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Abstract
Hot electrons cooling by phonons in GaAs/AlAs cylindrical quantum wire (CQW), under 
the influence of an intense electromagnetic wave (EMW), is studied theoretically. Analytic 
expression for the electron cooling power (CP) is derived from the quantum transport equa-
tion for phonons, using the Hamiltonian of interacting electron–optical phonon system. 
Both photon absorption and emission processes are considered. Numerical results show 
that the CP reaches maximum when the energy difference between electronic subbands 
equals the energy of an optical phonon plus the photon energy. Under the influence of the 
EMW, the negative CP is observed showing that electrons gain energy from phonon and 
photon instead of losing their energy. Also, the CP increases with increasing the EMW 
amplitude. Our results theoretically clarify the mechanism of the electron cooling process 
by phonons in the GaAs/AlAs CQW under the EMW, which is of significance for design-
ing and fabricating high-speed nanoelectronic devices based on this material.
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1  Introduction

It is well-known that in a crystalline solid, the excitation of electrons into subbands 
results in their non-equilibrium distribution function and makes their temperature differ-
ent from the lattice temperature. The non-equilibrium distribution function is thermal-
ised rapidly to the Fermi function with a high electron temperature. The thermalisation 
process takes place very quickly (in about tens of femtoseconds) via electron–electron 
scattering in which the energy transferred to lattice by electrons is negligible so that 
the electron temperature remains greater than the lattice temperature, TL (Balkan 1998; 
Lee et al. 1995). It then leads to the formation of “hot electron” temperature ( Te ) (Bhar-
gavi and Kubakaddi 2016). In the steady state, hot electrons lose their energy by emis-
sion of acoustic phonon at low temperature and of optical phonons at higher tempera-
ture. This process is referred as hot electron cooling by phonons. The mechanisms of 
electron cooling can be extracted, in principle, from the dependence of the hot electron 
relaxation on the temperature and carrier density (Kaasbjerg et al. 2014). Also, in pure 
samples electron scattering by phonons sets the ultimate limit on its intrinsic mobility, 
which plays important role for applications in high speed devices (Kubakaddi 2016). 
Hot electron energy loss rate by phonon emission is another property which signifi-
cantly affects the device operation under high field conditions.

On the other hand, in low-dimensional materials, the confinement of carriers results 
in many exceptional physical features, including electron–phonon interaction in com-
parison to bulk materials (Stroscio and Dutta 2001). In particular, for novel 2D materi-
als such as graphene and other atomically layered materials (Castro Neto et  al. 2009; 
Das Sarma et  al. 2011; Butler 2013; Gupta et  al. 2015; Iacopi et  al. 2016; Sangwan 
and Hersam 2018), the electron–phonon interaction shows many exotic behaviors. The 
effect of electron–phonon interaction on many effects in those materials has been also 
investigated in details (Yarmohammadi 2016; Kubakaddi 2009; Xu et  al. 2010; Mori 
and Ando 2011; Yarmohammadi 2017a; Nguyen 2017; Yarmohammadi et al. 2017; Hoi 
et  al. 2018; Yarmohammadi 2017b). In general, the hot electron cooling by phonons 
has been studied both theoretically and experimentally not only in conventional two-
dimensional semiconductor heterostructures (Kubakaddi et al. 2003; Ma et al. 1991; Xu 
1996; Fletcher et  al. 1997; Qu et  al. 2005; Sippel 2015), but also in advanced single-
layer 2D materials such as graphene (Betz 2012; Bhargavi and Kubakaddi 2014; Stange 
et al. 2015; Kubakaddi 2018), monolayer MoS2 and other transition metal dichalcoge-
nides monolayers Kaasbjerg et al. (2014), and three dimensional Dirac fermion systems 
(Bhargavi and Kubakaddi 2016). For one-dimensional quantum wires, there have been 
also some studies on the hot electron relaxation dynamics carried out by R. Gaka and 
co-workers using Monte Carlo simulations (Gaška et al. 1994; Mitin et al. 1994; Gaška 
et al. 1994). However, experimental and theoretical studies on this problem in quantum 
wires have not attracted much attention so far, especially in the presence of an electro-
magnetic wave (EMW).

In the present work, we investigate the hot electrons cooling process in the GaAs/AlAs 
cylindrical quantum wire (CQW) in the presence of an intense EMW. The cooling power 
or electron energy loss rate is calculated by assuming that optical phonons emission is the 
source of electrons cooling. The paper is organised as follows. In Sect.  2, we introduce 
the theoretical model and brief derivation of a quantum transport equation for the average 
number of phonons. In Sect. 3, the expression for the CP is derived. Numerical results and 
discussion are given in Sect. 4. Finally, concluding remarks are listed in Sect. 5.



Theoretical investigation of hot electron cooling process…

1 3

Page 3 of 10   342 

2 � Theoretical model and quantum transport equation for phonons

We are interested in modelling a cylindrical GaAs quantum wire of radius R and length L 
( L ≫ R ) embedded in AlAs. Under the infinitely deep confinement potential approxima-
tion, the electron wave function can be written as (Wang and Lei 1994)

with the corresponding energy

where n = 0,±1,±2,… is the azimuthal quantum number; � = 1, 2, 3,… is the radial quan-
tum number; � = (r,�, z) are the cylindrical coordinates for the system and kz denotes the 
axial wave-vector component. Dn,� = 1∕(

√
�yn,�R) is the normalisation factor; xn,� is the 

� th zero of the nth order Bessel function, i.e., Jn(xn,�) = 0 and yn,� = Jn+1(xn,�) ; and me is 
the effective mass of electron.

When the electron density in the wire is small enough and the temperature is low enough 
( kBTe ≪ 𝛥E where �E is the energy difference between the ground and first-excited states), 
only the lowest subband is occupied. For the quantum wire with the only one occupied sub-
band, the scattering rate is determined by intra-subband electron–phonon interaction via 
the continuous Frohlich Hamiltonian (Shadrin et al. 1994). The Hamiltonian of the elec-
tron–phonon system in the presence of an intense EMW can be written in the secondary 
quantisation representation as H = H0 + U , in which Kang et al. (2004)

where �n,�, kz⟩ and �n�,��, kz + qz⟩ are electron states before and after scattering; a+
n,�,kz

 and 

an,�,kz (b
+
�
 and b�) denote the creation and annihilation operators of electron (phonon) 

respectively; � = (qx, qy, qz) is the phonon wave vector; �(t) is the vector potential of the 
EMW which is given, for a linear polarised EMW, by �(t) = (e∕�)�0 sin�t where e, E0 , 
and � are, respectively, the electron charge, the EMW amplitude, and the EMW frequency; 
ℏ�� is the phonon energy with the wave vector � ; C� is the electron–phonon coupling fac-
tor which depends on the scattering mechanism; and the matrix element Mn,�,n�,�� (q⊥) 
which characterises the configuration of electron confinement in the CQW takes the form 
(Masale and Constantinou 1993)

where y = q⊥R , q⊥ =
√

q2
x
+ q2

y
.

(1)�
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L
D
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�
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(2)En,�(kz) =
ℏ2k2

z

2me

+
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2

2meR
2
,

(3)H0 =
∑

n,�,kz

En,�

(
�z −

e

ℏc
�(t)

)
a+
n,�,kz

an,�,kz +
∑
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+
�
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(4)U =
∑
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∑

kz ,�

C�Mn,�,n�,�� (q⊥)a
+
n�,�� ,kz+qz
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(5)Mn,�,n�,�� (y) = ∫
1

0

xJ∣n−n�∣(yx)�
∗
n�,�� (x)�n,�(x)dx,
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In order to establish a quantum transport equation for phonons in the CQW, we use the 
general quantum equation for the particle number operator N� =

⟨
b+
�
b�
⟩
t

where 
⟨
...
⟩
t
 denotes a statistical average value at the moment t. Using the Hamiltonian 

H and usual commutation relations of the creation and annihilation operators, after some 
manipulations we obtain

where � = eℏ��0∕(me�) is the field parameter; N� and fn,�,kz are, respectively, the phonon 
and the electron distributions with lattice (phonon) temperature TL and electron tempera-
ture Te , the index s represents the processes of s photon absorption (emission) when s > 0 
( s < 0 ). The terms in the square brackets correspond to the absorption and the emission 
processes of a phonon with energy ℏ�� by the hot electron distribution. For phonons in 
equilibrium with a phonon bath at temperature T, i.e., TL = T  , the phonon distribution is 
given by the Bose–Einstein distribution (Kaasbjerg et al. 2014).

3 � General analytic expression for the hot electrons cooling power 
in CQW

We now calculate the electron cooling power (P) by assuming that electrons loss their 
energy to phonons only. The electron cooling power is defined as the rate at which the hot 
electron distribution loses its energy to the phonons system. As this is equivalent to the 
rate of change of the energy residing in the phonons, the cooling power can be obtained as 
Smith and Jensen (1989)

where 
(
�N�∕�t

)
 is the collision integral which gives the rate of change of the phonon dis-

tribution function N� due to electron–phonon scattering which has been derived in the pre-
vious section.

(6)iℏ
N�(t)

�t
=
⟨
[b+

�
b�,H]

⟩

t
,

(7)

�N�(t)

�t
=
�

ℏ

∑

n,�,n�,��,kz

|C�|2|Mn,�,n�,�� (�)|2
+∞∑

s=−∞

J2
s

(
�

ℏ�

)

×
{[

(1 + N�)fn�,��,kz+qz

(
1 − fn,�,kz

)
− N�fn,�,kz

(
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)]

× �

(
En,�(kz) − En� ,�� (kz + qz) + ℏ�� + sℏ�
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−
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)}
,

(8)P =
∑

�

ℏ��

(�N�

�t

)
,
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Inserting Eqs. (7) into  (8) then using the identities fk(1 − fk+q)Nq = fk+q(1 − fk)(1 + Nq) 
and fk+q(1 − fk) = Nq(fk − fk+q) , the cooling power will be recast as

where

We can see that in a situation where the electrons temperature Te equals to the phonons 
temperature T, the cooling power vanishes as required by detailed balance between the 
absorption and emission processes. At T = 0 , where there are no thermally excited pho-
nons, the second term in Eq. (9) equals to zero and the cooling power is given entirely by 
spontaneous emission processes (Kaasbjerg et  al. 2014). The expression for the cooling 
power obtained here is general and can be applied to any kinds of phonon as well as a gen-
eral electronic band structure.

In this calculation, we assume that electrons emit/absorb only optical phonons at high 
temperatures. Also, optical phonons are assumed to be dispersionless, i. e., �� ≈ �0 = con-
stant. In this case (Bau and Phong 1998), |C�|2 = e2ℏ�0

(
�−1
∞

− �−1
0

)
∕(2�0V0q

2) where V0 , 

�0 , �0 and �∞ are the normalisation volume, the electronic constant, the static and the high-
frequency dielectric constant, respectively. To obtain an explicit expression for F(T) from 
Eq.  (10), we transform the summations with respect to kz and q to integrals as 
(L∕2�) ∫ ∞

0
dkz , V0∕(2𝜋)

2 ∫ ∞

0
q⊥dq⊥ ∫ ∞

0
dqz , also we consider only the Bessel functions 

with s = −1, 0, 1 . After a straight-forward calculation, we have

where

(9)P = F(Te) − F(T),

(10)

F(T) =
�

ℏ

∑

n,�,n�,��

∑

kz ,�

ℏ��|C�|2|Mn,�,n�,�� (�)|2
+∞∑

s=−∞

J2
s

(
�

ℏ�

)
N�(T)

×
{[

fn,�,kz (Te) − fn�,�� ,kz+qz
(Te)

]

× �

(
En,�(kz) − En�,�� (kz + qz)) + ℏ�� + sℏ�

)

−
[
fn,�,kz (Te) − fn�,��,kz−qz

(Te)
]

× �

(
En,�(kz) − En�,�� (kz − qz)) − ℏ�� − sℏ�

)}
.

(11)F(T) = F1 + F2 + F3 + F4 + F5 + F6,
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with EF being the Fermi energy, kB being the Boltzmann constant, and

Here, we have set �En,�,n�,�� = ℏ2x2
n�,�� ∕(2meR

2) − ℏ2x2
n,�

∕(2meR
2) . The present result 

yields a more specific and significant interpretation of the electronic processes for emission 
and absorption of phonon and photon. These analytical results appear very complicated. 
However, physical conclusions can be drawn from graphical representations and numerical 
results, obtained from adequate computational calculations.

(13)Hn,�,n�,�� = ∫
∞

0

q⊥|Mn,�,n�,�� (q⊥)|2dq⊥,

(14)C+|s=±1 = −�En,�,n�,�� + ℏ�0 ± ℏ�,

(15)C−|s=±1 = −�En,�,n�,�� − ℏ�0 ∓ ℏ�,

(16)C±|s=0 = −�En,�,n� ,�� ± ℏ�0.

Fig. 1   Dependence of the CP on 
the photon energy for three dif-
ferent values of the CQW radius. 
Here, E0 = 4 × 105 V m−1 , and 
Te = 77 K
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4 � Numerical results and discussion

To clarify physical meanings of the above obtained result, in this section we numeri-
cally evaluate the CP using specific parameters of GaAs/AlAs CQW. The parameters 
taken in the evaluation are as follows (Masale and Constantinou 1993): �∞ = 10.9, 
�0 = 12.9 , me = 0.067 × m0 ( m0 being the mass of free electron), ℏ�0 = 36.25 meV, 
EF = 0.115 × 10−18 J. Also, we only consider the electron transitions between the low-
est subbands: n, n� = 0, 1 ; � = �

� = 1 . By computation, one can obtain x0,1 = 2.4048 , 
x1,1 = 3.8317 , y0,1 = 0.5192 , y1,1 = 0.4028 . The characteristics are obtained for the lattice 
temperature T = 60 K. The assumption of the extreme quantum limit is satisfied for this 
choice of parameters.

In Fig. 1, we show the hot electron cooling power as a function of the photon energy 
at different values of the CQW radius. In general, the CP decreases with increasing the 
photon energy. Because along with losing energy for phonons, electrons gain the energy 
from photons so their energy lost rate is smaller than it is in the case of absence of the 
EMW. From the figure, we also see that the CP reaches maximum at a special value of 
the photon energy. To deduce the physical meaning of this maximum we examine, as 
an example, the case of R = 9 nm (the dashed curve). In this case, �E0,1,1,1 = 62.5492 
meV and the resonant peak is at the photon energy of 26.2992 meV ( � ≈ 3.9941 × 1013 
s −1 ). Therefore, this resonant peak appears under the condition ℏ� = �E0,1,1,1 − ℏ�0 . 
This condition implies the resonant transition of electrons in the CQW between two 
subbands �0, 1⟩ and �1, 1⟩ via the emission of an optical phonon with energy ℏ�0 = 36.25 
meV along with the emission of a photon with the energy of 26.2992 meV. The appear-
ance of the peak on other curves can be explained similarly. In short, electron cooling 
process here can take place via two channels: transferring energy to phonons and emit-
ting photons. The rate of electron cooling reaches maximum when the energy differ-
ence between subbands is equal to the energy of an optical phonon plus photon energy. 
This behaviour is new in comparison to those obtained in the previous works where the 
EMW was absent.

Figure 2 shows the electron energy loss rate versus the radius of CQW at the electron 
temperature of 150, 200, and 250 K and the EMW frequency of 1013 s −1 . We can see that 
for small radii of CQW, the CP has positive value, i. e., electrons lose their energy to the 

Fig. 3   Dependence of the CP on 
the EMW amplitude at different 
values of the EMW frequency. 
Here, Te = 77 K, and R = 9 nm
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phonons system. As the radius increases, the CP changes its sign and is always negative. 
A negative CP means that electrons in the system can gain the energy from the cor-
responding electronic transitions induced by absorbing optical phonon and/or photon. 
Moreover, for extremely large radii, the CP varies not considerably.

The effect of the EMW amplitude on the CP is shown in Fig. 3 where we plot the 
CP versus the EMW amplitude at different values of the EMW frequency. It can be 
seen from the figure that the CP increases with increasing the EMW amplitude. This 
can be explained as follows. As the EMW amplitude increases, i.e., the intensity of 
the EMW increases, the energy that the electrons system receives from the EMW per 
time unit should increases. Therefore, the energy transfer rate from electrons to pho-
nons must increase so that the electron temperature remains constant (77  K in this 
case) instead of heating up. In addition, we can see that the CP is largest for the EMW 
frequency of 4 × 1013 s −1 , this value is close to the value that satisfies the condition 
ℏ� = �E0,1,1,1 − ℏ�0 as shown in Fig. 1.

5 � Conclusions

So far, we have investigated the hot electron cooling by phonons in CQWs in the presence 
of an EMW. The hot electron CP has been derived for the case of electron–optical phonon 
interaction. The results show that there exists resonant behaviour in the photon energy (fre-
quency) dependence of the CP. The CP reaches maximum value when a resonant scattering 
happens in the electron–phonon–photon system where an electron transits between its sub-
band levels by emitting an optical phonon and a photon. The negative CP implies that elec-
trons gain energy from phonon and photon instead of losing their energy. In addition, the 
CP at fixed temperatures and CQW radius increases when the EMW amplitude increases.
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