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Abstract
This study explores the effect of wing flexibility on flight characteristics, including the trim conditions, power requirement and dynamic stability of an insect-like flapping-wing micro-air-vehicle (FWMAV) that is based on the hawkmoth Manduca sexta. The wing structure is analyzed by the finite-element method. The potential-based aerodynamic model, which comprises the unsteady panel method and the extended unsteady vortex-lattice method, is employed to compute aerodynamic forces. The motions of the FWMAV are obtained using a flexible multibody dynamics program coupled with the potential-based aerodynamic model. The study showed that the trim conditions of the insect-like flexible and rigid FWMAVs may be significantly different from each other. When the flight speed is less than 3.0 m/s, using flexible wings is favorable as they help the FWMAV reduce the power requirement and stabilize the lateral dynamics. However, at 3.0 m/s, these advantages are almost unnoticeable, and at 4.0 m/s, the flexible insect-like FWMAV requires even more mechanical power than the rigid one.
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1. Introduction
In the past few years, we have witnessed the rapid development of a new generation of flapping-wing micro-air-vehicles (FWMAVs) that have a size of insects or small birds [1–3]. Inspired by insect flight in the wild, this type of FWMAVs offers promising future applications in defense technology as well as civilian tasks. Compared to conventional types of aircraft, such as rotorcraft and fixed-wing vehicles, FWMAVs are believed more efficient when scaling down to insect size [4]. Moreover, they possess noticeable abilities to hover and operate with a high level of maneuverability.
Many studies have been conducted in various areas to investigate the feasibility of designing insect-like FWMAVs. Regarding the aerodynamics, initial attempts were made in the mid of the last century using a very simple aerodynamic modelling [5]. Nowadays, with the advent of powerful computing technique, such as computational fluid dynamics (CFD) [6] together with state-of-the-art experimental methods [7,8], many aerodynamic aspects of insect flight have been uncovered.
At the same time, the dynamic stability characterization of insect-like FWMAVs has been investigated by Zhang and Sun [9], Orlowski and Girard [10], Taha et al. [11], and Kim et al. [12]. Many researchers have used the simple linearization method, which is based on the cycle-average approach to derive the longitudinal and lateral dynamic modes of insect motions. Several methods with a higher fidelity have been developed [13,14]; however, the cycle-average approach is still the most prevalent because of its simplicity and validity for most cases of insect flight [9].
Regarding aeroelastic problems, Singh and Chopra [15], Senda et al. [16], Gogulapati et al. [17], Stanford and Beran [18] and Stanford et al. [19] have numerically studied the effect of wing flexibility on the performance of insect-like flapping flight. Ryu et al. [20] conducted an experiment on a dynamically-scaled hawkmoth-like flexible wing model to show some favorable effects of wing flexibility on the aerodynamic force generation mechanisms. The wing structures in the above mentioned numerical and experimental investigations were much simpler than biological wings, whose properties and functionalities have been optimized by the evolution process. Due to the complexity and high anisotropy of biological wing structures [21–23], while developing insect-like FWMAVs, researchers tend to focus more on mimicking the optimized morphology and kinematics of real insects rather than wing deformations [2,3]. Recently, some researchers have successfully replicated biological insect wings [23,24] with a view to applying for future FWMAVs. On the other hand, it is still necessary to conduct more studies to uncover how biomimetic wing structures can benefit the flight performance of insect-like FWMAVs.
The objective of this study is to conduct a numerical analysis of the wing flexibility effect on various aspects of FWMAVs, including the trim conditions, power requirements and dynamic stability, which have not been discussed before. The solutions of a free-flight FWMAV that features the hawkmoth Manduca sexta at various flight speeds will be presented. A potential-based aerodynamic model, which combines the unsteady panel method (UPM) [25] and the extended unsteady vortex-lattice method (UVLM) [26], is coupled with a flexible multibody dynamics solver to handle the interaction problem between the fluid, structure and motions of the FWMAV. On the basis of analysis results, we can understand how an insect-like FWMAV can benefit from the use of flexible wings, and this finding could be valuable for the design of future FWMAVs.

2. Material and methods
2.1 FWMAV and kinematic models

This study uses the hawkmoth Manduca sexta as a reference insect to model the insect-like FWMAV, which is composed of a body and two wings. The rigid and flexible winged FWMAV models will be studied here. It is noted that the rigid and flexible wings have the same mass distribution; however, wing deformations are not allowed in the rigid wing structure. The wings are connected to the body with a three-degrees-of-freedom (3-DOF) revolute joint. Basic parameters regarding the mass and geometry of the wings and the body are given in Table 1 based on measurements by Willmott and Ellington [27]. In this table, mwg, R, , S and r2 are the mass, span, mean chord length, area and radius of the second moment of area of the wing, respectively; whereas mbd and L are the mass and length of the body. Distance from the center of mass to the tip of the head is denoted by l.
The current study uses the body-fixed coordinate system [xb yb zb] and the ground-fixed coordinate system [xG yG zG] (Fig. 1a). The body-fixed coordinate system has an origin located at the center of mass of the body. χ and β are the body and stroke plane angles, respectively.
The positions of the wings are defined by the set of three Euler angles ϕ, θ and α corresponding to the motions of the 3-DOF revolute joint connecting the wings and the body. As illustrated in Fig. 1b, the sweep angle ϕ corresponds to the back and forth motions of the wings, while the elevation angle θ is used to measure the up and down motions, and α denotes the rotation angle of the wing about its own axis. More details about these angles are given in [26]. The variations of ϕ, θ and α during the course of a wingbeat are obatined in the form of the third-order Fourier series by fitting measurement data [27,28]. 
2.2 Flexible wing structural model
The anisotropic structure of a flexible wing is modelled by a finite element analysis (FEA) program ANSYS Mechanical APDL, considering the mass and stiffness distributions of hawkmoth wings [22]. According to these measurement data, the wing consist of membrane and tapered veins with the hollow circular cross section. The veins and skin of the wing are modelled with the BEAM188 and SHELL181 elements, respectively. The beam elements are based on the first order shear-deformation Timoshenko beam theory. Each beam element has two nodes, and at each node, there are six degrees of freedom, including three translations in the x, y and z directions, and three rotations about the x, y and z directions. Similar to the beam elements, for the shell elements, which are used to model the wing skin, the first order shear deformation is also considered. Each shell element has three or four nodes with six degrees of freedom, including three translations and three rotations at each node.
In reality, each wing consists of fore- and hind-wings connected to each other by a hook structure [28]. However, for simplicity, these wings are modeled to be joined together at their interface to form a single full wing [29]. Figure 2 shows the FEA models of the fore- and full wing. The mode shapes and natural frequencies of these models are obtained by the block Lanczos method for computing eigenvalues [30]. Table 2 shows the present FEA forewing structure’s natural frequencies, which are compared with those derived in an experiment on a biological forewing [31]. The close agreement found in Table 2 has implied the equivalence between the FEA and biological structures. Similarly, the first three vibration modes of the FEA full wing structure are obtained and shown in Fig. 3 along with their natural frequencies.
2.3 Aerodynamic model
The present study employs a potential-based aerodynamic model coupling the UPM and the extended UVLM, which simulate the aerodynamics of the body and the wings of the FWMAV, respectively.
2.3.1 Unsteady panel method
The FWMAV has the geometry of the hawkmoth Manduca sexta, whose body was shown to be streamlined [32]. Hence, the UPM, which was developed for irrotational, inviscid and attached flows, is applicable for the FWMAV body. According to Katz and Plotkin [25], the velocity potential Ф can be obtained by summing up the source σ and doublet μ distributions on the body surface Sb and wake surface Sw


	 	(1)
The UPM requires the no-penetration boundary condition (Neumann boundary condition), which assures the zero normal velocity component of the flow relative to the body surface. Additionally, flow disturbances decay to zero in the far field, and the velocity potential inside the body is constant (Dirichlet boundary condition).
The body is discretized into quadrilateral and triangular panels (Fig. 4), on each we place constant strength source and doublet elements. The source strength is determined by the Neumann boundary condition; while the doublet strength is computed by applying the Dirichlet boundary condition [25].
The pressure p on each panel is computed by the unsteady Bernoulli equation as


	 	(2)
Here, ρ is the air density, pref and Vref denote the reference pressure and velocity, which are set to equal the far-field pressure and the local velocity of the body in the ground-fixed coordinate system. 
2.3.2 Extended unsteady vortex-lattice method
The UVLM is a reduced version of the UPM applied for thin objects, such as the FWMAV wings by assuming that the lower and upper surfaces are coincident. Therefore, source elements obtained by the Neumann boundary condition on these surfaces cancel out each other. Doublet elements on the wing surfaces are equivalent to vortex rings [25]. The Kutta condition is applied at the trailing edges of the wings to allow vortices to shed freely to form the unsteady wake. The circulation on each vortex ring is obtained by applying the no-penetration boundary at collocation points located at the panel centers [26].
The UVLM used in this study is extended by including the leading-edge suction analogy model and the vortex-core growth model. According to Ellington et al. [33], spiral spanwise LEVs on insect wings are similar to those on delta wings in terms of geometry and formation mechanism. Hence, the leading-edge suction analogy approach, which has been developed to estimate the contributions of delta wing LEVs [34], can be applied for insect wings. The idea of this approach is based on the analogy between the mechanism to maintain the flow over a spiral separated LEV and that for the attached flow around a round leading edge. Therefore, the force due to the separated LEV on a delta or insect wing can be assumed to be equal to the theoretical leading-edge suction force in an attached flow, and only the orientation of the LEV force is rotated to be perpendicular to the wing surface. Nguyen et al. [26] has derived a formula to compute this force component as
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where  is the force due to the LEV per unit length of the leading edge; the coefficient of leading-edge suction efficiency  is set to 0.5 according to the investigation by Nguyen et al. [26] for hawkmoth flight operated at Reynold numbers of around 10,000; , , and  respectively denote the circulation, the length, and the sweep angle of the local leading-edge panel.

In addition to the use of the leading-edge suction analogy model, to avoid numerical singularity problems due to wing-wake and body-wake interactions [35] and include the effect of viscous diffusion, the core radius of vortex lines in the free wake is allowed to grow as time progresses [36]. The formula to determine the vortex core radius  is given in [26]: 
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where  is the Lamb constant; ν and  are the kinematic viscosity and Squire’s parameter, respectively.  can be selected for the present study [26].
2.3.3 Validation of the aerodynamic model

To validate the aerodynamic model, the wing and body lift coefficients of a rigid-winged hawkmoth model from the literature [37] are compared with the CFD modelling results (Fig. 5). The lift coefficient CL is defined by , where L is the lift force, Ut is the mean wing-tip velocity, and S is the wing area.
The consistency between these results as shown by Fig. 5 has confirmed the validity of the potential-based aerodynamic model used in this study.
2.4 Flexible multibody dynamics simulation framework
[bookmark: OLE_LINK20][bookmark: _GoBack]In the present study, the simulation framework for the insect-like FWMAV flight is created by adopting the flexible multibody dynamics solver available in MSC. Adams [38–40]. The flexible multibody dynamics solver uses the modal information of the FEA wing structure through a model neutral file (MNF) generated by ANSYS Mechanical APDL. Forces computed by the aerodynamic model (Section 2.3) are exported to the MSC. Adams solver and play the roles of external forces. On the other hand, the dynamics solver provides the model’s kinematics and wing deformations that are used to update the aerodynamic panel mesh (Fig. 4). The flowchart of the flexible multibody dynamics simulation framework is illustrated in Fig. 6.
The following differential equations of motions are solved in the MSC. Adams environment [39]:


	 	(5)

where M and K are respectively the mass and stiffness matrices; fg denotes the generalized gravitational force; Q is the matrix of generalized applied forces, including the gravitational and aerodynamic forces;  is the constrain equation; and ξ is the generalized coordinates, which comprise the position vector of the local reference frame in the ground-fixed coordinate system, the set of Euler angles and the modal coordinates.
[bookmark: OLE_LINK17][bookmark: OLE_LINK18][bookmark: OLE_LINK19]The present framework uses the GSTIFF integrator [41] to solve the nonlinear differential algebraic equation (Eq. 5). The solution occurs in two phases, including a prediction and a correction. When taking a new time step, the prediction is performed by extrapolating past values to the current time. The integrator uses Taylor’s series for this phase. The correction phase is an implicit process using an iterative, quasi-Newton-Raphson algorithm. When the corrector has converged, the local integration error is compared with the specified error. If the integration error is less than the specified error, the integrator takes a new time step; otherwise, the solution is rejected and a smaller time step is taken. It is noted that due to the complexity and high computational cost of the aerodynamic model, the wake and aerodynamic forces are updated only when the program moves to a new time step (Fig. 6). Discussion on the convergence of the integrator will be shown later in this paper. More details about the flexible multibody dynamics solver are available in [38–40]. However, in these references, the solver is coupled only with a two-dimensional quasi-steady aerodynamic model. In this paper, a three-dimensional unsteady aerodynamic model is utilized for the first time in the MSC. Adams environment.





Because two distinct meshes are used for the aerodynamic and structural analyses, it is necessary to represent the equivalent aerodynamic forces at the structural nodes and the structural deformations at the aerodynamic nodes. Numerous transformation schemes have been proposed, and for two dimensional problems, the infinite-surface spline of Harder and Desmarais [42] and the finite-surface spline of Appa [43] have been commonly used. In this study, we propose a simple transformation scheme that is based on the so called the “nearest-neighbor” interpolation method. Using this method, the displacements at the aerodynamic nodes and collocation points are equal to those of their nearest structural nodes. It is important to note that the aerodynamic forces are applied at the collocation points of the aerodynamic panels. Let  and  denote the vectors of displacements at the structural, aerodynamic nodes and collocation points, respectively. Using the “nearest-neighbor” interpolation,  and  can be expressed in terms of  as
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Here, the mapping matrices  and  have Boolean forms.
To transfer the aerodynamic forces to the structural mesh, it is necessary to guarantee that the virtual works done by these forces are the same in both meshes: 


	 	(7)
Thus, we have
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where  is the vector of aerodynamic forces at the aerodynamic collocation points, and  is its equivalent vector of forces applied to the structural mesh.  is the aerodynamic load transformation matrix, which also has a Boolean form.
[bookmark: OLE_LINK26][bookmark: OLE_LINK27][bookmark: OLE_LINK28]As noted earlier, wing deformations are estimated during the prediction and correction phases, whereas the aerodynamic forces are updated only when the solution has converged and the program starts to move to a new time step. Hence, during the simulation, the information exchange between the structural and aerodynamic models is performed only at the start of each time step.

Compared to previously proposed transformation scheme [42,43], the scheme based on the “nearest-neighbor” interpolation method is simpler and more suitable for simulations in the MSC. Adams environment. Due to the Boolean form of aerodynamic load transformation matrix , the number of nodal forces in the structure mesh is equal to the number of aerodynamic panels. This low number of nodal forces considered in the simulation environment will help the framework to minimize its running time. Despite of the loose aerodynamics-structure coupling approach, the present program can still assure a high accuracy level of numerical results when the structural mesh is fine enough, which will be demonstrated later in this paper.
2.5 Trim search algorithm
Due to the highly nonlinear aerodynamics and dynamics of flapping flight, finding the trim conditions of the insect-like FWMAV is troublesome. The trim search algorithm employed in this study is the same as those in [12,44,45]. Trimmed flight is obtained by iteratively tuning several flight parameters of a hawkmoth [27,28]. According to previous studies using this trim search algorithm, the initial velocities and offset forces are applied to the insect-like FWMAV to balance the model. When the mean velocities of the FWMAV are close to the reference velocities, the flapping frequency f, the sweep angle ϕ and the rotation angle α are tuned so that additional aerodynamic forces generated by the changes of these parameters can replace offset forces acting on the FWMAV. More details regarding the trim search algorithm can be found in [12,44,45].
2.6 Linearization of 6-DOF dynamics 
According to Zhang and Sun [9], Zhang et al. [46] and Kim et al. [12], the nonlinear dynamics of hawkmoth-like FWMAVs could be simplified by the linearization method based on the cycle-average approach. It should be noted that this method is applicable only for FWMAVs with small wing mass and a high flapping-wing frequency. The nondimensional linearized equations expressing the longitudinal and lateral disturbance motions of a 6-DOF FWMAV in the body-fixed coordinate system are respectively given by [45]
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where δ denotes the small disturbance value, ue is the flight speed, g is the gravitational acceleration, I and m are the inertial moment and mass of the FWMAV. u, v, w and p, q, r are respectively translation and angular velocities on the xb, yb and zb axes of the body-fixed coordinate system. Aerodynamic forces and moments on these axes are respectively denoted by X, Y, Z and L, M, N. Θ and Ψ are the second and third Euler angles of the 3-2-1 rotation sequence used to define the orientation of the body-fixed frame relative to the ground-fixed frame. Θ0 is the mean value of Θ. These variables are nondimensionalized as
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Here, ρ, U, St, T are respectively the air density, reference velocity, total area of the two wings and wingbeat period. The reference velocity U is defined by 2ϕampfr2, in which ϕamp, f and r2 are the stroke amplitude, the flapping frequency and the radius of the second moment of the wing area.

3. Results and discussion
3.1 Convergence study and validation of the aerodynamics-structure coupling method
The convergence study is performed to determine the appropriate time step size, mode number, as well as aerodynamic and structural mesh resolutions used in this work.



Initially, the simulation runs with 300 time steps per stroke cycle and a high-density FEA mesh with 3791 nodes. The number of aerodynamic panels  varies from 32 to 200 in order to investigate its convergence trend. Nguyen et al [26] has indicated that the time resolution of 300 steps per stroke cycle used here is relatively high and can guarantee the convergence for the aerodynamic forces. The lift coefficients  within the course of one wingbeat stroke cycle corresponding to various numbers of aerodynamic panels are exhibited in Fig. 7a. A good convergence trend is observed in this figure, and differences between these lift coefficient results are small. Considering a compromise between computational cost and fidelity, the number of aerodynamic panels  will be held at 72 for further simulations.



 Next, by holding the number of time steps per stroke cycle  and the number of aerodynamic panels  at 300 and 72, respectively and varying the resolution of the FEA mesh from 797 to 3791 nodes, it is possible to examine the convergence of the lift coefficient with respect to the number of FEA nodes  (Fig. 7b). Similar to the previous analysis of varying the number of aerodynamic panels, the lift coefficient converges as the FEA mesh is refined. Based on convergence analysis result, the mesh with 1222 nodes will be selected for next simulations.

So far, the number of time steps per stroke cycle  is held constant at 300. In the next analysis, this number is varied from 50 and 300 (Fig. 7c). Considering the computational cost and the convergence trend exhibited in this figure, the time step number of 100 is regarded acceptable for the current study.

Finally, the convergence of the numerical result is studied with respect to the number of vibration modes . The above analyses consider the three first modes as presented in Fig. 3. Simulations with more vibration modes are conducted and their results are shown in Fig. 7d. It appears that the contributions of the modes with higher natural frequencies are negligible, and the consideration of the first three modes is sufficient. 
[bookmark: OLE_LINK29][bookmark: OLE_LINK30][bookmark: OLE_LINK31][bookmark: OLE_LINK12][bookmark: OLE_LINK13][bookmark: OLE_LINK14]Based on the results of the above convergence analyses, we can see that the use of the aerodynamic mesh with 72 panels and the structural mesh with 1222 nodes is appropriate for the fluid-structure interaction simulations of the hawkmoth-like wings. Moreover, to compromise the computational cost and fidelity, the time step number per stroke cycle is set to 100 and the mode number is three. Using these meshes and simulation parameters, the lift coefficients of our rigid and flexible wing models while undergoing a sinusoidal motion are obtained and compared with those computed by the computational structural dynamics (CSD) and computational fluid dynamics (CFD) coupling method for the hawkmoth Agrius convolvuli  [29], which is a close species to the Manduca sexta. As can be seen in Fig. 8, the lift coefficients of the rigid and flexible wings are in good agreement with the reference data. Wing flexibility is estimated to increase the lift force by about 18%, which is close to 20% according to Nakata and Liu [29].    
3.2 Effect of wing flexibility on trim conditions 
[bookmark: OLE_LINK11]As mentioned in section 2.5, the trim conditions are obtained by tuning the flapping frequency f, the sweep angle ϕ and the rotation angles α of the FWMAV. The values of these parameters are shown in Fig. 9. It is noted that the angles presented in Fig. 9 are measured at the wing base. In most cases, wing flexibility reduces the flapping frequency. The most significant reduction is equal to 3.9 Hz (14%) at 0.0 m/s. The reduction in flapping frequency tends to be less considerable as the flight speed increases. At 3.0 m/s, this reduction is only 0.5 Hz; however at 4.0 m/s, the flapping frequency of the flexible FWMAV even exceeds that of the rigid one. The explanation for the larger flapping frequency at 4.0 m/s will be provided in the next section. From 0.0 to 2.0 m/s, the mean sweep angle ϕ slightly increases due to wing flexibility. However, at 3.0 and 4.0 m/s, the rigid FWMAV has a larger mean sweep angle. The figure also shows an increase in mean rotation angle α due to wing flexibility when the flight speed is lower than 3.0 m/s. From 3.0 m/s, there is almost no change in the rotation angle.
The trim solutions of the rigid and flexible insect-like FWMAVs in one wingbeat stroke cycle are illustrated in Fig. 10. The closed-loop trajectories of the variables have confirmed the validity of the current trim search program. While hovering or flying at a low flight speed, wing flexibility increases the amplitude of the body pitch oscillation. However, in high-speed flight, this effect is reversed, and the rigid model has a larger body oscillation amplitude. To explain this trend, the pitching motion tendencies of the rigid and flexible FWMAVs are investigated. Similar to the simulation result by Kim and Han [44], in this study, for all flight speeds, during the up- and downstroke phases, the FWMAVs tend to undergo pitching up and down motions, respectively as shown in Fig. 11. In this figure, the up- and downstroke phases are respectively corresponding to the first and second halves of the wingbeat stroke cycle. The wing-tip trajectories in this figure also reveal that in hover and low-speed flight, the wings are positioned ahead of the center of mass; thus, wing drag plays the role of a damping force that alleviates the pitching oscillation of the body. For the flexible FWMAV, due to the torsional deformations of the wings, the wings’ angle of attack decreases; hence, the damping force is lower. Because of this, the body pitching amplitude of the flexible FWMAV is larger as shown in Fig. 10. In contrast, at high speeds (3.0 and 4.0 m/s), the FWMAVs move their wings aftward by reducing the sweep angle ϕ (Fig. 9) and the elevation angle θ [27]. Consequently, the wing tip regions, which generate most aerodynamic force during the translational phase, fall behind the center of mass; and thus, the wing drag force stimulates the body pitching oscillation in this case. Using the flexible wings can reduce this force, and hence, diminish this oscillation as shown in Fig. 10.
[bookmark: OLE_LINK33][bookmark: OLE_LINK34]It is noted that for each iteration of the trim search program, the simulation is performed for the first two wingbeat stroke cycles, and only the forces and moments of the second cycle are used. According to the time history of the aerodynamic forces produced by a hawkmoth-like wing in an experiment by Lua et al. [47], the transitory state almost disappears in the second stroke cycle, and from this cycle, the aerodynamic forces have reached a periodic state. The present framework takes 232 seconds to run the simulation for the first two wingbeat stroke cycles of the flexible FWMAV on a PC with an eight-thread CPU (4.0 Hz) and a memory of 16.0 GB. To run three and four complete stroke cycles, it respectively takes 484 and 903 seconds. For simulations with more stroke cycles, the computational time may be kept low by applying the wake cut-off technique to exclude some wake parts that have been largely diffused or are located far from the FWMAV. It is also observed that when working on the rigid FWMAV flight simulation, the force and deformation transferring processes are not required, and the computational time decreases by about 1.5 times. Compared to other CFD-based simulation programs that normally require many hours to run one wingbeat stroke cycle [37,48], the current framework is obviously more efficient and suitable for many engineering applications. The wake visualizations of the flexible FWMAV after three wingbeat stroke cycles while hovering and flying at 2.0 m/s with the above trim conditions are presented in Fig. 12.   
3.3 Effects of wing flexibility on mechanical power requirements and lift generation mechanism
The mechanical power required at the 3-DOF revolute joints connecting the wings and the body is calculated as the sum of its power components Pϕ, Pθ and Pα corresponding to the rotations of the wings about the sweeping, elevating and rotating axes, respectively. These power components are determined by


	 	(12)
where Tj is the torque about the j axis measured at the revolute joints.
In this study, we assume that the FWMAV operates like an insect that does not store the energy during the period of negative work by an elastic element [49]. Following this assumption, the mean values of the mechanical power consumed by the rigid and flexible insect-like FWMAVs are shown against the flight speed in Fig. 13. In general, flying at low flight speed demands more energy because the insect-like FWMAV has to generate lift primarily through flapping its wings rather than passing through the air. In hovering and low-speed flight with the small stroke plane angle β, the induced flow is almost vertically downward (Fig. 14a). According to the momentum conservation law, this vertical downward flow is a source of lift generation. Moreover, the swift stroke reversal motion results in the deformations of the flexible wings. These deformations are beneficial for the downward flow and the lift generation mechanism [29]. Therefore, using flexible wings is more efficient at low speeds. In this study, at flight speeds of 0.0, 1.0 and 2.0 m/s, the mean mechanical power is reduced by 20.6%, 10.3% and 18.6%, respectively. Correspondingly, due to this benefit, the flapping frequencies of the flexible FWMAV at these flight speeds are also lower as shown in Fig. 9. However, at a higher flight speed, the FWMAV increases the stroke plane angle β in order to control the direction of the resultant force in a manner similar to helicopters. At 4.0 m/s, due to the almost vertical stroke plane, an upward flow region, which is detrimental to the lift generation mechanism, appears at the beginning of the downstroke (Fig. 14b). Wing deformations intensify this upward flow region, and therefore, reduce the lift force. To overcome this adverse effect, the flexible FWMAV has to increase the flapping frequency f to generate enough lift as shown in Fig. 9. According to Willmott and Ellington [27], in high speed flight, the major components of the mechanical power, which are the inertial power and profile power are proportional to f3. Consequently, as the flapping frequency of the flexible FWMAV is 1.12 times larger than that of the rigid FWMAV at 4.0 m/s, the total mechanical power is expected to grow by approximately 1.4 times as indicated in Fig. 13.
Figure 15 shows the mean lift forces of the rigid- and flexible FWMAVs from 0.0 to 4.0 m/s. Here, the data are calculated based on the trim conditions of the flexible FWMAV. It is obvious that while the FWMAV is hovering or flying at low speeds, the flexible wings can generate more lift than the rigid wings; however, in high-speed flight, this effect is reversed. The lift difference between the rigid and flexible FWMAVs is correlated with the stroke plane angle β as revealed by Fig. 16. In this figure, Lrig and Lflex denote the mean lift forces generated by the rigid and flexible models. Here, the difference is normalized with the weight of the FWMAV. This correlation is attributed to the direction of the induced flow, which is intensified by wing deformations. When the stroke plane angle is small, this flow is almost vertical; therefore, the FWMAV can benefit from the use of the flexible wings to enhance the lift force. However, when the stroke plane angle increases, this advantage becomes less noticeable.
3.4 Effect of wing flexibility on dynamic stability
To study the wing flexibility effect on the dynamic stability of the insect-like FWMAV, the eigenvalues of state matrixes in the linearized longitudinal and lateral disturbance motion equations [Eqs. (9) and (10)] are calculated and shown in Fig. 17. It is observed that by comparing the eigenvalues, wing flexibility has almost no effect on the longitudinal dynamic characteristics. Both rigid and flexible FWMAVs have two stable subsidence modes and one unstable oscillatory mode. On the contrary, wing flexibility can enhance the stability of the lateral dynamics at low-speed flight (less than 3.0 m/s) greatly. However, at higher flight speeds, the effect of wing flexibility on the lateral dynamic structure becomes relatively small. To ascertain this trend, the nonlinear solutions obtained by the flight simulation framework (section 2.4) and the linear solutions from Eq. (10) to a lateral gust with a velocity of 0.1U are presented in Fig. 18. In hover, the lateral dynamics of the FWMAV can be significantly stabilized by the use of the flexible wings; while the difference between the gust responses of the rigid and flexible FWMAVs at 4.0 m/s is unnoticeable. The lateral stability enhancement due to wing flexibility in hovering flight could be intuitively expressed in Fig. 19.


By comparing the variations of the aerodynamic force Y, and aerodynamic moments L and N against disturbance velocities Δv, Δp and Δr at 0.0 and 4.0 m/s (Fig. 20), it can be perceived that the effect of wing flexibility on the lateral dynamic stability characteristics of hovering and low-speed flight are primarily due to large changes in  and . From the trim conditions, the rigid and flexible FWMAVs are allowed to translate laterally at a constant velocity Δv of 0.1 U, and the nondimensional moments L+ and N+ about the xb and zb axes (Eq. 11) are computed and shown in Fig. 21. It is seen that the flexible model generates the smaller yaw moment N+ than that of the rigid model during the upstroke and the smaller roll moment L+ during the downstroke. These trends can be explained by the bending-up deformations of the flexible wings in the middles of the upstroke and downstroke as shown in Fig. 22. It is observed that the wing surfaces are almost perpendicular to the body axis during the upstroke phase; however, during the downstroke, they become parallel to each other. ΔF denotes an extra force acting on a wing due to the lateral translation of the FWMAV and the bending-up deformation of the wing. Figure 22 indicates that this force will result in the negative roll and yaw moments ΔL and ΔN during downstroke and upstroke, respectively. These trends of the moments L and N are consistent with those presented in Fig. 20. According to Daniel and Combes [50], the wing deformations are mainly governed by the inertial force, which is less severe during high-speed flight [32]. Thus, the extra force ΔF due to the wing deformations becomes smaller, and the effect of wing flexibility on the dynamic stability characteristics in high-speed flight is less considerable than that during hovering and low-speed flight. It is relevant to note that the wing deformations tend to be more significant in the wing tip regions; hence, they are likely to affect the lateral aerodynamic moment components (L and N) more greatly than the pitching moment M. As a result of this, wing flexibility has a more profound effect on the dynamic stability characteristics of lateral flight than those of longitudinal flight.

4. Conclusions 
This paper has studied the wing flexibility effect on the trim conditions, power requirements and dynamic stability of a hawkmoth-like FWMAV. The following conclusions may be drawn from the results:
1) There are some differences in terms of wing kinematics between the rigid and flexible FWMAVs, and the most prominent difference is in flapping frequency f. While using the flexible wings, the flapping frequency is reduced the most significantly in hover by 14% and this reduction tends to decrease as the flight speed increases. The large reduction while hovering is due to the small stroke plane angle, which makes the airflow created by the wing deformations vertically downward and have a significant contribution to the wing lift production. Therefore, the FWMAV can reduce its flapping frequency. This effect becomes less considerable when the flight speed increases and the stroke plane is larger. At 4.0 m/s, the flexible FWMAV even moves the wings at a higher flapping frequency.
2) While hovering and flying slowly, the flexible insect-like FWMAV has a larger body pitch amplitude, while in high-speed flight this amplitude is smaller than that of the rigid FWMAV. This trend is associated with the change in relative positions of the wings to the body. In hover and low-speed flight, wing flexibility reduces the pitch damping, and therefore, magnifies the body pitch oscillation, whereas at 3.0 and 4.0 m/s, the wings move aftward and this effect is reversed.
3) The trend of the mechanical power with respect to flight speed is similar to that of the flapping frequency, and a similar explanation can be used. In hover, using the flexible wings may save about 20% of the mechanical power, and this amount tends to decline to almost 0% at 3.0 m/s due to the increase of the stroke plane angle. At 4.0 m/s, the analysis showed the adverse effect of wing flexibility on the flight efficiency. This adverse effect is attributable to the fact that the wing deformations intensify an upward flow that occurs at the beginning of the downstroke, which is unfavorable for the lift generation mechanism, and the FWMAV has to consume more energy to overcome this.


4) Wing flexibility has almost no effect on the dynamic stability characteristics of longitudinal flight. The effect on the lateral dynamics during high-speed flight is also unnoticeable. However, at low-speed flight (less than 3.0 m/s), the stability of the lateral dynamic system could be enhanced significantly by the use of the flexible wings. This effect is attributed to the changes in stability derivatives  and , which is explained by the bending up deformations of the flexible wings.
In general, despite the adverse effect in terms of energy consumption at a large flight speed of 4.0 m/s, the use of biomimetic flexible wings could offer quite many benefits to the flight performance of the present hawkmoth-like FWMAV model. The findings of this study may be valuable for the design of future insect-like FWMAVs.
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Fig. 1. The insect-like FWMAV and angle definitions
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Fig. 2. FEA models of the fore- and full wings.



Fig. 3. The first three modes of the FEA full wing. The first mode (bending) occurs at 65.8 Hz, the second mode (torsion) at 122.2 Hz, and the third mode (saddle) at 175.3 Hz.



Fig. 4. Aerodynamic panel mesh of the insect-like FWMAV.
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Fig. 5. Wing and body lift coefficients of a hawkmoth model in hover by the present aerodynamic model and by CFD modelling method [37].
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Fig. 6. Flowchart of the flexible multibody dynamics simulation framework.
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[bookmark: OLE_LINK42][bookmark: OLE_LINK41][bookmark: OLE_LINK40][bookmark: OLE_LINK45][bookmark: OLE_LINK44][bookmark: OLE_LINK43]Fig. 7. Lift coefficients of the flexible wing when varying the number of aerodynamic panels  (a), the number of FEA nodes  (b), the number of time steps per stroke cycle  (c) and the number of modes  (d).
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[bookmark: OLE_LINK32]Fig. 8. Lift coefficients of rigid and flexible hawkmoth wings computed by the present method and by the CSD/CFD coupling method [29].
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Fig. 9. The flapping frequencies f, mean sweep angle ϕ and mean rotation angle α of the rigid and flexible FWMAVs at the trim conditions against the flight speed.



Fig. 10. Trim solutions at various flight speeds in one wingbeat stroke cycle. The first column shows the trajectories of the FWMAVs, the second column shows the velocities on the xG and zG axes, and the third one shows the pitch rate and pitch angle. The trajectories in hovering flight are zoomed in.
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Fig. 11. The variations of pitch angles, pitch rates and wing-tip trajectories within one wingbeat stroke cycle of the rigid FWMAV at various flight speeds. The round dot on the body represents the location of the mass center of the body.
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[bookmark: OLE_LINK35][bookmark: OLE_LINK36]Fig. 12. Wake visualizations of the flexible insect-like FWMAVs after three wingbeat stroke cycles while hovering (upper subfigures) and flying at 2.0 m/s (lower subfigures). The right subfigures show the wakes from the front view.
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Fig. 13. Mean mechanical power consumed by the rigid and flexible insect-like FWMAVs.



Fig. 14. The flow fields at the beginning of the downstroke at 0.0 and 4.0 m/s.
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Fig. 15. Mean lift forces on the rigid and flexible FWMAVs at the trim conditions of the flexible one.





Fig. 16. Stroke plane angle β and lift difference between the rigid- and flexible FWMAVs at different flight speeds.


Fig. 17. Eigenvalues of longitudinal and lateral dynamics at various flight speeds.



Fig. 18. Dynamic responses of the FWMAV to lateral gust.



Fig. 19. Responses of the rigid (a) and flexible (b) FWMAVs due to lateral gust disturbance δvg after five wingbeat stroke cycles.



Fig. 20. Lateral stability derivatives at 0.0 and 4.0 m/s.


Fig. 21. Nondimensional moments L+ and N+ of the rigid and flexible FWMAVs at the hovering trim conditions due to lateral translation motion at a constant velocity of 0.1U.





Fig. 22. Extra force ΔF and moments ΔL and ΔN due to wing deformations and lateral translation motion Δv.



Table 1. Geometry and mass parameters of wings and body
	Parameter
	mwg
	R
	

	S
	r2
	mbd
	L
	l/L

	
	(mg)
	(mm)
	(mm)
	(mm2)
	( - )
	(mg)
	(mm)
	( - )

	Value
	46.87
	48.50
	16.81
	815.33
	0.53
	1485.0
	44.80
	0.45



Table 2. Natural frequencies of the FEA forewing and a biological forewing in an experiment by O’Hara [31]
	Mode No.
	1
	2
	3

	FEA wing (Hz)
	62.7
	119.3
	192.5

	Biological wing (Hz)
	65.0
	110.0
	-
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