With an appropriate quantization factor 𝑄,
our method can easily outperform the LSH scheme in term
of both retrieval accuracy and time, even when the size of
the image database is at large scale.

6 CONCLUSIONS

In this paper, we define a new task in clothing retrieval sys-
tem, which aims to minimize the retrieval time when user
query for similar clothes in large database. Also, we propose a
new architecture for fashion search system with state-of-the-
art methods. Two new features including embedding object
detection network on mobile device and quantization index-
ing are introduced to the system to address the mentioned
problem. Through extensive experiments, it is verified that
our proposed indexing methods can both reduce the retrieval
time significantly and keep the retrieval accuracy at a high
rate. With the proposed indexing method, our system are
capable of finding multiple similar clothing items from large
database at a short delay. Therefore, our system can well
meet the requirements of real-time retrieval in real-world
applications.
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