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Abstract

Many real-world datasets suffer from the unavoidable issue of missing values.

Classification with incomplete data has to be carefully handled because inad-

equate treatment of missing values will cause large classification errors. Us-

ing imputation to transform incomplete data into complete data is a common

approach to classification with incomplete data. However, simple imputation

methods are often not accurate, and powerful imputation methods are usually

computationally intensive. A recent approach to handling incomplete data con-

structs an ensemble of classifiers, each tailored to a known pattern of missing

data. The main advantage of this approach is that it can classify new incomplete

instances without requiring any imputation. This paper proposes an improve-

ment on the ensemble approach by integrating imputation and genetic-based

feature selection. The imputation creates higher quality training data. The

feature selection reduces the number of missing patterns which increases the

speed of classification, and greatly increases the fraction of new instances that

can be classified by the ensemble. The results of experiments show that the

proposed method is more accurate, and faster than previous common methods

for classification with incomplete data.
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selection, ensemble learning

1. Introduction

Classification is one of the most important tasks in machine learning and

data mining [1]. Classification consists of two main processes: a training process

and an application (test) process, where the training process builds a classifier

which is then used to classify unseen instances in the application process. Clas-5

sification has been successfully applied to many scientific domains such as face

recognition, fingerprint, medical diagnosis and credit card fraud transaction.

Many algorithms have been proposed to deal with classification problems, but

the majority of them require complete data and cannot be directly applied to

data with missing values. Even when some methods can be applied, missing10

values often lead to big classification error rates due to inadequate information

for the training and application processes [2].

Unfortunately, missing values are a common issue in numerous real-world

datasets. For example, 45% of the datasets in the UCI machine learning repos-

itory [3], which is one of the most popular benchmark databases for machine15

learning, contain missing values [2]. In an industrial experiment, results can be

missing due to machine failure during the data collection process. Data collected

from social surveys is often incomplete since respondents frequently ignore some

questions. Medical datasets usually suffer from missing values because typically

not all tests can be done for all patients [4, 5]. Financial datasets also often20

contain missing values due to data change [6, 7].

One of the most common approaches to classification with incomplete data

is to use imputation methods to substitute missing values with plausible values

[4, 8, 9]. For example, mean imputation replaces all missing values in a feature

by the average of existing values in the same feature. Imputation can provide25

complete data which can then be used by any classification algorithm. Simple

imputation methods such as mean imputation are often efficient but they are

often not accurate enough. In contrast, powerful imputation methods such as
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multiple imputation [10] are usually more accurate, but are computationally

expensive [11, 12]. It is not straightforward to determine how to combine classi-30

fication algorithms and imputation in a way that is both effective and efficient,

particularly in the application process.

Ensemble learning is the process of constructing a set of classifiers instead

of a single classifier for a classification task, and it has been proven to improve

classification accuracy [13]. Ensemble learning also has been applied to clas-35

sification with incomplete data by building multiple classifiers in the training

process and then applicable classifiers are selected to classify each incomplete

instance in the application process without requiring any imputation method

[14, 15, 16]. However, existing ensemble methods for classification with incom-

plete data often cannot work well on datasets with numerous missing values40

[14, 16]. Moreover, they usually have to build a large number of classifiers,

which then require a lot of time to find applicable classifiers for each incomplete

instance in the application process, especially when incomplete datasets contain

a high proportion of missing values [14, 15]. Therefore, how to construct a com-

pact set of classifiers able to work well even on datasets with numerous missing45

values should be investigated.

Feature selection is the process of selecting relevant features from original fea-

tures, and it has been widely used to improve classification with complete data

[17]. Feature selection has also been investigated in incomplete data [18, 19],

but the existing methods typically still use imputation to estimate missing val-50

ues in incomplete instances before classifying them. By removing redundant

and irrelevant features, feature selection has the potential of reducing the num-

ber of incomplete instances, which could then improve accuracy and speed up

classifying incomplete instances. However, this aspect of feature selection has

not been investigated. This paper will show how to utilise feature selection to55

improve accuracy and speed up the application process for classification with

incomplete data.
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1.1. Goals

To deal with the issues stated above, this paper aims to develop an effec-

tive and efficient approach for classification with incomplete data, which uses60

three powerful techniques: imputation, feature selection and ensemble learning.

Imputation is used to transform incomplete training data to complete train-

ing data which is then further enhanced by feature selection. After that, the

proposed method builds a set of specialised classifiers which can classify new

incomplete instances without the need of imputation. The proposed method65

is compared with other common approaches for classification with incomplete

data to investigate the following main objectives:

1. How to effectively and efficiently use imputation for classification with

incomplete data; and

2. How to use feature selection for classification with incomplete data to70

not only improve classification accuracy but also speed up classifying new

instances; and

3. How to build a set of classifiers which can effectively and efficiently classify

incomplete instances without the need of imputation; and

4. Whether the proposed method can be more accurate and faster than using75

imputation both in the training process and the application process; and

5. Whether the proposed method can be more accurate and faster than the

existing ensemble methods.

1.2. Organisation

The rest of this paper is organised as follows. Section 2 presents a survey of80

related work. The proposed method is described in Section 3. Section 4 explains

experiment design. The results and analysis are presented and discussed in

Section 5. Section 6 states conclusions and future work.

2. Related Work

This section firstly introduces traditional approaches to classification with85

incomplete data. It then discusses ensemble learning for classification with
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incomplete data. Finally, it presents typical work on feature selection.

2.1. Traditional Approaches to Classification with Incomplete Data

There are several traditional approaches to classification with incomplete

data. The deletion approach simply deletes all instances containing missing90

values. This approach is limited to datasets with only a few missing values

in the training data and no missing values in the application process [20]. A

second approach is to use one of classifies such as C4.5 which can directly classify

incomplete datasets using a probabilistic approach [21]. However, their accuracy

is limited when there are a lot of missing values [22].95

The most used approach to classification with incomplete data is to use

imputation methods to transform incomplete data into complete data before

building a classifier in the training process or classifying a new incomplete in-

stance in the application process. This approach has the advantage that the

imputed complete data can be used by any classification algorithm. This ap-100

proach also can deal with incomplete datasets with a large number of missing

values [8, 23].

Fig. 1 shows the main steps using imputation for classification with incom-

plete data. In the training process, imputation is used to estimate missing values

for incomplete training data. After that, imputed training data is put into a105

classification algorithm to build a classifier. In the application process, complete

instances are directly classified by the classifier. With each incomplete instance,

its missing values are first replaced by plausible values by using the imputation

to generate a complete instance which is then classified by the classifier.

There are two classes of imputation: single imputation and multiple impu-110

tation.

2.1.1. Single Imputation

Single imputation estimates a single value for each missing value. Mean

imputation is an example of single imputation methods which fills all missing

values in each feature by the average of all existing values in the same feature.115
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Figure 1: A common approach to using imputation for classification with incomplete data.

kNN-based imputation is one of the most powerful single imputation meth-

ods [22]. To estimate missing values in an incomplete instance, it first searches

for its k nearest neighbour instances. After that, it replaces missing values of the

instance with the average of existing values in the k instances. kNN-based impu-

tation is often more accurate than mean imputation [22]. However, kNN-based120

imputation is more computationally expensive than mean imputation because

it takes time to find the nearest instances, especially with datasets containing a

large number of instances and a large value of k [22].

Single imputation has been widely used to estimate missing values for clas-

sification with incomplete data [8, 20, 23, 22]. In [20] and [22], kNN-based125

imputation is shown to outperform C4.5, mean imputation and mode imputa-

tion. In [23], the impact of six imputation methods on classification accuracy

for six classification algorithms are investigated. Results show imputation on

average can improve classification accuracy when compared to without using

imputation. However, in [8], fourteen different imputation methods are evalu-130

ated on three different classification algorithm groups. The analysis shows that

there is no best imputation for all classifiers.
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2.1.2. Multiple Imputation

Multiple imputation estimates a set of values for each missing value. Multiple

imputation is often better than single imputation because it can better reflect135

the uncertainty of missing data than single imputation [11]. However, multiple

imputation is usually more computationally expensive than single imputation

since it takes time to estimate a set of values for each missing value [4].

Multiple imputation using chained equations (MICE) is one of the most flex-

ible and powerful multiple imputation methods [10, 24]. MICE uses regression140

methods to estimate missing values. Initially, each missing value in each feature

is replaced by a random value in the same feature. Each incomplete feature

is then regressed on the other features to compute a better estimate for the

feature. The process is performed several times (q) for all incomplete features

to provide a single imputed dataset. The whole procedure is repeated p times145

to provide p imputed datasets. Finally, the final imputed dataset is calculated

by the average of the p imputed datasets [10, 24].

Multiple imputation has also been applied to classification with incomplete

data [11, 12, 25]. In [11], multiple imputation methods are compared with single

imputation methods. The study shows that multiple imputation methods are150

often more accurate, but more expensive than single imputation methods. In

[25], MICE is compared to other four single imputation methods. Results show

that MICE can outperform the other single imputation methods, especially

on datasets containing numerous missing values. In [12], ensemble learning

is combined with multiple imputation to construct a set of classifiers. Each155

imputed dataset which is generated by the multiple imputation method is used

to build a classifier. The analysis shows that the proposed method can normally

obtain better accuracy than using multiple imputation.

Existing imputation researches for classification often focus on improving

classification accuracy [22, 25]. However, using imputation takes time to esti-160

mate missing values, especially powerful imputation such as MICE is computa-

tionally intensive. Therefore, how to effectively and efficiently use imputation
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for classification should be further investigated.

2.2. Ensemble Classifiers for Incomplete Data

Ensemble learning is a learning method which constructs a set of base clas-165

sifiers for a classification task in the training process. To classify new instances

in the application process, the predictions of base classifiers are combined. En-

sembles of classifiers have been proven to be more accurate than any of base

classifiers making up the ensemble [13].

Ensemble learning also has been used for classification with incomplete data.170

One of the first work using ensembles for classification with incomplete data ap-

pears in [26], where four neural networks are built to address classification with

a thyroid disease database consisting of two incomplete features (one classifier

that ignores both the missing features, two classifiers that can be used if one

of the features is present, and one classifier that requires both features to be175

present). Experimental results show that the ensemble is superior to an impu-

tation method using neural networks to estimate missing values. The ensemble

is also more accurate than an induction algorithm which builds a decision tree

able to directly work with incomplete data. The systems described in [14] and

[27] tackle incomplete data by learning a set of neural networks, where each neu-180

ral network is trained on one complete sub dataset extracted from incomplete

data by dropping some of missing features. Given a new incomplete instance

to classify, the available learnt classifiers are combined to classify the instance

without requiring imputation. Empirical results show that the ensembles of

neural networks can achieve better accuracy than two other ensemble methods185

(based on bagging and boosting) combined with mean and mode imputations.

A similar approach is proposed in [28], where conditional entropy is used as

the weighting parameter to reflect the quality of feature subsets which are used

to build base classifiers. The proposal of [28] is extended in [16] by using the

mutual information criterion to eliminate redundant feature subsets. As a re-190

sult, the extended system can not only outperform other methods, but can also

reduce the computation time to classify incomplete instances. In [15] and [29],
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an ensemble of numerous classifiers is constructed, where each base classifier is

trained on a sub dataset by randomly selecting a feature subset from the original

features. Thanks to constructing a larger number of base classifiers, the system195

can cope with incomplete data containing a high proportion of missing values.

Existing ensemble methods for classification with incomplete data can deal

with missing values to some extent. However, the ensemble methods usually

do not obtain good accuracy when datasets contain a large number of missing

values [14, 16, 26]. The underlying reason is that the complete sub datasets200

often only have a small number of instances when the original incomplete data

includes a large number of missing values. Therefore, the base classifiers trained

on the complete sub datasets are weak classifiers. To overcome the problem,

numerous base classifiers have to be built [15], which requires a long time for

exploring available classifiers to classify new incomplete instances. Therefore,205

how to build an effective and efficient ensemble for classification with datasets

containing numerous missing values should be further investigated.

2.3. Feature Selection for Classification

The purpose of feature selection is to select a subset of relevant features

from the original features because many datasets often contain irrelevant and/or210

redundant features which can be removed without losing much information. By

removing irrelevant and redundant features, feature selection can reduce the

training time, simplify the classifier and improve the classification accuracy

[17]. However, feature selection is a hard problem because there are 2n possible

feature subsets where n is the number of original features [30].215

A feature selection method consists of two main components: an evaluation

measure and a search technique [17]. The evaluation measure is used to evaluate

the goodness of selected features while the search technique is used to explore

new feature subsets. The quality of the feature selection method strongly de-

pends on both the evaluation measure and the search technique [17, 30].220

Evaluation measures for feature selection can be divided into wrapper meth-

ods and filter methods [17]. A wrapper method employs a classification algo-
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rithm to score feature subsets while a filter method employs a proxy measure

such as mutual information to score feature subsets. Filter methods are often

more efficient and general than wrapper methods. However, wrapper meth-225

ods tend to more accurate than many filter methods because wrapper methods

directly evaluate feature subsets using classification algorithms while filter meth-

ods are independent of any classification algorithm [17].

Search techniques for feature selection can be categorised into deterministic

search techniques and evolutionary search techniques [17]. Sequential forward230

selection (SFS) and sequential backward selection (SBS) are typical examples of

deterministic search techniques [31]. In recent years, Evolutionary Computation

(EC) techniques such as Genetic Algorithms (GAs), Genetic Programming(GP)

and Particle Swarm Optimisation (PSO) have been successfully applied to fea-

ture selection [17]. The underlying reason is that EC techniques are good at235

searching for global best solutions. EC techniques also do not require domain

knowledge and do not require any assumption related to the search space [17].

Feature selection has also been used for incomplete data [18, 32, 19]. How-

ever, these methods still provide incomplete data which cannot be directly used

by the majority of classification algorithms. Therefore, how to apply feature se-240

lection to improve the performance of such classification algorithms when facing

with missing values should be investigated.

3. The Proposed Method

This section presents the proposed method in detail. It starts with showing

the definitions used in the method. The section then presents the overall struc-245

ture and the underlying ideas of the method. After that, it describes the details

of the training process and the application process.

3.1. Definitions

Let D = {(Xi, ci)|i = 1, ..,m} denote a dataset, where each Xi represents an

input instance with its associated class label ci, and m is the number of instances250
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in the dataset. The input space is defined by a set of n features F = {F1, ..., Fn}.

Each instance Xi is represented by a vector of n values (xi
1, x

i
2, ...x

i
n), where an

xi
j is either a valid value of the jth feature Fj , or is the value “?”, which means

that the value is unknown (a missing value).

An instance Xi is called an incomplete instance if it contains at least one255

missing value. A dataset, D, is called an incomplete dataset if it contains at

least one incomplete instance. A feature, Fj , is called an incomplete feature

for a dataset if the dataset contains at least one incomplete instance, Xi with

a missing value xi
j . For example, the incomplete dataset shown in Table 1

contains five incomplete instances: X2, X4, X5, X6, and X7. It has four260

incomplete features: F1, F3, F4 and F5.

Table 1: An example dataset with missing values.

F1 F2 F3 F4 F5 c

X1 5 67 3 5 3 1

X2 4 43 1 1 ? 1

X3 4 28 1 1 3 0

X4 5 74 1 5 ? 1

X5 4 56 1 ? 3 0

X6 4 70 ? ? 3 0

X7 ? 66 ? ? 1 1

A subset of features, S ⊂ F , is called a missing pattern in a dataset D if

there is at least one instance, Xi in D, such that the value in Xi for each feature

in S is missing, and the value in Xi for all the other features are known. That

is, S ⊂ X is a missing pattern in D if there exists an instance Xi in D such that265

if Fj ∈ S, xi
j =? otherwise, xi

j is not missing. For example, the dataset shown

in Table 1 has five missing patterns: {∅}, {F5}, {F4}, {F3, F4} and {F1, F3, F4}.

Algorithm 1 shows the steps to identify all missing patterns of a dataset. We

use MP to denote the all missing patterns. At the beginning of the algorithm,

MP is empty. The outer loop in the algorithm iterates over all instances. For270

each instance, all features with missing values are combined to form a missing

pattern. If the missing pattern is not yet in MP, it will be added in MP. By

the end of the algorithm, MP contains all missing patterns.

Given a dataset D and a feature subset S, we use DS to represent the
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Algorithm 1: MissingPatterns(D)

Input:
D, a dataset with m instances and n features
Output:
MP, a set of missing patterns

1 MP ← {}
2 for i← 1 to m do
3 temp← {∅}
4 for j ← 1 to n do
5 if xi

j =? then
6 temp← temp ∪ Fj

7 end

8 end
9 MP ←MP ∪ {temp}

10 end
11 returnMP

projected dataset D onto the features in S, i.e. the dataset D reduced to the275

feature subset S. That is, each instance in D is replaced by the projected

instance in which values for features not in S are removed. For example, given

the dataset shown in Table 1 with five features, the data subset D{F1,F2,F3} is

shown in Table 2.

Table 2: The dataset in Table 1 reduced to the feature subset {F1, F2, F3}.

F1 F2 F3 c

X1 5 67 3 1

X2 4 43 1 1

X3 4 28 1 0

X4 5 74 1 1

X5 4 56 1 0

X6 4 70 ? 0

X7 ? 66 ? 1

3.2. Overall Proposed Method280

The proposed method has two main processes: a training process and an

application process. The training process constructs an ensemble of classifiers

which is then used to classify new instances in the application process. Fig. 2

shows the flowchart of the method.

The method is based on three key ideas. The first idea is that the method285
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Figure 2: The proposed method builds an ensemble of classifiers then used to classify new

incomplete instances without imputation.

constructs an ensemble of classifiers to cover possible missing patterns, each

classifier being built on one missing pattern. Therefore, new incomplete in-

stances can be classified by the ensemble without requiring imputation. This is

not a complete novel—it has also been used in [14, 16]. The second idea is to use

imputation in the training process, but not in the application process. Using290

a powerful imputation method to generate high quality complete training data

for building classifiers results in more accurate classifiers. In contrast, existing

ensemble methods based on missing patterns [14, 16] do not use any imputation,

so the training set for each classifier may be as small as a single instances which

leads to low accuracy. However, good imputation methods such as multiple295
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imputation are computationally expensive. For the training process, there is

no time limit for many applications, and the high cost of multiple imputation

is not a problem; in the application process, there may be tight time limits on

the process of classifying a new instance, and using multiple imputation may

be infeasible. The third idea is to use feature selection to further improve the300

training data. By removing redundant and irrelevant features, feature selec-

tion not only produces a high quality feature set, but also reduces the number

of missing patterns and removes missing values of incomplete instances in the

application process.

3.3. Training Process305

The purpose of the training process is to build a set of classifiers, one classifier

for each missing pattern in the data. Algorithm 2 shows the main steps of the

training process. The inputs of the algorithm are an original training dataset

D and a classifier learning algorithm L.

Algorithm 2: The training process

Input:
D, an original training dataset
L, a classifier learning algorithm
Output:
C, a set of learnt classifiers
w, the weighting of classifiers
SF , a set of selected features

1 ImpD ← Imputation(D)
2 SF ← FeatureSelection(ImpD)
3 MP ←MissingPaterns(DSF )
4 C ← {}
5 foreachMPi ∈MP do
6 CPi ← SF −MPi

7 Divide ImpDCPi
into ImpTrain and ImpV alidation

8 classifieri ← L(ImpTrain)
9 C ← C ∪ classifieri

10 wi ← classifieri(ImpV alidation)

11 end
12 return C, w and SF ;

The algorithm starts by using an imputation method to estimate missing310
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values in the original dataset D to generate an imputed dataset ImpD which

is complete. After that, a feature selection method is applied to the complete

dataset ImpD to select the subset SF of important features which is then

applied to the original training dataset to construct a projected (incomplete)

dataset with just the features in SF . The missing patterns algorithm (Algo-315

rithm 1) is then used to search for all missing patterns, MP, in the reduced

dataset DSF . For each missing patternMPi, a “complete pattern” CPi is gen-

erated by selecting features which are in SF , but not in MPi. After that, the

imputed dataset is reduced to the features in the complete pattern and then

split into a training dataset and a validation dataset. The training dataset is320

used to construct a classifier which is evaluated using the validation dataset.

The average accuracy on the validation set becomes the score (or weight) of the

classifier. As a result, the application process generates a set of classifiers and

their scores, one classifier for each missing pattern.

The four main components in the application process are imputation, feature325

selection, identifying missing patterns and learning the classifiers. Either sin-

gle imputation or multiple imputation can be used to transform the incomplete

training data to the imputed training data. Multiple imputation is generally

more accurate than single imputation, especially when the data contains a large

number of missing values [25, 33]. Therefore, a multiple imputation method such330

as MICE should be used to estimate missing values for the training data where

possible. However, multiple imputation is usually much more expensive than

single imputation, especially when data contains a large number of features such

as in gene expression datasets [34]. Therefore, with datasets containing numer-

ous features, a good single imputation method such as kNN-based imputation335

to estimate missing values for the training data can be used which makes the

imputation cost in the training process feasible.

Feature selection can also be expensive, and the choice of both the evalua-

tion method and the search method must be made carefully. Wrapper evaluation

methods are often more accurate than filter methods, but generally more ex-340

pensive, especially with large training datasets or if the wrapper methods use
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expensive classifiers such as multiple layer perceptron. There exist fast filter

methods such as CFS [31] and mRMR [35] have comparable accuracy to wrap-

per methods, and these filter methods could be used to evaluate feature subsets

efficiently, even when the training data contains a large number of instances and345

features. For search techniques, evolutionary techniques have been proven to be

effective and efficient for feature selection. Therefore, using evolutionary tech-

niques such as GAs and PSO to search for feature subsets and CFS or mRMR

to evaluate them enables feature selection to be done efficiently.

Searching for all missing patterns is not time-consuming. The computation350

time of Algorithm 1 is O(m*n) where m is the number of instances, and n is

the number of features which is no more than the cost of reading the dataset

(assuming that temp is represented as a bitset, and MP as a hash table).

If there are a large number of missing patterns, then the cost of training

a set of classifiers for all missing patterns may be very expensive. Existing355

ensemble methods search for missing patterns in the original training data [14,

28, 16]; therefore, they often get a very large number of missing patterns when

the training data contains numerous missing values. In contrast, the proposed

method searches for missing patterns in the training data after it has been

reduced to the selected features. This reduces the number of missing values,360

often by a large fraction. Therefore, the proposed method often generates a

much smaller number of missing patterns even when the original training data

contained numerous missing values. Therefore, the cost of the classifier learning

is much less than in other ensemble methods.

3.4. Application Process365

The application process is to classify new instances using the learnt classi-

fiers. Algorithm 3 shows the main steps of the application process. The inputs

of the algorithm are an instance needing to be classified X, a set of selected

features SF , and an ensemble of learnt classifiers C along with their weights w.

The algorithm will output the most suitable class label for the instance.370

The algorithm starts by removing features in the instance X which are not
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Algorithm 3: The application process

Input:
X, an instance to be classified
SF , a set of selected features
C, a set of learnt classifiers
w, weights of classifiers
Output:
the class of x

1 Reduce X to only containing the features in SF
2 AC ← C
3 foreach missing values xj =? in reduced X do
4 foreach classifier ∈ AC do
5 if classifier requires Fj then
6 AC ← AC − classifier
7 end

8 end

9 end
10 Apply each classifier in AC to reduced X
11 return majority vote of classifiers, weighted by w;

in the set of selected features SF . Next, the algorithm searches for all classi-

fiers which are applicable to the instance—classifiers which do not require any

incomplete features in the instance. Subsequently, each applicable classifier is

used to classify the instance, and the algorithm returns a class by taking a ma-375

jority vote of the applicable classifiers’ predictions, weighted by the quality of

the classifiers measured in the training process.

Typical methods for classification with incomplete data as shown in Figure

1 perform imputation on the new instance. In order get adequate accuracy,

it is particularly important to use a high quality imputation method such as380

MICE, which is very expensive. The proposed method, on the other hand,

does not require any imputation method to estimate missing values for unseen

incomplete instances. Therefore, the proposed method is expected to be faster

than the common approach.

To classify an incomplete instance, the proposed method also reduces the385

instance to contain only selected features. After this reduction step, the incom-

plete instance frequently becomes a complete instance, which in turn removes
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the need to search for applicable classifiers for the instance. Moreover, because

of the feature selection, the proposed method often generates a smaller num-

ber of classifiers than existing ensemble methods which reduces the cost of the390

search if the instance is incomplete. Therefore, the proposed method is expected

to be considerably faster than existing ensemble methods for classification with

incomplete data.

4. Experiment Setup

This section discusses the aim and design of the experiments. The discussion395

consists of methods for comparison, datasets and parameter settings.

4.1. Benchmark Methods for Comparison

In order to investigate the effectiveness and efficiency of the proposed method,

namely NewMethod, its accuracy and computation time were compared with five

benchmark methods. The first two methods are common approaches to classifi-400

cation with incomplete data by using imputation as shown in Fig. 1. The other

three methods are ensemble methods for classification with incomplete data

without requiring imputation. The details of the five methods are as follows:

• The first benchmark method, namely kNNI, is to use kNN-based impu-

tation, which is one of the most common single imputation methods, to405

estimate missing values for both training data and unseen instances. This

benchmark method provides complete training data and complete unseen

instances which can be used by any classification algorithm. Comparing

the proposed method with this benchmark method can show the proposed

method’s advantages compared to one of the most common methods for410

classification with incomplete data.

• The second benchmark method, namely MICE, is to use MICE, which

is a powerful multiple imputation method, to estimate missing values for

both training data and unseen incomplete instances. Both the proposed

method and this benchmark method use multiple imputation to estimate415
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missing values for training data; the key difference is that this bench-

mark method requires multiple imputation to estimating missing values

for incomplete unseen instances in the application process which is very

expensive. However, the proposed method can classify unseen instances by

constructing a set of classifiers instead of requiring multiple imputation.420

Therefore, comparing the proposed method with this benchmark method

can show the proposed method’s effectiveness and efficiency in classifying

incomplete instances.

• The third benchmark method, namely Ensemble[14], is a recent ensemble

method for classification with incomplete data in [14]. Both the proposed425

method and this benchmark method search for missing patterns and build

one classifier for each missing pattern. One difference is that this bench-

mark method does not use any imputation method to fill missing values

in the training data, while the proposed method uses a powerful imputa-

tion method to estimate missing values and provide complete data for the430

training process. Another difference is that this benchmark method does

not use any technique to reduce the number of missing patterns; hence it

may have to build a large number of classifiers. In contrast, the proposed

method uses feature selection to reduce the number of missing patterns, so

it is expected to speed up classifying unseen instances by building a com-435

pact number of classifiers. Therefore, comparing the proposed method

with this benchmark method can show the proposed method’s benefits

due to using multiple imputation and feature selection.

• The fourth benchmark method, namely Ensemble[16], is a very recent

extension of the third benchmark method, using the mutual information440

to reduce the number of missing patterns [16]. Comparing the proposed

method with this benchmark method can shows the proposed method’s

advantages due to using feature selection to not only reduce the number

of missing patterns, but also reduce missing values in unseen incomplete

instances.445
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• The final benchmark method, namely Ensemble[15], is an ensemble method

for classification with incomplete data in [15]. This benchmark method

randomly generates missing patterns rather than exploring missing pat-

terns from the training data; hence it has to build a large number of

classifiers. Therefore, comparing the proposed method with this bench-450

mark method can show the proposed method’s effectiveness and efficiency

thanks to searching for missing patterns from training data.

4.2. Datasets

Ten real-world incomplete classification datasets were used in the experi-

ments. These datasets were selected from the UCI machine learning reposi-455

tory [3]. Table 3 summarises the main characteristics of the datasets includ-

ing name, the number of instances, the number of features and their types

(Real/Integer/Nominal), the number of classes and the percentage of incom-

plete instances.

Table 3: Datasets used in the experiments

Name #Inst
#Features

(R/I/N)
#Classes

Incomplete

inst(%)
Abbrev

Chronic 400 24(11/0/13) 2 60.5 Chr

Credit 690 15(3/3/9) 2 5.36 Cre

Heart-c 303 13(13/0/0) 5 1.98 Hec

Heart-h 294 13(6/0/7) 2 100 Heh

Hepatitis 155 19(2/17/0) 2 48.39 Hep

Housevotes 435 16(0/0/16) 2 46.67 Hou

Mammographic 961 5(0/5/0) 2 13.63 Mam

Marketing 8993 13(0/13/0) 9 23.54 Mar

Ozone 2536 73(73/0/0) 2 27.12 Ozo

Tumor 339 17(0/0/17) 22 61.01 Tum

These benchmark datasets were carefully chosen to cover a wide-ranging col-460

lection of problem domains. These tasks have various percentages of incomplete

instances (incomplete instances range from 1.98% in the Hec dataset to 100%

in the Hed dataset). These problems range from a small number of instances

(Hep only has 155 instances) to a large number of instances (Mar has 8993
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instances). These datasets also range between low to high dimensionality (Mam465

only has 5 features while Ozo has 73 features). These problems encompass bi-

nary and multiple-class classification tasks. We expect that these datasets can

reflect incomplete problems of varying difficulty, size, dimensionality and type

of features.

Ten-fold cross-validation [36] was used to separate each dataset into different470

training and test sets. The ten-fold cross-validation process is stochastic, so it

should be performed multiple times to eliminate statistical variations. Hence,

the ten-fold cross-validation was independently performed 30 times on each

dataset. As a result, there are 300 pairs of training set and test set for each

dataset.475

4.3. Parameter Settings

4.3.1. Imputation

The experiments used two imputation methods: kNN-based imputation and

MICE, representing two types of imputation, single imputation and multiple

imputation, respectively. With kNN-based imputation, for each incomplete480

dataset, different values for the number of neighbors k (1, 5, 10, 15, 20) were

checked to find the best value. The implementation of MICE using R language

in [24] was used to run MICE where random forest was used as a regression

method. The number of cycles was set as five and the number of imputed

datasets was set 20 following the recommendation in [10].485

4.3.2. Feature Selection

The proposed approach is a framework, so any feature selection method can

be used to select relevant features. The experiments used a filter-based feature

selection method because a filter method is often quicker and more general

than a wrapper method. The Correlation Feature Selection (CFS) measure [31]490

was used to evaluate feature subsets. The main reason is that CFS not only

can evaluate the correlation between each feature with the class, but also can

evaluate the uncorrelation between features in the feature subset. Moreover,
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in many cases, CFS is as accurate as wrapper methods and it executes much

faster than the wrapper methods [31]. An GA was used to search for feature495

subsets because GA has been successfully applied to feature selection. Moreover,

GA’s individuals can be represented by bitstrings which are suitable for feature

selection, where 1 reflects selected features and 0 reflects unselected features.

The parameters of GA for feature selection were set as follows. The population

size was set to 50 and the maximum number of generations was set to 100. The500

crossover probability was set 0.9 and the mutation probability was set 0.1. CFS

and GA were implemented under the WEKA [37].

4.3.3. Classifier learning Algorithms

In machine learning, classifier learning algorithms are often categorised into

decision trees such as C4.5 [21], rule-based classifiers such as PART [38] ,505

instance-based classifiers such as k nearest neighbour (kNN ) [39], and function-

based classifiers such as a multilayer perceptron (MLP) [1]. In recent years, ge-

netic programming (GP) has been successfully applied to classification [40, 41].

Therefore, five classification algorithms (C4.5, PART, kNN, MLP and GP) were

used to compare the proposed method with the other benchmark methods. The510

first four classification algorithms were implemented under the WEKA [37]. The

implementation of GP in the experiment used the ECJ [42]. GP using a set of

static thresholds as shown in [43] was used to decide class. Table 4 shows the

parameters of GP for classification.

The proposed method, Ensemble[14] and Ensemble[16] automatically iden-515

tify the number of classifiers from the training data. The number of classi-

fiers in Ensemble[15] was set equally to the number of classifiers explored by

Ensemble[14].

5. Results and Analysis

This section presents and discusses the experimental results. It first shows520

the comparison on accuracy between the proposed method and the benchmark

methods. It then presents the comparison between them on computation time.
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Table 4: GP parameter settings

Parameter Value

Function set +, -, x, / (protected division)

Variable terminals all features

Constant terminals Random float values

Population size 1024

Initialization Ramped half-and-half

Generations 50

Crossover probability 60%

Mutation probability 30%

Reproduction rate 10%

Selection type Tournament(size=7)

Further analysis is also discussed to demonstrate the advantages of the proposed

method.

5.1. Accuracy525

5.1.1. Comparison Method

Table 5 shows the mean and standard deviation of classification accura-

cies of the proposed method and the benchmark methods. The first column

shows datasets, and the second column shows classification algorithms used in

the experiments. “NewMethod” refers to the proposed method. The rest five530

columns are the five benchmark methods. “kNNI ” and “MICE”, respectively,

are the benchmark methods using kNN-based imputation and MICE to esti-

mate missing values as shown in Fig.1. “Ensemble[14]”, “Ensemble[16]” and

“Ensemble[15]” refer to the three ensemble benchmark methods in [14], [16]

and [15], respectively. The values in the table are the average classification ac-535

curacy ± standard deviation resulting from combining a classifier (row) with an

approach to classification with incomplete data (column).

It is very important to choose a suitable statistical test to correctly evaluate

the significance of the results. A multiple test rather than a pair test should

be used to compare the proposed method with the multiple (five) benchmark540

methods. Moreover, a non-parametric test rather a parametric test should be

used because non-parametric tests do not require the normal distribution of
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data as parametric tests. Therefore, the Friedman test [44], which is one of the

most popular multiple non-parametric tests, is used to test the significance of

the results. The test indicates that there exits significant differences between545

the methods in each dataset and each classifier. Therefore, the Holm procedure

[44], which is a post-hoc procedure, is used to perform pair tests between two

methods. In Table 5, the symbol ↑ indicates that the proposed method is

significantly better than the benchmark method. In contrast, the symbol ↓

shows that the proposed method is significantly worse than the benchmark550

method.

5.1.2. Compare with Imputation Methods

Fig. 3 shows the fraction of cases that the proposed method is significantly

better or worse than the benchmark methods. It is clear from Fig 3 that the pro-

posed method can achieve significantly better accuracy than using imputation555

(kNNI and MICE ) in most cases. The proposed method is significantly better

than both kNNI and MICE in about 65% cases, and it is only significantly

worse than both of them in 2 out of the 50 cases.
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Figure 3: The comparison between the proposed method and each of the benchmark methods

on all the classification algorithms.

The proposed method is more accurate than the imputation methods be-

cause it incorporates feature selection to remove redundant and irrelevant fea-560

tures, which helps to improve classification accuracy. Furthermore, the proposed

method can construct multiple classifiers, which can be more comprehensive and

generalise better than constructing a single classifier. Therefore, the proposed

method can classify new instances better than the imputation methods.
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Table 5: Mean and standard deviation of classification accuracies.

Data Classifier
The proposed method and benchmark methods

NewMethod kNNI MICE Ensemble[14] Ensemble[16] Ensemble[15]

Chr

J48 99.10±0.33 99.05±0.35 97.53±0.62↑ 94.21±0.46↑ 94.18±0.35↑ 97.41±0.73↑
PART 99.30±0.34 99.20±0.53 98.40±0.68↑ 94.28±0.49↑ 94.20±0.31↑ 97.60±0.60↑
kNN 97.78±0.28 98.40±0.28↓ 98.65±0.30↓ 93.55±0.36↑ 93.95±0.31↑ 98.06±0.69↓
MLP 96.92±0.47 98.48±0.44↓ 99.00±0.35↓ 93.93±0.33↑ 93.90±0.40↑ 96.50±0.67↑
GP 98.97±0.29 97.95±0.48↑ 97.95±0.52↑ 97.62±0.31↑ 97.46±0.34↑ 96.20±0.65↑

Cre

J48 85.34±0.54 85.38±0.52 85.31±0.58 85.06±0.67↑ 84.98±0.76↑ 80.24±1.26↑
PART 85.33±0.66 83.92±0.92↑ 83.82±0.86↑ 85.26±0.71 84.80±0.77↑ 79.38±1.58↑
kNN 84.20±0.81 82.75±0.53↑ 82.76±0.62↑ 83.46±0.61↑ 82.46±0.54↑ 74.62±1.59↑
MLP 86.17±0.59 83.02±0.94↑ 83.25±0.78↑ 85.18±0.62↑ 85.10±0.56↑ 77.19±2.84↑
GP 86.19±0.52 86.15±0.62 85.95±0.62 86.03±0.49 85.55±0.52↑ 79.78±1.46↑

Hec

J48 58.06±1.55 54.26±2.08↑ 54.09±1.98↑ 55.17±1.74↑ 53.10±1.49↑ 56.67±0.96↑
PART 57.32±1.77 53.65±2.13↑ 53.75±1.45↑ 54.00±1.71↑ 51.55±2.08↑ 56.57±1.06
kNN 55.51±1.83 54.82±1.13↑ 54.57±1.18↑ 54.74±1.05↑ 54.61±1.35↑ 55.11±1.40
MLP 58.34±1.45 53.63±1.53↑ 54.19±1.96↑ 54.21±1.50↑ 52.98±1.57↑ 57.24±1.07↑
GP 57.83±0.92 56.73±1.05↑ 56.29±1.05↑ 56.77±1.17↑ 57.21±1.42↑ 56.73±0.58↑

Heh

J48 78.92±1.51 78.33±1.56 78.25±1.39↑ 76.86±1.41↑ 76.76±1.49↑ 63.50±6.32↑
PART 79.02±1.47 76.92±2.07↑ 78.80±1.19↑ 77.11±1.44↑ 77.61±1.50↑ 63.79±7.02↑
kNN 80.11±1.50 76.63±1.33↑ 76.21±1.75↑ 74.69±1.30↑ 74.82±1.24↑ 62.38±5.72↑
MLP 80.50±1.30 77.96±1.56↑ 78.58±1.63↑ 76.93±1.43↑ 77.23±1.48↑ 63.78±5.95↑
GP 81.55±1.13 79.76±1.70↑ 80.34±1.42↑ 79.36±0.90↑ 79.63±1.10↑ 72.83±2.56↑

Hep

J48 82.19±1.46 78.55±2.05↑ 80.01±2.25↑ 79.80±1.76↑ 80.98±1.58↑ 81.52±1.52
PART 82.16±1.64 79.32±2.75↑ 82.11±1.85 80.75±1.83↑ 80.69±1.92↑ 82.04±1.91
kNN 80.49±2.68 80.66±1.40 80.21±1.44 80.17±0.92 77.94±1.01↑ 80.82±2.31

MLP 83.01±1.88 81.61±1.77↑ 82.56±1.24↑ 80.16±1.23↑ 78.85±2.18↑ 83.16±1.74

GP 82.70±1.70 80.43±2.81↑ 80.45±1.90↑ 80.54±1.40↑ 78.45±1.33↑ 82.59±2.00

Hou

J48 95.00±0.35 96.31±0.52↓ 96.15±0.54↓ 93.69±0.37↑ 93.70±0.39↑ 90.97±0.72↑
PART 94.94±0.38 95.59±0.63↓ 95.72±0.79↓ 94.14±0.35↑ 94.31±0.44↑ 91.26±0.82↑
kNN 95.40±0.39 92.33±0.55↑ 93.01±0.34↑ 90.83±0.41↑ 91.43±0.42↑ 91.43±0.77↑
MLP 94.70±0.47 94.82±0.51 94.72±0.65 93.45±0.53↑ 93.98±0.48↑ 91.19±0.74↑
GP 95.14±0.59 95.08±0.66 95.11±0.48 94.32±0.33↑ 94.24±0.32↑ 91.64±0.85↑

Mam

J48 82.86±0.52 81.92±0.54↑ 82.24±0.65↑ 82.57±0.46↑ 82.33±0.49↑ 79.68±1.53↑
PART 82.58±0.52 81.57±0.52↑ 81.71±0.49↑ 82.18±0.64 82.13±0.55 79.74±0.79↑
kNN 80.31±0.60 75.47±0.69↑ 75.93±0.66↑ 78.37±0.66↑ 79.64±0.71↑ 79.89±1.16
MLP 83.11±0.43 82.72±0.63 82.97±0.49 82.99±0.36 82.95±0.45 79.73±1.05↑
GP 82.52±0.53 79.72±1.12↑ 79.99±0.68↑ 82.25±0.53↑ 82.46±0.69 77.04±2.15↑

Mar

J48 33.90±0.30 30.02±0.56↑ 30.01±0.41↑ 33.32±0.40↑ 33.43±0.37↑ 31.14±0.51↑
PART 33.53±0.34 28.71±0.33↑ 28.83±0.42↑ 32.82±0.37↑ 32.82±0.42↑ 30.84±0.63↑
kNN 33.13±0.37 27.30±0.42↑ 27.55±0.39↑ 29.34±0.38↑ 29.71±0.38↑ 30.77±0.76↑
MLP 34.35±0.21 32.15±0.45↑ 32.40±0.38↑ 34.26±0.22 34.24±0.29 30.18±0.84↑
GP 31.45±0.20 30.51±0.47↑ 30.47±0.50↑ 31.34±0.24 31.32±0.38 27.87±1.07↑

Ozo

J48 97.10±0.04 95.84±0.82↑ 95.90±0.40↑ 96.44±0.24↑ 96.83±0.21↑ 83.47±0.95↑
PART 97.10±0.02 95.47±1.23↑ 95.86±0.44↑ 96.89±0.16↑ 96.93±0.17↑ 83.43±0.99↑
kNN 96.50±0.19 95.07±0.62↑ 95.15±0.32↑ 95.35±0.31↑ 96.28±0.26↑ 83.17±0.74↑
MLP 96.35±1.04 96.07±0.59↑ 96.34±0.27 96.28±0.19 96.30±0.17 83.70±1.10↑
GP 97.09±0.05 95.81±0.72↑ 95.90±0.40↑ 96.44±0.24↑ 96.83±0.21↑ 83.61±0.97↑

Tum

J48 41.16±2.24 41.08±2.71 41.24±2.05 42.32±2.12 38.38±2.59↑ 31.26±3.18↑
PART 40.55±2.06 40.17±1.78 40.49±1.76 40.35±1.99 37.46±2.41↑ 31.40±3.50↑
kNN 39.12±1.96 38.43±1.74↑ 38.41±1.98↑ 38.13±1.66↑ 36.05±1.86↑ 31.62±2.95↑
MLP 38.85±2.01 39.38±1.62 39.79±2.29 39.83±2.09 36.40±1.96↑ 32.97±2.20↑
GP 31.59±1.56 30.86±2.41↑ 30.83±1.90 31.55±1.88 30.39±1.52↑ 27.61±1.49↑
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5.1.3. Compare with Other Ensemble Methods565

As also can be seen from Fig. 3 that the proposed method also can achieve

significantly better accuracy than the benchmark ensemble methods in most

cases. The proposed method is significantly more accurate than the benchmark

ensemble methods in at least 75% cases, and it is only significantly less accurate

than the ensemble[15] in 1 out of the 50 cases.570

The proposed method is more accurate than the other benchmark ensem-

ble methods because it uses a powerful imputation to provide complete data

for the training process rather than working on incomplete training data as

Ensemble[14] and Ensemble[16]. The second reason is that feature selection

helps to further improve the training data of the proposed method. Moreover,575

by removing redundant and irrelevant features, feature selection helps to re-

duce the number of incomplete instances in the application process as shown in

Fig.4. As a result, the proposed method can more frequently choose applicable

classifiers to classify incomplete instances than the other ensemble methods.
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Figure 4: The percentage of incomplete instance reduction by using feature slection.

Table 6 shows the percentage of incomplete instances which can be clas-580

sified by the ensemble methods. It is clear from Table 6 that the proposed

method can classify all incomplete instances on 8 out of 10 datasets and clas-

sify almost all incomplete instances on the other 2 datasets. In contrast, the

other ensemble methods cannot well classify incomplete instances. Especially,

Ensemble[15] only can classify 85.85% and 48.85% incomplete instances on the585

Heh and Ozo datasets, respectively, because Ensemble[15] randomly generates

missing patterns instead of finding missing patterns in the training data as the

other ensemble methods.
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Table 6: The percentage of incomplete instances are classified by ensemble methods.

Data NewMethod Ensemble[14] Ensemble[16] Ensemble[15]

Chr 100 92.53 92.53 99.68

Cre 100 98.95 98.95 100

Hec 100 97.13 97.13 93.59

Heh 100 99.32 99.32 85.85

Hep 98.66 97.02 97.02 95.69

Hou 98.04 96.79 96.79 97.88

Mam 100 99.25 99.25 100

Mar 100 98.95 98.95 100

Ozo 100 99.82 99.82 48.85

Tum 100 99.03 99.03 100

5.1.4. Further Comparison

As can be seen from Table 5 that the proposed method can obtain better590

accuracy than the benchmark methods not only on datasets with a small number

of incomplete instances, but also on datasets with a large number of incomplete

instances. For instance, the proposed method achieves the best accuracy on Hec

dataset containing only 5.36% incomplete instances and also on Heh dataset

with 99.65% incomplete instances.595

Fig. 5 shows the fraction of cases that the proposed method is significantly

better or worse than the other methods on each classifier. Fig. 5 shows that

with any of the classifiers, the proposed method can significantly outperform

the other methods in most cases. Moreover, J48 and GP can get more benefits

from the proposed method. The reason is likely that a filter feature selection600

often removes irrelevant and redundant features, but it may keep redundant

features. J48 and GP can perform feature selection while constructing classifiers

[45, 46]. Therefore, by further removing redundant and irrelevant features, these

classifiers can be more tolerant of missing values [12].

In summary, the proposed method can obtain significantly better accuracy605

than the benchmark methods in almost all cases when combining with any of

the classification algorithms.
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Figure 5: The comparison between the proposed method and all the benchmark methods on

each of classification algorithms.

5.2. Computation Time

For most classification tasks, the training time has no constraint, but the

computation time to classify an unseen instance should be feasible. Therefore,610

we focus on the computation time to classify unseen instances in the application

process.

The experiments show that different classification algorithms have the same

pattern of computation time. Hence, we only report the computation time of one

classification algorithm: J48. Table 7 shows the computation time to classify615

instances in the application process.

Table 7: Time to classify instances in the application process (millisecond).

Data NewMethod kNNI MICE Ensemble[14] Ensemble[16] Ensemble[15]

Chr 1.2×101 3.1× 101 9.6× 105 6.1× 101 2.3× 101 1.5× 102

Cre 2.0 8.0 5.1× 104 5.0 3.0 8.0

Hec 1.0 6.0 2.7× 103 1.0 1.0 6.0

Heh 1.0 1.9× 101 2.0× 105 2.0 1.0 2.0

Hep 1.0 8.0 8.1× 104 3.0 1.0 2.0

Hou 4.0 3.1× 101 4.6× 105 2.7× 101 1.3× 101 1.7× 101

Mam 3.0 6.4× 101 1.8× 105 7.0 5.0 8.0

Mar 7.9× 103 1.3× 104 7.1× 108 8.8× 104 6.7× 104 4.7× 104

Ozo 1.2× 104 2.7× 104 1.2× 109 1.3× 105 2.9× 104 1.7× 105

Tum 2.1× 101 5.3× 101 8.2× 105 3.1× 101 4.0 6.2× 101

5.2.1. Compare with Imputation Methods

It is clear from Table 7 that the proposed method is considerably more

efficient than the methods using imputation (kNNI and MICE ). The proposed

method is thousand times faster than MICE because it does not take any time620
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to estimate missing values in the application process. In contrast, MICE takes

a long time to estimate missing values in the application process because MICE

needs to rebuild all regression functions when it estimates missing values for

each unseen incomplete instance. The proposed method is also remarkably

more efficient than kNNI because kNNI also takes time to estimate missing625

values for unseen incomplete instances. Especially with big datasets such as the

Mar and Ozo datasets, the proposed method is much more efficient than both

MICE and kNNI because the two methods take a long time to estimate missing

values in datasets with numerous instances and features.

5.2.2. Compare with Other Ensemble Methods630

As can be seen from Table 7 that the proposed method is also more efficient

than the benchmark ensemble methods. The first reason is that the proposed

method uses feature selection to remove redundant and irrelevant features before

building classifiers, so it can generate simpler classifiers than the other ensemble

methods. As demonstrated in Fig.6a that feature selection can remove over half635

of the features in the majority of datasets. Moreover, by removing redundant

and irrelevant features, the proposed method also reduces the number of missing

patterns; therefore, it only needs to build a small number of classifiers. As is

evident from Fig. 6b that the proposed method can reduce over 50% missing

patterns in many datasets. In other words, the proposed method only needs640

to build half of the number of classifiers compared to other ensemble methods

such as the ensemble method in [14]. With a smaller number of classifiers,

the proposed method can classify instances quicker than the other methods.

Finally, by using feature selection, the proposed method can reduce the number

of incomplete instances in the application process. Therefore, the proposed645

method can save time to search for applicable classifiers for incomplete instances.

As can be seen from Fig. 4 that the proposed method can significantly reduce the

number of incomplete instances. For example, it can reduce over 70% incomplete

instances in the Heh, Hou and Mar datasets.

In summary, the proposed method can not only be more effective, but also650

29



Chr Cre Hec Heh Hep Hou Mam Mar Ozo Tum
0

10

20

30

40

50

60

70

80

90

100

F
e
a
tu

re
 R

e
d
u
c
ti
o
n
 (

%
)

(a) Feature reduction (%)

Chr Cre Hec Heh Hep Hou Mam Mar Ozo Tum
0

10

20

30

40

50

60

70

80

90

100

M
is

s
in

g
 P

a
tt
e
rn

 R
e
d
u
c
ti
o
n
 (

%
)

(b) Missing pattern reduction (%)
Figure 6: Feature reduction and missing pattern reduction by using feature slection.

more efficient than the other benchmark methods.

5.3. Further Analysis

This section discusses further analysis to deeply understand the effectiveness

and efficiency of the proposed method.

5.3.1. Evaluation of the Proposed Method on Different Imputation Methods655

One of the important component in the proposed method is imputation. In

order to know the impact of imputation on the proposed method, experiments

were designed to compare the proposed method on three multiple imputation

methods in MICE (using random forest regression (rf), bayesian linear regression

(norm) and linear regression (nob)) and kNN-based imputation (kNNI). Table 8660

shows the classification accuracy and the training time of the proposed methods

on different imputation methods.

It is clear from Table 8 that the proposed method with multiple imputa-

tion is generally more accurate than the proposed method with single imputa-

tion. Moreover, the proposed method with multiple imputation using non-linear665

regression such as random forest is usually more accurate than the proposed

method with multiple imputation using linear regression. However, the training

time of the proposed method using multiple imputation is much more expensive

than using single imputation.

5.3.2. Evaluation of the Proposed Method on Gene Expression Datasets670

Gene expression datasets usually contain a large number of features. More-

over, gene expression datasets often contain a large number of missing values

30



Table 8: Classification accuracy and training time of the proposed method by using different

imputation methods.

Data
Classification accuracy Training time

rf norm nob kNNI rf norm nob kNN

Chr 99.10 99.09 99.12 99.04 9.1×104 8.2×103 4.6×101 2.8×101

Cre 85.34 85.34 85.45 85.16 4.2×104 3.2×103 5.2×101 1.2×101

Hec 58.06 57.82 57.21 57.10 7.7×103 6.9×102 2.0×101 7.6

Heh 78.92 78.56 78.43 78.89 7.3×104 6.1×103 3.4×101 1.6×101

Hep 82.19 81.96 80.88 79.32 5.8×104 6.1×103 2.1×101 9.1

Hou 95.00 94.94 94.66 95.32 8.1×104 7.3×103 3.6×101 1.5×101

Mam 82.86 82.73 82.61 82.05 2.5×104 1.7×103 4.8×101 1.2×101

Mar 33.90 33.86 32.89 32.21 4.5×104 1.7×104 1.2×103 4.2×102

Ozo 97.10 97.10 97.07 96.45 3.1×106 5.2×105 7.9×102 2.9×102

Tum 41.16 41.27 40.67 40.34 3.4×104 1.8×103 5.2×101 2.2×101

[34]. Therefore, we evaluate the proposed methods on gene expression datasets

to further validate the effectiveness and efficiency of the proposed methods. Ta-

ble 9 shows eight gene expression datasets which were chosen to evaluate the675

proposed methods.

Table 9: Gene expression datasets used in the experiments.

Name #Samples #Genes #Classes
Incomplete

samples (%)

Incomplete

genes (%)

alizadeh-2000-v1 42 1095 2 100 65.66

alizadeh-2000-v2 62 2093 3 100 80.21

bredel-2005 50 1739 3 100 33.12

chen-2002 180 85 2 59.77 81.17

garber-2001 66 4553 4 100 44.47

liang-2005 37 1411 3 100 22.39

tomlins-2006 104 2315 5 100 87.65

tomlins-2006-v2 92 1288 4 100 88.76

Table 10 shows the classification accuracy of the proposed method and the

other methods on the gene expression datasets, respectively. It is clear from

the Table 10 the proposed method using kNN-based imputation in the training
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processes is more accurate than using kNN-based imputation both in the train-680

ing and application processes. Moreover, the proposed method is much more

accurate than existing ensemble methods. For example, in tomlins datasets,

the accuracy of the proposed method is double that of the ensemble methods in

[14, 16].

Table 10: Classification accuracy (using J48 as a classifier) of the proposed method (using

kNN-based imputation) and the other benchmark methods on the gene expression datasets.

Dataset NewMethod kNNI Ensemble[[14]] Ensemble[[16]] Ensemble[[15]]

alizadeh-2000-v1 74.41±6.41 66.81±8.39↑ 50.23±5.23↑ 51.42±5.54↑ 64.83±5.21↑

alizadeh-2000-v2 83.18±5.17 81.24±4.96 67.81±4.24↑ 65.87±4.52↑ 62.12±3.21↑

bredel-2005 69.43±7.21 66.36±7.48↑ 62.01±4.26↑ 63.27±4.03↑ 59.35±3.69↑

chen-2002 87.72±2.75 82.28±2.93↑ 78.86±4.62↑ 79.06±4.64↑ 88.72±2.45

garber-2001 71.55±4.93 63.62±4.87↑ 52.29±4.93↑ 53.62±4.78↑ 51.17±4.38↑

liang-2005 79.68±6.08 78.42±5.09 75.73±2.84↑ 74.65±2.76↑ 75.60±3.25

tomlins-2006 65.42±6.03 52.61±5.12↑ 30.78±1.42↑ 30.78±1.42↑ 60.78±3.33↑

tomlins-2006-v2 63.14±3.27 53.78±4.81↑ 34.79±1.42↑ 35.64±1.38↑ 58.72±3.61+

Table 11 shows the computation time to classify new instances in the appli-685

cation process of the proposed method and the benchmark methods. It is clear

from Table 11 that although the proposed method is slightly more expensive

than kNN-based imputation, but it is much faster than the ensemble methods.

Table 11: Time to classify instances in the application process on the gene expression datasets

(millisecond).

Dataset NewMethod kNNI Ensemble[[14]] Ensemble[[16]] Ensemble[[15]]

alizadeh-2000-v1 4.4×101 9.3 1.4×103 1.3×103 1.4×104

alizadeh-2000-v2 9.9×103 2.9×101 1.1×104 1.0×104 1.2×105

bredel-2005 2.1×102 3.6×101 2.3×103 2.1 ×103 1.3×105

chen-2002 5.4 6.8 1.1×102 9.1×101 3.4×102

garber-2001 2.4×103 8.1×101 2.9×104 2.7×104 8.5×105

liang-2005 4.9×101 9.9 6.1×102 5.8×102 8.0×103

tomlins-2006 7.4×103 8.9 6.3×104 6.1×104 5.5×105

tomlins-2006-v2 8.3×102 3.7 1.4×104 1.2×104 1.2×105
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In summary, the proposed methods are still able to produce dramatic im-

provement in efficiency and better accuracy on large datasets.690

5.3.3. Evaluation of the Proposed Method on Specific Problem

In order to demonstrate how the proposed method works and its effective-

nesses and efficiencies, we analysed carefully the proposed method on Heart-h

using C4.5. The Heart-h dataset was chosen because it has the largest per-

centage of incomplete instances (100%) compared to the other datasets. C4.5695

was chosen because decision trees generated by C4.5 are straightforward to

interpret.

Hear-h describes the contents of the heart-disease collected by Hungarian

Institute of Cardiology [47]. The dataset has 13 features: {age, sex, chest pain,

trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal}. The values of700

the 13 features are used to decide the diagnosis of heart disease shown in a class

feature, where 0 indicates less than 50% diameter narrowing and 1 indicates

more than 50% diameter narrowing. The original dataset has six incomplete

features: {chol, fbs, exang, slope, ca, thal } and contains 15 missing patterns.

In the application process, MICE imputation is firstly used to transform the705

incomplete dataset into an imputed dataset. CFS is then applied on the imputed

dataset, and it selects a subset of five features SF = {sex, chest pain, exang,

oldpeak, slope} and removes the other eight features. As a result, the original

dataset reduced on SF has only two incomplete features {exang, slope} and

it contains only three missing patterns: {slope}, {exang} and {∅}. Therefore,710

feature selection helps to reduce the number of incomplete features (from 6 to

2) and reduce the number of missing patterns (from 15 to 3).

From the three missing patterns, the proposed method generates three com-

plete patterns: {sex, chest pain, exang, oldpeak}, {sex, chest pain, oldpeak,

slope} and {sex, chest pain, exang, oldpeak, slope}. Figs. 7a, 7b and 7c show715

three decision trees generated by C4.5 according to the three complete patterns.

It is clear from the figures that the decision trees do not require all features, so

they are tolerant with missing values because they can be applicable to more
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(a) {sex, chest pain, exang, oldpeak}

(b) {sex, chest pain, oldpeak, slope}

(c) {sex, chest pain, exang, oldpeak, slope}.

Figure 7: Decision trees constructed by using different feature subsets.

than one missing pattern. For example, the decision tree in Fig. 7b is build

on a dataset with four features (sex, chest pain, oldpeak, slope), but it requires720

only two features (sex, chest pain). As a result, the decision tree in Fig. 7b is

originally designed to classify incomplete instances with only one missing value

in feature exang ; however, it does not require feature slope, so it also can be

used to classify any incomplete instance with missing value in feature slope.

Table 12 shows some incomplete instances in the Hear-h dataset, which need725

to be classified. Table 13 presents instances in Table 12 reduced on the selected

features SF = {sex, chest pain, exang, oldpeak, slope}. As can be seen from

Tables 12 and 13 that feature selection can help to reduce the number of missing

values and reduce the number of incomplete instances. For example, the second

and third instances in Table 12 are incomplete, but by only keeping the selected730

features, these instances become complete as shown in Table 13.

In Table 13, the second and third instances are complete so they are quickly
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Table 12: Incomplete instances in the original Hear-h dataset.

N age sex chest pain trestbps chol fbs restecg thalach exang oldpeak slope ca thal

1 59 male asympt 140 ? f normal 140 no 0 ? 0 ?

2 46 male asympt 120 277 f normal 125 yes 1 flat ? ?

3 54 male asympt 150 365 f st t wave abnormality 134 no 1 up ? ?

4 48 male atyp angina 100 ? f normal 100 no 0 ? ? ?

5 54 female atyp angina 140 309 ? st t wave abnormality 140 no 0 ? ? ?

6 48 female atyp angina ? 308 f st t wave abnormality ? ? 2 up ? ?

Table 13: Instances in Table 12 reduced on the selected features.

N age chest pain exang oldpeak slope

1 59 asympt no 0 ?

2 46 asympt yes 1 flat

3 54 asympt no 1 up

4 48 atyp angina no 0 ?

5 54 atyp angina no 0 ?

6 48 atyp angina ? 2 up

classified by all the decision trees without requiring time for exploring applicable

classifiers. The first, fourth and fifth instances contain a missing value in feature

slope. Although only the decision tree in Fig. 7a is learned to classify these735

incomplete instances, the other decision trees in Fig. 7b and 7c also can be used

to classify the incomplete instances because they do not require feature slope

thanks to implicitly performing feature selection of C4.5.

In summary, three powerful techniques—multiple imputation, feature selec-

tion and ensemble learning—make the proposed method effective and efficient.740

6. Conclusions

This paper proposed an effective and efficient approach for classification with

incomplete data by integrating imputation, genetic-based feature selection and

ensemble learning. The proposed method uses imputation only in the training

process to transform incomplete training data into complete training data that745

is then further improved using feature selection to remove redundant and irrel-

evant features. Then the proposed method constructs an ensemble of classifiers

which can classify new incomplete instances without the need of imputation.
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The experiments were designed to compare the classification accuracy and the

computation time of the proposed method with five benchmark methods of the750

two common approaches to classification with incomplete data: using impu-

tation in both the training and application processes and using ensemble for

classification with incomplete data. The results and analysis show that the pro-

posed method can achieve better classification accuracy in most cases, and can

be much faster than the other methods in almost all cases.755

Missing values are also common issues in many regression problems [48].

However, there have not been much work on handling missing data in regression,

much less than in classification. In future work, we would like to investigate how

the ideas of imputation, feature selection and ensemble can be used for regression

with incomplete data.760
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