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Highlights

• SACT is proposed to determine the suitable number of clusters and centroids.

• SHSI-IPD model is proposed to reduce the size of the input data of SACT.

• Experiments were conducted on the big data such as the hyperspectral images.

• The algorithms FCM, FCoC and IVFCoC were combined with SACT in experiments.

• Eight indicators are used to support cluster quality assessment of SACT algorithms.
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Abstract

The assessment of cluster tendency is a method determining whether a considering data-set
contains meaningful clusters. The raised questions often are: How many clusters is the data-
set reasonably partitioned into and How is the data-set disposed? In this paper, we proposed
a new assessment method of cluster tendency which is called Silhouette-Based Assessment
of Cluster Tendency (SACT). The SACT algorithm appraises the cluster tendency of the
data-set in terms of the number of clusters and the initial prototypes which can be used to
simultaneously determine the suitable number of clusters and the prototypes. The informa-
tion of the suitable number of clusters and the prototypes helps the clustering algorithms to
improve the performance. The hyperspectral image analysis is one of the complex problems
which need to improve the speed of the SACT algorithm by using the Image Patch Distance
technique for sparse hyperspectral image representation, i.e., reducing the size of the input
data of the SACT algorithm. Experiments were conducted on some labeled synthetic data
sets, color images and hyperspectral images. The proposed algorithm exhibited high per-
formance, reliability and accuracy compared to previously algorithms in the assessment of
cluster tendency.

Keywords: Cluster analysis, assessment of cluster tendency, hyperspectral image analysis,
fuzzy co-clustering, fuzzy clustering.

1. Introduction

Clustering is an unsupervised learning method that divides a data-set into the meaning
ful and useful clusters. Some well-known clustering algorithms are studied and widenly
applied to various fields like K-Means [1] , Expectation Maximization (EM) [2], Hierarchical
clustering (HC) [3], Spectral clustering [4], Co-clustering [5] and fuzzy clustering techniques
such as Fuzzy C-Means (FCM) [6, 49], type-2 fuzzy clustering [7], fuzzy co-clustering [8, 47],
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type-2 fuzzy co-clustering [9]. These techniques have continually been improved and applied
to the areas of real-life problems such as biomedicine [10], Web data analysis [11], pattern
recognition [12], query information [13], data classification [14].

There are two main problems in application of clustering algorithms. The first one is that
these algorithms use alternating minimization methods to solve non-convex optimization
problems to find the cluster solutions [16]. These algorithms require a set of initial centroids
to start searching and often terminating at the optimal solution which strongly depends
on the initial controids. Therefore, the final soulution is sensitive to the initial centroids.
Due to its simplicity, the random initialization method has been widely used. Moreover, the
random initialization method only works stable when the randomly initial centroids are close
to a good solution. Therefore, how to select the initial centroids is one of the most important
problems in data clustering. Recently, the FCM algorithm-based methods [49, 50, 51] have
used the PSO algorithm to initialize the centroids. The second issue is that the number of
clusters C needs to be determined in advance as an input of the clustering algorithms. In a
real data set, C is usually unknown. In practice, the different values of C are tried in which
the cluster validation indices are used to measure the clustering results and determine the
best suitable value of C. Some proposed methods [15, 17, 18, 19] used the Silhouette index
and methods in [9, 47] used the index of compactness and separation to find the optimal
number of clusters. These methods consist of a series of the clustering procedures with the
number of clusters varying from Cmin to Cmax. In each iteration, the clustering results are
quantified by the validity indices. After finishing the algorithm, the value of the indices is
used to estimate the optimal number of clusters.

The assessment of cluster tendency is a method that determines whether a considering
data-set contains meaningful clusters. Bezdk et. al. [20] have introduced a technique known
as tools for visual assessment of cluster tendency (VAT). This technique can determine the
optimal number of clusters in the data-set by building an ordered dissimilarity image (ODI).
We can estimate the optimal number of clusters by counting the number of dark blocks
along the diagonal of ODI image. The VAT algorithm seems to work well for relatively
small data sets (n ≤ 1000). However, for a data set of moderate size (n ≥10,000), the
computation time for reordering the image matrix becomes expensive. To overcome these
drawbacks of the VAT algorithm, some improved VAT algorithms have been proposed.
Prabhu et. al. [38] proposed Enhanced VAT by producing a binary image, which can be
visually assessed for the cluster tendency. Then enhanced VAT reduces the computational
complexity and performs similarities with different measures of metrics that are used in
an effective visual evaluation process. Huband et. al. [21] proposed a bigVAT algorithm
which used to solve the large data problem suffered by the VAT algorithms. Automated
VAT algorithms [22, 23] was combined with a path-based distance transform and Spectral
VAT [37] based on the difference between diagonal blocks and off-diagonal blocks which were
proposed to automatically determine the number of clusters use ODI image. Havens [24]
proposed iVAT by using a graph-theoretic distance transform to improve the effectiveness
of the VAT algorithm which reduces the computational complexity of the algorithm iVAT
from O(N3) to O(N2). Essentially, the improved VAT algorithms have overcome some of
the limitations of VAT and have automatically identified the number of data clusters. In
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general, the improved VAT algorithms can only determine optimal clusters on small and
medium data sets.

In this paper, we proposed a new assessment of cluster tendency algorithm (called SACT).
The SACT algorithm is used to solve two fundamental problems in data clustering. First, we
represent the data-set as a weighted graph and construct a minimum spanning tree (MST)
using the Prime algorithm. Where, the vertexes correspond to the data points, the size of
each edge is the Euclidean distance between two corresponding data points. Then, the SACT
algorithm iteratively hash MST to Cmax branches. In each iteration, the largest weighted
edge is found in the MST to hash and removes this edge from the MST. After each hashing
step, the values of the silhouette validity index are calculated and the status of branches
is stored. Finish the hashing, we can rely on the values of the silhouette validity index in
hashing steps to determine the optimal number of clusters and rely on the status of branches
to determine the initial centroids. In order to reduce the size of the input data of the SACT
algorithm, we proposed a sparse hyperspectral image representation model using Image
Patch Distance Technique. Experimental results on several synthetic data sets, color images
and hyperspectral images demonstrate the effectiveness of the method for determining the
optimal number of clusters and obtaining better clustering results.

The organization of the rest of the paper is as follows: some related works are introduced
in Section 2, the proposed method is presented in Section 3. Section 4 benchmark the
proposed method against the related ones on several data sets. We finally conclude in
Section 5 with discussions.

2. Background

2.1. Visual Assessment of Cluster Tendency method

Bezdk et al. [20] introduced a technique known as tools for visual assessment of cluster
tendency (VAT). This study presented an idea which can determine the suitable number of
data clusters by building a simple process, easy to understand using spanning tree finding
techniques based on Euclidean distance measurement to build an ordered dissimilarity image
(ODI). From ODI, we can use our senses to determine the number of data clusters. Original
VAT is described summarized as follows.

Let X =
{
xi|xi ∈ RD

}
, i =1, ..., N be a data set which contains N objects in the D-

dimensional space. R = {Rij}NxN is a pairwise matrix of dissimilarities between objects,
each element of which Rij is the dissimilarity between objects xi and xj. In data clustering,
Euclidean distance is often used to calculate the difference between data objects. In this
case, Rij is the squared Euclidean distance by the following formula.

Rij = ‖xi − xj‖2 =
D∑

d=1

(xid − xjd)2 (1)

By convention above, for all i, j with 1 ≤ i, j ≤ N , R satisfies the following conditions:
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Rij ≥ 0
Rij = Rji

Rii = 0
(2)

The objective of the VAT algorithm is to rearrange the rows and columns of the matrix
R according to the desired order, and then displays this matrix as a density image. Then,
the VAT algorithm used visual to determine the number of clusters. Let K, I and J be the
sets of integers corresponding to the index of the data objects in the data set. P is an array
of integer values corresponding to the index of the row or column of the correlation matrix
R will be rearranged. The VAT algorithm is represented in Algorithm 2.1.

Algorithm 1 VAT algorithm: Determine the number of clusters by density image data

Input: Correlation matrix R size NxN .
Output: The number of data clusters.
Step 1: Set K = {1, 2, ..., N};
Select (i, j) ∈arg max{dpq} with p, q ∈ K.
Set P (1) = {i}; I = {i} and J = K − {i}.
Step 2: For t = 2, 3, , N Do
Select (i, j)∈ arg max{dpq} with p ∈ I, q ∈ J ;
Set P (t) = j; replace I ← I ∪ {j} and J ← J − {j}.
Step 3: Rearrange the order of the rows and columns of the matrix R in the order of the
indices in P matrix, we obtain a new correlation matrix D with size NxN as follows.
D = [dij] =

[
RP (i)P (j)

]
, 1 ≤ i, j ≤ N .

Step 4: Display D as a density image size NxN . Based on this image to determine the
number of data clusters.

The VAT algorithm rearranges the pairwise distance values in a similar way to find the
minimum spanning tree in the weighted graph by Prim’s algorithm. The main differences
between the VAT algorithm and Prim’s algorithm are that: (a) The VAT algorithm does not
focus on representing the MST, but only find the orders in which the vertices are added; and
(b) VAT used a selection of the initial vertex that depends on the maximum edge weight in
the underlying complete graph. Using the vertices of the largest weighted edge as the initial
points to avoid forming the zigzagged paths.

Example 1: A sample data set with the image of an original density matrix, the graph of
MST and the image of the arranged density matrix are shown in Fig. 1. There are five dark
blocks on the main diagonal of the ODI image (Fig. 1.d). According to VAT, the suitable
number of clusters in the sample data set is five.
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Figure 1: a) The sample data set; b) The image of an original density matrix; c) The graph of MST; d) The
image of arranged density matrix D

The VAT algorithm is a simple method, easy to understand, however, the VAT algo-
rithm determines the number of clusters through visual assessment and not mention how to
identify the centroids. Moreover, the larger the data is, the larger the time is to determine
the minimum spanning tree and the larger the image size of ODI is, so it is difficult to
observe visually. To overcome this drawback of the VAT algorithm, some improved VAT
algorithms have been proposed [21], [22], [23], [24]. However, these algorithms have the high
computational complexity.

2.2. Silhouette cluster validity index

Cluster validation allows assessing the quality of clustering results. These clustering
results are usually measured in terms of compactness and separateness of clusters given
by some indices. Compactness shows how closely the data are in a cluster. Separateness
indicates how well-separated a cluster is from other clusters.

The Silhouette index [28] is a well-known index, which used to validate a clustering
partition [17], [29]. It is based on geometrical considerations and combines ideas of both
compression and separation of the clusters. We have used this index as the fitness function
to select the candidate clusters.

Consider an object xi that belongs to cluster Ca. The average dissimilarity of xi to all
of the other objects of Ca is denoted by a(xi). Next, let us consider cluster Cb. The average
dissimilarity of xi to all of the objects of Cb will be called d(xi, Cb). For all clusters Cb 6= Ca,
the cluster with minimal dissimilarity to xi is selected, i.e., b(xi) = min d(xi, Cb), Cb 6= Ca.
This value represents the dissimilarity of xi to its neighbor cluster, and the silhouette S(xi)
is given by (3) as follows:

S(xi) =
b(xi)− a(xi)

max {a(xi), b(xi)}
(3)

According to Equation (3), if the objects are always assigned to the closest cluster, the
silhouette values will be within the interval [−1,+1]. Thus, higher silhouette values indicate
a better assignment of objects to the closest clusters. Therefore, when the silhouette value
is equal to zero, it is unclear to which cluster the object should be assigned, i.e., either the
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current one or to a neighboring cluster. Finally, if cluster Ca is a singleton, then S(xi) is
not defined, and the most natural choice is to set S(xi) = 0.

2.3. Hyperspectral Image Patch Distance Technique

The technology generating hyperspectral images combine the two latest technologies in
imagery and spectroscopy, through the hyperspectral image sensor, sequential imagery data
can be acquired with a high spectral resolution, which benefits the theoretical research on
the hyperspectral data analysis in various fields [36]. Nowadays, this technology has widely
been used in different fields, such as military, search salvage and rescue, environmental mon-
itoring, mineral exploration and public security. The advantages of the hyperspectral image
are the high spectral resolution, providing spectral characteristics and spatial information
simultaneously, the large band number which contains knowledge of the target spectrum for
target detection and recognition. Some recent typical studies on the hyperspectral image
are for target detection of minerals[39], environmental management [40], military [41], tar-
get detection [42, 43] and the hyperspectral image classification [44, 45, 46]. As a powerful
model, convolutional neural networks (CNNs) have demonstrated remarkable performance
in various image representation and recognition problems. Zhang et al. [53] used CNN to
recognize human genders in a video stream, Guimin et al. [54] used CNN to reconstruct
high-resolution images from low-resolution ones and Yu et al. [55] proposed an efficient
CNN architecture to boost its discriminative capability for hyperspectral image classifica-
tion. Due to the insufficient training samples of hyperspectral image data, therefor, the
unsupervised hyperspectral image clustering still have challenges to be effectively applied to
the hyperspectral image analysis.

In the hyperspectral image, pixel objects within a near neighborhood are usually captured
from the rectangle made by the similar materials, i.e. Their spectral characteristics are highly
correlated [31]. Based on this fact, we exploit the spatial neighborhood to combine spectral
and spatial-contextual information. The content of image patch distance technique (IPD)
[32] is presented below.

We first consider a w×w spatial window with central pixel xij, where w is an odd positive
integer.

Let Φ (xij) = {xpq|p = i− k, ..., i, ..., i+ k; p = j − k, ..., j, ..., j + k} is the spatial neigh-
bors w2-pixel set consisting of xij, in which k = (w − 1) /2, i − k ≤ i ≤ k, j − k ≤ j ≤ k.
Examples of the spatial neighbor set with size of 3 × 3 are shown in Fig. 2, in which each
square grid represents a pixel vector in the hyperspectral images.
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On the edge. (c) In the image

Let al and bl be the lth element of the pixel sets Φ (xij) and Φ (xpq), respectively, i.e.,
Φ(xij) = {a1, a2, ..., aw2}], Φ(xpq) = {b1, b2, ..., bw2}. The distance between pixel al and pixel
set Φ (xij) is commonly defined as d(al,Φ(xpq) = min(al,

b∈Φ(xpq)

b) [33].Then, we can obtain a scalar

distance measure between two pixels al and bl as follows,

ds(al, bl) = max

(
min d(al, b)

b∈Φ(xpq)

,min d(a, bl)
a∈Φ(xij)

)
(4)

where d(a, b) is a spectral similarity function comparing a to b.
With the previous definitions, we give the definition of new similarity measure between the
observed pixels xij and xpq as follows,

dIPD(xij, xpq) =
w2∑
l=1

ds(al, bl)

=
w2∑
l=1

{
max

(
min d(al, b)

b∈Φ(xpq)

,min d(a, bl)
a∈Φ(xij)

)} (5)

3. Silhouette-Based Assessment of Cluster Tendency algorithm

3.1. SACT algorithm

The assessment of cluster tendency is a method that determines whether a considered
data set contains meaningful clusters. In this section, we proposed a new assessment of
cluster tendency method which is called Silhouette-Based Assessment of Cluster Tendency
algorithm (SACT). The SACT algorithm assesses the cluster tendency in terms the number
of clusters which used Silhouette index to determine the suitable number of clusters. The
SACT algorithm was inspired from VAT algorithm [20]. VAT is considered as a simple
method, easy to understand , however, the VAT algorithm determines the number of clusters
through visual assessment. The SACT algorithm is presented as follows.

At first step, we build the weighted graph and the minimum spanning tree (MST).
Then, the SACT algorithm carries out a series of MST hashing procedures with a number of
branches varying from 2 to Cmax. The data-set are modeled using the Euclidean distance to
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build the weighted matrix and the weighted graph; then the Prim’s algorithm is used to build
the minimum spanning tree. The SACT algorithm inherited simple and can automatically
determine the suitable number of data clusters and centroids simultaneously for clustering
algorithms. We present a spanning tree by the adjacent list then hashing this tree by an edge
which has the largest weight in the tree. The number of clusters corresponds to the number
of the formed branches. At each step, Silhouette index is calculated and compared to the
previous steps. If the Silhouette index in each step is higher than the previous step, then the
state of the cluster distribution is saved. The result of each step is the number of clusters
and cluster distribution. The status which has the largest Silhouette index corresponds to
the most suitable number of clusters. The SACT algorithm is represented in Algorithm 3.1.

Algorithm 2 SACT algorithm finds the suitable number of clusters and centroids

Input: Correlation matrix R with size N × N , the maximum number of clusters Cmax.
Output: The suitable number of clusters and centroids.
Step 1. Set K = {1, 2, , N}; Select (i, j) ∈ arg max {dpq} with p, q ∈ K. Set E = {(i, j)};
I = {i} and J = K − {i}.
Step 2. For t = 2, 3, , N
Select (i, j) ∈ arg max {dpq} with p ∈I, q ∈J; Set E = E ∪ {(i, j)}; replace I ← I ∪ {j} and
J ← J − {j}.
Step 3. Initialize T = {E}, S0 = 0, c=1.
Step 3.1. Set c=c+1;
Step 3.2. Select (k, i, ni) with T=T1,..., Ti,..., Tc and ek ≤ arg min{T}, ek ∈ Ti.
Step 3.3. Set Tc+1 = φ. Move ek+1, ek+2,..., eni

∈ Ti to Tc+1.
Hash ek ∈ Ti; set T = T ∪ Tc+1.
Step 3.4. Calculate Silhouette index Sc. Save the number of clusters Co=c, Silhouette index
Sc and cluster distribution status T .
Step 3.5. If Co ≥ Cmax then stop and go to Step 4, else go back Step 3.1.
Step 4. Determine the number of clusters Co corresponding to the maximum value of the
Silhouette index Sc.
Step 5. Identify centroids from distributed cluster status T .

The SACT algorithm consists of three main phases, which are the construction of matrix
R which requires O(N2); build the minimum spanning tree (MST) that needs O(N2); hash
MST into Cmax branches which needs O(CmaxN). Thus, the computational complexity of
SACT is O(CmaxN

2), where N is the number of pixels, Cmax is the maximum number of
data clusters.

Note that after hashing, the number of clusters was increased by 1, the question here
is, ”The algorithm carries out hashing how many times is?”. Individual data-set contains
a certain number of clusters Cmax times, so Cmax must be determined before searching for
the suitable number of clusters. The SACT algorithm will hash the tree in the range from 2
to Cmax and the SACT algorithm find the suitable number of clusters corresponding to the
highest Silhouette index.
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For the problem of determining the appropriate number of clusters: The
similarity between SACT and VAT is that both algorithms build an MST uses the Prim
algorithm. The difference between SACT and VAT is: VAT builds the ODI image and
determines the number of clusters by visually counting the number of dark blocks on the main
diagonal of ODI. Meanwhile, SACT built MST, hash MST, and quantified the Silhouette
index after each hashing. SACT determines the number of clusters by determining the time
of hashing at which Silhouette index obtains the largest value.

The similarity between the SACT algorithm and the other methods [9, 15, 17, 18, 19, 47]
is that these algorithms use indices to determine the optimal number of clusters. While
SACT and the other methods in [15, 17, 18, 19] use the Silhouette Index, the methods in
[9, 47] use the S index. The basic differences between SACT and these methods are: The
previous methods must conduct a number of clustering iteration. Thus, the computational
complexity of the previous methods is multiplied by the number of clustering iterations.
Meanwhile, SACT builds MST and hash MST. The computational complexity of SACT is
primarily focused on building the MST.

For the problem of determining the initialization centroids:
To identify centroids from SACT algorithm, we give the following comments. According

by identifying a spanning tree, we selected the edge with the largest weight as initialized
point to avoid creating the zigzag path, then we choose the smallest value in the vicinity of
the selected edges. In the case, we cannot find a smaller edge, then we had chosen a different
edge which has a length greater than the other edge to take out nearby neighborhood. An
order of the edges in the spanning tree is naturally formed, in which the edges of the same
cluster are closely successful. Thus, clusters are localized, the question is to find where the
centroid. Because the spanning tree has no cycle, so there is only one path between the
two vertices of the branch. The path from the beginning to the end probably goes through
intermediate points of the branches. With such reason, we have chosen the vertices of the
edge in the central of the branches to generate the centroids.

Determining cluster centroids is carried out as soon as estimating the appropriate num-
ber of clusters by selecting a suitable vertex in the branches of the tree. This is considered
as simple task only on the basis of analytical reasoning about the distribution of vertices
in the branches of the tree. Thus, the accuracy of the initial centroids and the computa-
tional complexity depends completely on the suitable number of clusters. Thus, the SACT
algorithm can do two taskes of estimating the number of clusters and initializing centroids.
Meanwhile, the previous methods in [49, 50, 51] determine the initial centroids using the
particle swarm optimization algorithm.

The theorical advantages of the SACT algorithm can be summarized as follows: 1) SACT
can not only determine the number of clusters but also can determine the prototypes; 2)
SACT does not produce the density image, so the memory takes less space than VAT
and improved VATs. Thus, SACT is suitable with color images and hyperspectral images.
3) SACT uses compression and separation index for clustering quality. While VAT and
improved VATs use image processing techniques to indirectly measure cluster quality.

To understand the SACT algorithm, we consider the following example.
Example 1: We need to determine the number of clusters of the data set consisting of
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350 points in 2-dimensional space. The maximum number of clusters predicted by 10.
In this example, we have conducted to determine the most suitable clusters using the

VAT algorithm, SACT, and the methods in [15] and [47]. We used the VAT algorithm to
determine the minimum spanning tree, the original density image and the density image of
VAT are shown in Fig. 3.

Figure 3: a) The sample data set; b) The image of an original density matrix; c) The graph of MST; d) The
image of arranged density matrix D

According to the density image of VAT in Fig. 3, there are six dark blocks on the main
diagonal corresponding to the number of clusters.

Figure 4: The diagrams of the validity indices and the number of clusters of sample data set: a) Silhouette
index produced from the SACT algorithm; b) Silhouette index produced from the method in [15]; c) S index
produced from the method in [47]

The results shown in Fig. 4 which produced fron three methods could lead to the
conclusion of the most suitable number of clusters is six clusters.

3.2. The sparse hyperspectral image representation model

Through the examples presented above, the SACT algorithm can be used to evaluate the
number of data clusters. However, there is still a problem to have dealing with processing
large datasets, such as the hyperspectral images. Because of assessing the cluster tendency
of these data sets, we must construct a dissimilarity matrix based on the distance between
all pixels. Thus, the size of the hyperspectral image is normally large, the size of the
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dissimilarity matrix and MST will increase and the time building the dissimilarity matrix
and MST will be increased considerably. For this reason, we proposed a method for reducing
the size of the input of SACT by using the IPD technique.

Consider a hyperspectral image with size N = W ×H, where W and H are the width
and the height of the image, respectively. Divide the image into M cells sized w×w, where
w is an odd positive integer. Assume that W and H are divisible by w, then M = N/w2.
Due to the relational properties of pixels to other pixels in their vicinity, the problem of
N -pixel hyperspectral image analysis can become a problem of M -pixel hyperspectral image
analysis. The dissimilarity matrix of the new problem is defined by the distances between
cells using(5). The size of the new image analysis problem decreases w2 times in terms of the
number of pixels. We call this method is sparse hyperspectral image representation using
the image patch distance technique (SHIR-IPD). The sparse hyperspectral image model is
summarized in Fig. 5.

Figure 5: The sparse hyperspectral image representation model

4. Results and discussion

The SACT algorithm can solve two main problems in data clustering consisting of de-
termining the suitable number of clusters and initializing the centroids. Therefore, the
performance analysis of the proposed algorithm will consist of two parts. The one is to the
effectiveness in determining the suitable number of clusters. We suppose that the number
of clusters is unknown in the considered data sets and use the SACT algorithm along with
some previous methods [15, 20, 47] to find the candidate number of clusters. In addition,
we also measure the processing time of these methods to verify performance.
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Table 1: Concise information of high-dimensional synthetic data sets

Data sets Abbreviation No. of clusters No. of objects No. of features
Dim032 D1 16 1024 32
Dim064 D2 16 1024 64
Dim128 D3 16 1024 128
Dim256 D4 16 1024 256
Dim512 D5 16 1024 512
Dim1024 D6 16 1024 1024

The other is to evaluate the effectiveness of the initial cluster centroids obtained by
the proposed algorithm. We use various cluster quality assessment indices to validate the
effectiveness of the proposed algorithm compared with the previous methods [49, 50, 51].

4.1. Performance analysis in determining the suitable number of clusters

To evaluate performance of the proposed algorithm in determining the suitable number
of clusters, we conducted experiments on the high-dimensional synthetic, color image and
hyperspectral image data sets. Experimental results are compared with the VAT algorithm
[20] and the methods in [15] and [47]. Where, the VAT algorithm visually identifies the
number of clusters. The method in [15] conducts Cmax clustering loops. Each loop uses
the FCM algorithm with number of clusters is incremented from 2 to Cmax. The clustering
result in each loop is quantified by the Silhouette index. Then, the number of clusters with
the largest Silhouette value is choose. The method in [47] is similar to the method in [15]
by using FCCI algorithm and the S index instead of FCM algorithm and Silhouette index,
respectively. Note that the smaller S index is, the better the clustering result is, so the
number of clusters corresponds to the largest value of S index.

4.1.1. The labeled high-dimensional synthetic data sets

In this section, we evaluated the effectiveness of the SACT algorithm in determining
the suitable number of clusters by conducting experiments on the labeled high-dimensional
synthetic data sets 1. These data sets have 1024 records, each of which is described by the
different dimensions (D=32, 64, 128, 256, 512 and 1024). Each record is labeled to one of
16 clusters. Summaries of these data sets are shown in Table 1.

We hypothesize that the number of clusters on these sets of data is unknown. Therefore,
we start looking for this parameter with the hypothesis that clusters can only be maximally
Cmax = 20. We expect that the number of clusters obtained from the SACT algorithm is
equal to the number of clusters obtained from the VAT algorithm, the methods proposed in
[15, 47], and the number of clusters that have been labeled.

We used VAT algorithm for assessment of cluster tendency on these data sets. The
results are shown in Fig. 6 including original distribution density images (ODDI) and the
ordered dissimilarity image (ODI). These are gray-scale images of size 1024× 1024.

1Speech and Image Processing Unit, School of Computing University of Eastern Finland, Clustering data
sets [Online], ¡http://cs.joensuu.fi/sipu/datasets/¿
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Table 2: The execution time of methods determining the optimal number of clusters on Dim032-Dim1024

Data sets Dim032 Dim064 Dim128 Dim256 Dim512 Dim1024
SACT 1.65+ 2.01+ 2.45+ 3.34+ 5.27+ 11.26+

Method in [15] 7.25 10.05 14.69 19.87 28.82 41.75
Method in [47] 6.58 9.15 12.81 18.16 25.63 38.94

Figure 6: Experiment results to find the number of clusters using VAT algorithm

From the results in Fig. 6, we can count the number of dark blocks on the main diagonal
of the ODI images. As a result, each ODI image has 16 dark blocks corresponding to the
suitable number of clusters of 16.

Next, we used the SACT algorithm and the methods in [15, 47] to determine the suitable
number of clusters in these data sets. The results are quantified by the Silhouette index
(in SACT and [15]) and S index ( [47]). The curves of indices and the number of clusters
corresponding to each data set shown in Fig. 7.

On the basis of the curves in Fig. 7, the values of Silhouette index or S index reach the
maximum or minimum value at the number of cluster is 16. Thus, all algorithms give the
number of clusters of 16 which exactly equal to the number of the labeled classes in these
data-sets.

To dicuss about performance of speed in determining the number of clusters of the
SACT algorithm, we measured the consumed time on the SACT algorithm and the methods
in [15, 47]. Note that, in this case, we do not mention the VAT algorithm, because the
VAT algorithm determines the number of clusters visually. The execution time is shown in
Table 2 (in seconds). Table 2 exhibits the execution time of the SACT algorithm on the
Dim032-Dim1024 data sets is lower than the methods in [15] and [47].
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Figure 7: The curves of the indices and the number of clusters in data-sets of Dim032-Dim1024 using the
SACT algorithm and the methods in [15, 47]
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Table 3: The execution time of methods determining the optimal number of clusters on the color images

Data sets 14087.jpg 101055.jpg 147091.jpg 241004.jpg 42049.jpg 295087.jpg
SACT 1.28+ 1.59+ 1.28+ 1.10+ 0.95+ 1.13+

Method in [15] 8.68 9.12 8.68 8.35 5.37 7.87
Method in [47] 7.46 7.95 7.46 7.11 4.72 6.53

Table 4: Concise information of hyperspectral image data sets

Data sets Samples Lines Bands
Gulf of Mexico Wetland Sample (GoMWs) 320 660 360
Geologic Sample (Gs) 320 600 357
Agriculture & Vegetation Sample(AVs) 320 600 360

4.1.2. The unlabeled data sets

Next, we used the SACT algorithm and the methods [15, 47] to assess the cluster tendency
on unlabeled data sets 2 and hyperspectral images3. In this section, we do not present the
results of the cluster tendency assessment using the VAT algorithm because the obtained
result images from this method are too large (9600 × 9600 pixels for color images and
211, 200× 211, 200 pixels for hyperspectral images).

We randomly selected the six color images with size of 120×80. The results of the cluster
tendency assessment of these images are represented by the curves of Silhouette index and
the number of clusters as shown in Fig. 8. As the result in Fig. 8, the indices respectively
take the extreme value at the number of clusters of 4, 4, 3, 3, 2 and 4.

The execution time of the SACT algorithm on the color images compared to the methods
in [15] and [47] are shown in Table 3.

In the next experiments, we used three hyperspectral image data-sets. The summary of
these data sets is shown in Table 4.

2The Berkeley Segmentation Dataset and Benchmark [Online], http://www.eecs.berkeley.edu /Re-
search/Projects/CS/vision/bsds/

3SpecTIR’s Advanced Hyperspectral & Geospatial Solutions http://www.spectir.com/
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Figure 8: The characteristic curves of the indices and the number of clusters on 5 color images using SACT
algorithm

Before assessing the cluster tendency, the IPD technique with different spatial windows
varying of 3× 3, 5× 5, 7× 7, 9× 9, 11× 11, 13× 13 and 15× 15 is applied on the individual
original hyperspectral image data-set to reduce the size of input data for the cluster tendency
assessment algorithms. For example of spatial window sized 9× 9, each pixel in the sparse
data set corresponds to a cell consisting of 81 pixels in original image region. Thus, the size
of the sparse image data set will be reduced 81 times compared to the original image data
set. The experimental results are represented through the numbers of cluster and Silhouette
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Table 5: The execution time determining the optimal number of clusters on the hyperspectral images

Data set The use method
Using IPD technique with sizes of spatial windows varies
Original 3x3 5x5 7x7 9x9 11x11 13x13 15x15

GoMWs
SACT N/A N/A 29+ 14+ 8+ 6+ 5+ 2+

Method in [15] 12,688 521 157 95 58 39 30 22
Method in [47] 10,978 480 126 65 43 32 25 18

Gs
SACT N/A N/A 28+ 13+ 7+ 6+ 4+ 2+

Method in [15] 12,239 501 153 85 54 37 29 19
Method in [47] 10,472 443 122 81 49 32 22 16

AVs
SACT N/A N/A 28+ 15+ 8+ 5+ 4+ 2+

Method in [15] 12,496 519 155 96 58 39 26 21
Method in [47] 10,653 468 123 83 46 32 20 17

index which are shown in Fig. 9.

Figure 9: The characteristic curves graph of the indices and the number of clusters of hyperspectral images

The experimental results in Fig. 9 exhibits the Silhouette index takes the maximum value
corresponding to the number of clusters is 7, 5 and 5 for Gs, GoMWs and AVs, respectively.
Thus, the suitable number of clusters in the data-set of GoMWs, Gs, and AVs is 5, 7 and 5,
respectively. The execution time of these methods is shown in Table 5.

Table 5 show that the execution time of the SACT algorithm is lower than the considered
methods. However, in some cases of the large data size, the SACT algorithm cannot be
performed with small spatial window due to a buffer overflow.

4.1.3. Discussion about determining the suitable number of clusters

Determining the suitable number of clusters is one of the two problems of the SACT
algorithm. The experimental results on the labeled data sets presented in Section 4.1.1
indicates that the number of clusters produced from the SACT algorithm is equal to the
labeled number of classes and the results by running various previous methods like VAT
algorithms. This demonstrates the reliability of the SACT algorithm in determining the
number of clusters which has been verified through six labeled datasets.
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Based on the quantitative results shown in Tables 2, 3 and 5 which were experimented
on the color image dataset and the hyperspectral image datasets, the consumed time taken
by the SACT algorithms is much lower than for the considered methods. That exhibits the
SACT algorithm could be feasible in determining the suitable number of clusters.

4.2. Performance analysis in determining the centroids

To evaluate performance of the SACT algorithm in terms of centroid determination,
we have conducted experiments in pairs of FCM-SACT with FCM-PSO, FCCI-SACT with
FCCI and IVFCoC-SACT with IVFCoC. The FCM-PSO algorithm [49] used particle swarm
optimization (PSO) algorithm to determine the initial centroids for the FCM algorithm.
Initializing centroids using the PSO algorithm is considered as a new approach applied in
some recent studies [49, 50, 51, 52]. The algorithms of IVFCoC [9] and FCCI [47] are
the improved fuzzy co-clustering algorithms. The terms of FCM-SACT, FCCI-SACT and
IVFCoC are the combined results of the algorithms of FCM [6], IVFCoC [9] and FCCI [47]
with the SACT algorithm, i.e., the algorithms of FCM, FCCI and IVFCoC used the number
of clusters and centroids obtained from the SACT algorithm as input parameters.

The experimental results are represented through the validity indices of PC [25], MSE
[26] and IQI [27], Recall and Precision [34], Dunn’s index separation (DI), Davies-Bouldins
index (DB-I), Xie and Benis index (XB-I) [35]. The clustering algorithm obtains the higher
the indices of PC, IQI, Recall, Precision and D-I (called upward index) are, the lower the
indices of MSE, DB-I, XB-I (called downward index) are, the better the clustering quality
is.

The experimental results are presented in the table form and the color image. In par-
ticular, the table form includes the values of the indices corresponding to the clustering
algorithms. The upward indices are added to the sign ”+” and the downward indicators are
added to the sign ”-”. The resulting color image consists of the pixel clusters colored by
different colors.

4.2.1. High-dimensional synthetic data sets

Experimental results on high-dimensional synthetic data sets are shown in Table 6.
Table 6 shows that the SACT-based clustering algorithms achieved better values of the

indices than FCMPSO, FCCI and IVFCoC. In these experiments, two indices of Recall and
Precision are only used in clustering the labeled datasets. Note that, these indices are closer
to 1.0, the results are more similar to the ground true data.

4.2.2. Color image datasets

Experimental results on color image datasets are shown in Table 7. Results in Table 7
show that the SACT-based clustering algorithms achieved better values of the indices than
FCMPSO, FCCI and IVFCoC.

4.2.3. Hyperspectral image datasets

Experimental results on hyperspectral image datasets are shown in Table 8 and Fig. 10.
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Table 6: Experiment results on Dim032-Dim1024 using algorithms FCM-PSO, FCCI, IVFCoC and SACT

Algorithm PC+ MSE− IQI+ D-I+ DB-I− XB-I− Prec.+ Rec.+

D1

FCM-PSO 0.90 11.15 0.93 0.0048 0.82 0.44 0.85 0.86
FCM-SACT 0.89 10.02 0.94 0.0040 0.85 0.36 0.85 0.86
FCCI 0.90 8.07 0.98 0.0082 0.62 0.19 0.96 0.98+

FCCI-SACT 0.93 8.00 0.99+ 0.0081 0.64 0.17 0.97 0.98+

IVFCoC 0.96 7.45 0.99+ 0.0082 0.62 0.19 0.97 0.98+

IVFCoC-SACT 0.98+ 3.23+ 0.99+ 0.0095+ 0.51+ 0.11+ 0.98+ 0.98+

D2

FCM-PSO 0.94 11.78 0.91 0.0053 0.95 0.52 0.85 0.89
FCM-SACT 0.95 11.32 0.92 0.0046 0.93 0.51 0.83 0.88
FCCI 0.96 5.11 0.99+ 0.0056 0.76 0.22 0.97 0.95
FCCI-SACT 0.97 4.32 0.99+ 0.0058 0.71 0.20 0.98+ 0.96
IVFCoC 0.99 1.19 0.99+ 0.0065 0.76 0.21 0.98+ 0.96
IVFCoC-SACT 0.99+ 0.92+ 0.99+ 0.0081+ 0.63+ 0.18+ 0.98+ 0.97+

D3

FCM-PSO 0.86 13.7 0.89 0.0035 0.93 0.41 0.92 0.89
FCM-SACT 0.89 12.1 0.90 0.0036 0.93 0.48 0.90 0.90
FCCI 0.88 24.4 0.96 0.0037 0.67 0.23 0.97 0.97
FCCI-SACT 0.96 9.25 0.97 0.0039 0.65 0.18 0.98 0.97
IVFCoC 0.98 1.19 0.99+ 0.0035 0.67 0.23 0.98+ 0.97
IVFCoC-SACT 0.99+ 0.75+ 0.99+ 0.0042+ 0.62+ 0.16+ 0.98+ 0.98+

D4

FCM-PSO 0.87 15.8 0.91 0.0062 0.95 0.37 0.85 0.84
FCM-SACT 0.89 12.2 0.85 0.0065 0.99 0.35 0.83 0.85
FCCI 0.90 8.22 0.97 0.0117 0.51 0.09 0.97 0.96
FCCI-SACT 0.95 6.43 0.98 0.0135 0.57 0.11 0.98 0.98
IVFCoC 0.98 0.66 0.99 0.0236 0.45 0.08 0.95 0.97
IVFCoC-SACT 0.99+ 0.62+ 0.99+ 0.0268+ 0.38+ 0.07+ 0.97+ 0.99+

D5

FCM-PSO 0.83 10.70 0.91 0.0037 1.19 0.46 0.92 0.92
FCM-SACT 0.90 9.45 0.92 0.0033 1.27 0.46 0.93 0.94
FCCI 0.93 6.42 0.98 0.0049 0.53 0.13 0.93 0.95
FCCI-SACT 0.95 4.32 0.99+ 0.0053 0.50 0.09+ 0.95 0.95
IVFCoC 0.91 0.84 0.99+ 0.0057 0.51 0.12 0.97 0.96
IVFCoC-SACT 0.98+ 0.53+ 0.99+ 0.0078+ 0.35+ 0.10 0.98+ 0.98+

D6

FCM-PSO 0.89 16.82 0.85 0.0011 0.92 0.38 0.87 0.84
FCM-SACT 0.91 15.13 0.89 0.0014 0.89 0.42 0.86 0.85
FCCI 0.95 7.02 0.98 0.0037 0.74 0.19 0.96 0.93
FCCI-SACT 0.97 5.17 0.98 0.0045 0.67 0.16 0.98 0.98
IVFCoC 0.97 3.9 0.99+ 0.0067 0.73 0.19 0.98 0.99+

IVFCoC-SACT 0.99+ 1.89+ 0.99+ 0.0098+ 0.54+ 0.06+ 0.99+ 0.99+
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Table 7: Experiment results on color images using algorithms FCM-PSO, FCCI, IVFCoC and SACT

Data sets Algorithms PC+ MSE− IQI+ D-I+ XB-I− DB-I−

14037

FCM-PSO 0.62 35.1 0.93 0.13 0.62 1.76
FCM-SACT 0.65 34.7 0.92 0.15 0.62 1.75
FCCI 0.98 28.8 0.98+ 0.27 1.07 1.97
FCCI-SACT 0.99+ 27.3 0.98+ 0.37 0.79 1.62
IVFCoC 0.99+ 26.8 0.98+ 0.45 0.38 0.95
IVFCoC-SACT 0.99+ 25.1+ 0.98+ 0.92+ 0.26+ 0.87+

101055

FCM-PSO 0.67 21.5 0.86 0.12 0.75 1.59
FCM-SACT 0.68 24.2 0.82 0.19 0.73 1.55
FCCI 0.98 25.1 0.86 0.25 1.23 1.89
FCCI-SACT 0.97 24.7 0.90 0.32 1.18 1.75
IVFCoC 0.98 21.8 0.93 0.63 0.29 0.65
IVFCoC-SACT 0.99+ 20.1+ 0.95+ 0.96+ 0.22+ 0.52+

147091

FCM-PSO 0.62 30.1 0.81 0.23 0.85 1.85
FCM-SACT 0.58 29.9 0.82 0.46 0.86 1.76
FCCI 0.97 24.5 0.87 0.82 1.24 1.87
FCCI-SACT 0.98 23.5 0.92 0.98 1.02 1.66
IVFCoC 0.99+ 22.8 0.96 0.92 0.13 0.39
IVFCoC-SACT 0.99+ 19.2+ 0.98+ 1.13+ 0.11+ 0.28+

241004

FCM-PSO 0.66 49.2 0.73 0.10 0.93 1.79
FCM-SACT 0.67 45.9 0.74 0.11 0.98 2.12
FCCI 0.77 64.4 0.56 0.43 1.27 1.87
FCCI-SACT 0.88 52.5 0.91 0.87 1.01 1.13
IVFCoC 0.99+ 50.1 0.94 0.91 0.23 0.55
IVFCoC-SACT 0.98 36.2+ 0.97+ 1.16+ 0.19+ 0.29+

420049

FCM-PSO 0.61 33.8 0.95 0.16 0.89 1.59
FCM-SACT 0.62 32.7 0.92 0.19 0.88 1.52
FCCI 0.99+ 25.9 0.96 0.33 1.65 1.83
FCCI-SACT 0.99+ 23.1 0.98+ 0.87 1.26 1.72
IVFCoC 0.99+ 25.5 0.96 0.87 0.29 0.65
IVFCoC-SACT 0.99+ 20.9+ 0.98+ 1.25+ 0.28+ 0.58+
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Table 8: The clustering results on the hyperspectral image using the clustering algorithms FCM, FCCI,
IVFCoC and SACT

Data sets Algorithm PC+ MSE− IQI+ D-I+ XB-I− DB-I−

GoMWs

FCM-PSO 0.58 76.2 0.90 0.11 0.62 1.89
FCM-SACT 0.58 76.1 0.92 0.27 0.70 1.81
FCCI 0.92 76.8 0.94 0.17 1.15 2.15
FCCI-SACT 0.95 72.1 0.97+ 0.39 0.92 1.68
IVFCoC 0.95 72.9 0.95 0.17 0.95 1.78
IVFCoC-SACT 0.97+ 69.7+ 0.97+ 0.43+ 0.47+ 0.85+

Gs

FCM-PSO 0.51 73.2 0.86 0.21 1.02 1.95
FCM-SACT 0.52 71.3 0.90 0.15 0.98 1.83
FCCI 0.91 70.1 0.85 0.05 1.10 1.94
FCCI-SACT 0.93 69.2 0.91 0.35 0.84 1.48
IVFCoC 0.92 72.1 0.89 0.45 0.80 0.92
IVFCoC-SACT 0.98+ 65.3+ 0.96+ 0.73+ 0.75+ 0.75+

AVs

FCM-PSO 0.44 71.9 0.88 0.09 0.68 1.15
FCM-SACT 0.45 73.9 0.89 0.11 0.63 1.18
FCCI 0.87 79.2 0.91 0.09 0.93 0.96
FCCI-SACT 0.92 76.1 0.94 0.81+ 0.76 0.96
IVFCoC 0.91 70.2 0.93 0.59 0.73 0.68
IVFCoC-SACT 0.97+ 65.2+ 0.97+ 0.59 0.65+ 0.48+

Results in the Tables 6, 7 and 8 exhibit the SACT-based clustering algorithms produce
the better values of the indices than FCM-PSO, FCCI and IVFCoC. In which, the IVF-
CoCSACT algorithm produces the best results. The clustering results obtained from the
algorithms of FCM, FCCI, and IVFCoC using the centroids from the SACT algorithm are
better than some other centroids initialization methods.

4.3. Discussion

The SACT algorithm was inspired by the VAT algorithm which is considered a simple
and effective cluster tendency assessment algorithm. However, the limitation of VAT is the
visual assessment method, so it’s difficult to applied to large datasets.

The SACT algorithm can be considered as an improvement of the VAT algorithm. The
SACT algorithm inherited the idea of the VAT algorithm for building a minimum spanning
tree. However, the SACT algorithm uses the quantitative method of Silhouette index to
determine the number of data clusters instead of using the visual assessment method as
the VAT algorithm. In addition, the SACT algorithm treats on the individual data object,
therefore the SACT algorithm can simultaneously predict the number of clusters and the
centroids.
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Figure 10: Hyperspectral image clustering results a) using IVFCoC-SACT; b) using IVFCoC; c) using FCCI-
SACT; d) using FCCI; e) using FCM-SACT, f) using FCM-PSO; g)Three-band color composite using ENVI
software

To demonstrate the correctness of the SACT algorithm, we conducted experiments on
some labeled data sets. The experimental results in Fig. 6 and Fig. 7 show that the number
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of clusters obtained from the SACT algorithm is exactly equal to the labeled number of
classes in the datasets.

To demonstrate the reliability of the SACT algorithm in determining the centroids, we
have incorporated the SACT algorithm into the clustering problem. We used the clustering
algorithms of FCM, FCCI and IVFCoC with the centroids from the SACT algorithm. Then,
we have to demonstrate empirical results of these algorithms are better than the clustering
algorithms of FCM-PSO, FCCI and IVFCoC. To quantify the experimental results, we have
used eight validity indices, including PC, MSE, IQI, Recall, Precision, D-I, DB-I, XB-I.
Validity indices are the basis for determining performance of the clustering algorithms. In
particular, we used the Recall and Precision indicators as the dedicated indicators for the
labeled datasets. The experimental results in Tables 6, 7 and 8 show that the clustering
algorithms using the centroids from the SACT algorithm produce the better results than
the considered algorithms.

Although the SACT algorithm is intended to overcome some of the limitations of the
VAT algorithm such as the size of input data and cluster tendency assessment. However,
the computational complexity of SACT is O(CmaxN

2), where Cmax is the maximum number
of clusters, Na is the size of input data.

Therefore, in order to be able to apply the SACT algorithm in the real-world applications
such as image processing applications including color images, multi-spectral images and
hyperspectral images, we have also applied a sparse hyperspectral image representation
model to reduce the input data size for the SACT algorithm. The results in Table 5 exhibit
somewhat the advantages of this model.

5. Conclusion

In this paper, we have proposed a new cluster tendency assessment method for simul-
taneously determining the suitable number of cluster and centroids in the hyperspectral
image analysis applications which is called Silhouette-based Assessment of Cluster Ten-
dency algorithm (SACT). The SACT algorithm assesses the cluster tendency of datasets in
terms identifying the number of clusters and initializing centroids simultaneously. First, the
dataset is modeled by using the Euclidean distance to build the weighted matrix and the
weighted graph; then the Prim algorithm is used to build the minimum spanning tree. Next,
the original minimum spanning tree was hashed into branches, each branch corresponding
to one cluster. Finally, the Silhouette index is used to determine the suitable number of
clusters. We also used the IPD technique to represent sparse the hyperspectral images to
reduce the data input size for the SACT algorithm. In order to validate the effectiveness of
SACT algorithm, a series of experiments were conducted using six labeled high-dimensional
synthetic datasets, six color images and three hyperspectral image datasets.

The hyperspectral image data plays an important part in quantitative remote sensing,
military, environmental management, mineral mining, biological and medical, precision agri-
culture applications. In the future, we will apply the SACT algorithm to conduct further
applications of classification, target detection and change detection. A potential direction
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is how to use the SACT algorithm together dimentionality reduction, CNNs in a framework
to enhance performance of hyperspectral image classification.
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