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Permeability of solid foam: Effect of pore connections

V. Langlois,1,* V. H. Trinh,2,† C. Lusso,3,‡ C. Perrot,2,§ X. Chateau,3,‖ Y. Khidas,4,¶ and O. Pitois5,**

1Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, F-77454, Marne-la-Vallée, France
2Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME UMR 8208 CNRS, Marne-la-Vallée 77454, France

3Université Paris-Est, Laboratoire Navier, UMR 8205 CNRS, École des Ponts ParisTech, IFSTTAR Marne-la-Vallée, France
4Université Paris-Est, Laboratoire Navier, UMR 8205 CNRS, École des Ponts ParisTech, IFSTTAR,

5 Bd Descartes, 77454 Marne-la-Vallée, France
5Université Paris-Est, Laboratoire Navier, UMR 8205 CNRS, École des Ponts ParisTech, IFSTTAR cité Descartes,

2 allée Kepler, 77420 Champs-sur-Marne, France

(Received 21 December 2017; revised manuscript received 30 April 2018; published 31 May 2018)

In this paper, we study how the permeability of solid foam is modified by the presence of membranes that
close partially or totally the cell windows connecting neighboring pores. The finite element method (FEM)
simulations computing the Stokes problem are performed at both pore and macroscopic scales. For foam with
fully interconnected pores, we obtain a robust power-law relationship between permeability and aperture size.
This result is due to the local pressure drop mechanism through the aperture as described by Sampson for fluid
flow through a circular orifice in a thin plate. Based on this local law, pore-network simulation of simple flow is
used and is shown to reproduce FEM results. Then this low computational cost method is used to study in detail
the effect of an open window fraction on the percolation properties of the foam pore space. The results clarify
the effect of membranes on foam permeability. Finally, Kirkpatrick’s model is adapted to provide analytical
expressions that allow for our simulation results to be successfully reproduced.

DOI: 10.1103/PhysRevE.97.053111

I. INTRODUCTION

Foam is a dispersion of gas in liquid or solid matrix. Its struc-
ture is made of membranes (also called films for liquid foams),
ligaments or Plateau’s borders (junction of three membranes),
and vertices or nodes (junction of four ligaments). Whereas
closed membranes are necessary to ensure the mechanical
stability of liquid foam [1], membranes can be open or totally
absent in solid foam, allowing for the foam cells (pores) to
be connected through windows. It is remarkable that such a
small volume contained in the window areas can have such
drastic effects for several properties of foams. This is the case
for fluid permeability of solid foam, where open windows
contribute to transport the fluid through the material, whereas
closed windows stop it. Therefore, the fraction of closed
windows is crucial for several applications, such as filtering.
As viscous dissipation is the most dissipative mechanism
in sound propagation through porous materials, permeability
(or flow resistivity) is a key parameter in this issue [2,3],
making acoustical properties of foams very sensitive to both
the open window fraction and the aperture size of windows.
Different works have focused on the effects of foam geometry
on permeability: fraction of closed windows [4], aperture of
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windows [5], and solid volume fraction and ligament shapes
[6,7]. Authors have proposed empirical relations between
permeability and several structural parameters of foam (solid
volume fraction, window aperture rate, etc.), but a global
physical model would be suitable in order to design foams
with the required permeability. Note also that, beyond a
critical value of open window fraction (called the percolation
threshold), the percolation phenomenon is expected to arise
in foams, i.e., the size of the largest cluster of interconnected
cells is equal to the sample thickness, Hsp, leading to an open
pore space [8]. This phenomenon has not been studied so far
in the case of foams, although it has been proved to have a
great influence on permeability of porous media. For example,
the classical Kozeny-Carman equation has to be modified by
considering the difference between the porosity and the critical
porosity leading to percolation [9]. Tackling the percolation
issue for the permeability of porous media requires numerical
simulations to use large samples involving a few thousand
pores [10]. For the flow simulation at the pore scale or at the
scale of a few pores, the finite element, finite volume, boundary
element, and lattice Boltzmann methods have been often
applied [3,11–13]. However, as the size of samples increases,
the computational costs for those methods become prohibitive,
so that multiscale approaches are preferable [14–19]. Such
methods involve determining the flow behavior at the local
scale (i.e., a throat between two linked pores) by numerical
simulations or analytical solutions (e.g., Hagen-Poiseuille
equation); then pore-network simulations are performed to
determine the permeability at the macroscopic scale [20].

In this paper, we use a multiscale approach to study the
permeability of solid foam with various windows config-
urations. The effect of aperture size on local permeability

2470-0045/2018/97(5)/053111(10) 053111-1 ©2018 American Physical Society
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of fully open-cell foam (i.e., containing no closed window)
is studied by using FEM simulations on periodic unit cells
(PUCs) with the Kelvin partition of space. The effect of
closed windows is studied through FEM simulations on larger
samples (containing 256 pores). Then mesoscopic effects
induced by the structure of the pore network are studied
by pore-network simulations on large (containing at least
43 900 pores) networks of interconnected pores interacting via
local permeabilities. Finally, a model of effective permeability,
based on a calculation of the mean local permeability as in
Kirkpatrick [14], is used to provide a physical description of
the membrane-induced percolation effect in foam and the effect
of combining several local permeabilities.

II. NUMERICAL SIMULATIONS OF FOAM
PERMEABILITY

A. FEM Simulations of fluid flow

1. At the pore scale

As shown in Fig. 1, a periodic unit cell of size Db is used
to represent the pore structure in foam samples [21]. The
number of pores, Np, contained within the unit cell is equal
to 2. The cell is based on the Kelvin paving and is a 14-sided
polyhedron (eight hexagons and six squares) corresponding to
windows shared with the Nv = 14 neighbors. The cell skeleton
is made of idealized ligaments having length L = Db/(2

√
2)

and an equilateral triangular cross section of edge side r =
0.58Db(1 − φ)0.521, where φ is the gas volume fraction [1]. As
we are interested here in the effect of partial closure of the cell
windows by membranes, we partially close the windows by
adding holed membranes characterized with distinct circular
aperture sizes. Two kinds of simulations were performed: (1)
identical aperture size for all windows [Fig. 1(b)] and (2) iden-
tical rate of aperture δow = to/tw [Fig. 1(c)] where tw and to are,
respectively, the full window size and the size of the aperture

FIG. 1. PUC with fully open windows (a), with partially closed
windows characterized by the same aperture size (b), identical
aperture rate (c), definitions of the aperture size to, and the full window
size tw (d).

FIG. 2. FEM macroscale samples: skeleton mesh (a) and pore-
space mesh (b). For sake of visibility, a mesh of size 2

√
2 × 2

√
2 × 2

(Db units) is depicted.

as defined in Fig. 1(d). Note that, in the reference configuration
[Fig. 1(a)], the 14 cell windows are fully open (i.e., contain no
membrane). The static viscous permeability K is computed
from the solution of the Stokes problem [8] for different
porosities. The boundary value problem is solved by using the
finite element method and the commercial software COMSOL
Multiphysics. The permeability calculation error, determined
by convergence tests, is inferior to 6%. To achieve this accu-
racy, the meshes contain at least 250 000 tetrahedral elements.

2. At the macroscopic scale

In order to study the flow properties on a larger scale,
we have performed numerical simulations for the flow of a
Newtonian fluid through a periodic network of Kelvin cells
having a size L × L × Hsp = 4

√
2 × 4

√
2 × 4 in Db units

(i.e., Np = 256 pores), and a porosity φ equal to 0.9. Figure 2
shows an open cell foam sample made of 32 pores (i.e., all the
windows between adjacent cells are open). The macroscopic
intrinsic permeability is computed from the averaging of the
solution of the Stokes problem set on the foam sample. In this
study, the cell windows are either closed or open with random
spatial distribution over the foam sample. The fraction of open
windows is xow = Now/(Np × Nv/2), where Now is the total
number of open windows. For each value xow, the macroscopic
intrinsic permeability is the average of numerical simulations
for six different samples obtained from six random draws
of closed window positions. The resolution of the boundary
value problem is achieved through the Finite Element Method
using FreeFem++ software [22]. The typical discrete problem
contains 1 400 000 tetrahedra and 8 000 000 degrees of
freedom and is solved using a Message Passing Interface on
four processors. We compared the permeability computed with
the finest mesh (1 400 000 tetrahedra) to the permeability
computed using a coarser one (700 000 tetrahedra). As the
difference is less than 3%, which is small compared to the
window closure induced permeability variations, we concluded
that the meshes we use are fine enough for accurate results.

B. Pore-network simulations

Effects of pore network features on permeability are studied
on several lattices having different numbers of neighbor pores
Nv (Fig. 3). Concerning foam, the cases Nv = 14 and Nv = 8
are of specific interest: Nv = 14 corresponds to Kelvin’s struc-
ture, which is very relevant to describe foam’s structure [1], and
Nv = 8 corresponds to BCC structure, or to Kelvin’s structure

053111-2
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FIG. 3. Network structures used in pore-network simulations.

with the smallest windows (square windows) being closed as
expected for a small fraction of gasφ. ForNv = 14 andNv = 8,
the samples have a size L2 × Hsp = 283 (Db units) and contain
43 904 pores. For Nv = 6 and Nv = 20, the samples contain at
least 46 000 pores. Boundary effects are avoided by resorting
to periodic conditions imposed in the directions perpendicular
to the macroscopic flow. In this simple model, we consider,
for each pore, a unique value of pressure without calculating
the fluctuations of pressure and fluid velocity inside the pore.
At the local scale, the flow rate qj→i from pore j to pore
i is governed by the differential pressure between the pores
�Pij = Pj − Pi , qj→i = Db

μ
kij�Pij , where the coefficient kij

is the local permeability between the pores i and j , and μ is
the dynamic viscosity of the fluid.

At steady state and by considering incompressible fluid,
the volume of fluid inside pore i is constant and the sum
of flow rates coming from neighbor pores is equal to zero,
leading to

∑Nv

j=1 kij (Pj − Pi) = 0. To generate a flow through
the sample, a pressure difference is imposed between top
and bottom faces of the sample (Ptop = �Psp, Pbot = 0). By
considering these boundary conditions, this previous equation
can take a matrix form:

K̄[Pi] = [Si], (1)

where [Pi] is a vector containing the pressure of inner pores
(pores located on the top and bottom faces are excluded); K̄

is the matrix defined from local permeabilities (−∑
kij along

the diagonal and kij elsewhere); and [Si] is a vector containing
zeros except for inner pores having top pores as neighbors
where Si = −∑

jtop
kijtop�Psp.

As soon as the pore network links top to bottom and by
considering only the interconnected pores, K̄ can be inverted
and the fluid pressure in each pore can be calculated from
Eq. (1). Alternatively, in the case of memory limitations during
computer calculations, fluid pressure can be calculated in an

iterative way as in Ref. [14]. In any way, from fluid pressures,
the macroscopic flow Q and the macropermeability K can be
calculated as

Q =
∑
ibot

∑
jv

qjv→ibot = Db

μ

∑
ibot,jvi

kibotjvi
�Pibot,jvi

, (2a)

K = μQHsp/L
2�Psp. (2b)

Different materials having different kinds of local perme-
ability distribution were studied: two local permeabilities (bi-
nary mixture), a local permeability mixed with zero permeabil-
ity (i.e., closed window), and two local permeabilities mixed
with closed windows. For each kind of local permeability
distribution, calculations were repeated 100 times on different
random draws in order to calculate an average. For each random
draw, local permeabilities were randomly distributed over the
network.

To reduce errors induced by size effects in the calculation of
percolation threshold and open porosity (defined as the volume
fraction of pores occupied by percolating fluid) [10], additional
numerical simulations were performed on large samples such
as Np ∼ 106 pores.

III. RESULTS AND DISCUSSION

A. Effect of the aperture size

FEM simulations on PUCs at the pore scale for various
aperture sizes reveal a power-law relationship between perme-
ability and aperture size [Fig. 4(a)]. Similarly the numerical
results for the dimensionless permeability of porous materials
with same aperture rate are well fitted by a power law when
plotted in a (δow, K/D2

b) diagram [Fig. 4(b)]. Note that, for
high aperture rates, the aperture shape is no longer circular
due to the fact that the apertures should overlap the ligaments,
which is not allowed in our calculations. Then the condition
of identical aperture rate is not observed. This artifact leads
to an artificial permeability plateau corresponding to the
“without membrane” permeability. Apart from this artifact,
FEM results show that relationship between permeability and
mean aperture is almost unaffected by the porosity (i.e., the
width of ligaments).

This power-law relationship is in agreement with a local
interpretation based on the pressure drop of the fluid passing
through the aperture. Indeed, Sampson [23] solves analytically
the problem of the pressure drop �P occurring for an incom-
pressible fluid flow passing through a circular hole of diameter
do in a thin plate:

q

�P
= d3

o

24μ
, (3)

where q is the volume fluid flow rate passing through the hole.
This relation arises from the fact that, at low Reynolds

number, the coefficient of fluid resistance ζ = 2�P/(ρV 2
o ),

is, in general, proportional to the inverse of Reynolds number
Re = Vodoρ/μ [24], where Vo is the mean stream velocity in
the narrowest section of the orifice (Vo = 4q/πd2

o ).
After Ref. [25], the pressure drop through a hole of circular

shape is very close to the one obtained with a hole of squared

053111-3
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D
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to,eq

Db

3
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6

to,eq

Db

3

(c)

FIG. 4. (a) FEM results at identical aperture size with φ = 0.98,
(b) FEM results at identical aperture rate for various φ, (c) perme-
ability as a function of the mean aperture: FEM results (blue dot for
identical aperture, green dot for identical rate, red cross for “without
membrane” foam with φ varying from 0.8 to 0.99), pore-network
model with Sampson local permeabilities and Nv = 14 (blue line for
identical aperture, green line for identical rate). Note that the mean
aperture is calculated without including the four square windows,
which are parallel to the macroscopic flow direction 〈to,eq〉/Db =
(2to,sq + 8to,hex)/10Db.

shape having the same area. We can deduce that the Sampson
formula can be extended to various shapes of aperture by
considering an equivalent diameter to,eq defined from the

surface area of the aperture So: to,eq = 2(So/π )0.5. By using
such a definition for the aperture size and calculating a window
average of the aperture size, we can plot all FEM results on
a same graph, even those for which aperture is not perfectly
circular. Figure 4(c) shows that all data, including the ones ob-
tained without a membrane, follow the same trend. Therefore,
the pressure drop in foam is governed by a local mechanism
which is not described by the usual Hagen-Poiseuille equation
as is done in classical porous media [15,17,18,20].

To check the ability of a pore-network model to predict the
permeability, pore-network calculations were performed using
local permeabilities given by a Sampson equation:

k = t3
0

/
24Db. (4)

Note that in such simple simulated configurations (i.e.,
identical aperture size t0 or identical aperture rate δow), the
pore-network problem shown in the previous section can be
solved analytically. Therefore, macroscopic permeability is
given by K = 2ksq + 2khex , leading to K

D2
b

= 1
6 ( t0

Db
)3 for identi-

cal aperture size and K

D2
b

= 1+31.5

12 ( 5
1+480.5

〈to,eq 〉
Db

)
3 ≈ 0.13( 〈to,eq 〉

Db
)
3

for identical aperture rate. Figure 4(c) shows that pore-network
calculations compare very well to FEM results. This good
agreement supports both the interpretation of the permeability
by using local permeabilities and the relevance of pore-network
simulations.

B. Effect of closed windows: The bond percolation
problem in foam

Figure 5 shows the permeabilities calculated with FEM sim-
ulations performed on large samples having random positions
of closed windows and various open window fractions xow. For
xow > 0.3, permeability exhibits a quasi-affine dependence on
the open window fraction xow. Below a critical concentration
xow < 0.2, the fluid flow vanishes.

To check their capacity to reproduce FEM results, pore-
network simulations were performed by using two local

K
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khex/ksq = 33

FIG. 5. Dimensionless permeability K(xow)/K(1) as a function
of open window fraction xow for FEM simulations (black square) and
pore-network simulations (blue cross and red dot) on samples mixing
two local permeabilities with various ratios khex/ksq and having a
Kelvin structure (Nv = 14). Error bars are calculated using (maximal
value–minimal value)/2.
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FIG. 6. Pore-network simulations: Height of the largest cluster of
interconnected pores (black diamond) and fraction of open porosity
(green diamond) as a function of the open window fraction xow for
Nv = 14 and large samples Np ∼ 106. Green line corresponds to
fraction of open porosity calculated by using Eq. (6a).

permeabilities, khex and ksq, given by the Sampson equation and
associated to squared and hexagonal windows as in Kelvin’s
structure (Nv = 14). For φ = 0.9, the hexagonal-to-square
aperture ratio in FEM simulations is close to 3.2. The ratio
between local permeabilities is therefore close to khex/ksq =
33 (≈3.23). As shown in Fig. 5 and considering the margin of
error, pore-network simulations and FEM simulations lead to
the same results. Moreover, pore-network simulations reveal
that the slope of the affine part of the function K(xow) depends
on the ratio between local permeabilities.

In reference to percolation theory [14], solid foams are
subject to bond percolation for which bonds correspond to open
walls. In such a percolation problem, pore-network simulations
are helpful to calculate the heights of interconnected pores
Hip, the fraction of open porosity Rop (= number of pores
within open pore space N ′

p/total number of pores, Np), and
permeability [14,26]. In the case Nv = 14, the maximal height
of interconnected pores is equal to the sample thickness Hsp

for xow > 0.1, and percolation occurs (Fig. 6). This fraction
corresponds to the percolation threshold xp and is close to
1.5/Nv for all lattices studied as in Ref. [14]. Therefore,
as the average number of open windows per pore is equal
to xowNv , at least 1.5 open windows per pore are required
to allow fluid flow through porous foamy materials. With
respect to permeability (Fig. 7), simulations performed with
homogeneous local permeabilities show that the slope of the
affine part of K(xow) depends on the number of neighbor pores
Nv . The affine part of K(xow) intercepts the abscissa to a
critical value given by x�

ow = 2/Nv . Figure 7(b) shows that the
ratio K(xow)/K(1) in porous material having homogeneous
local permeability is linearly dependent on a single parameter
(xow − x�

ow)/(1 − x�
ow) except for open window fractions close

to the percolation threshold.
A deeper analysis of our results makes it possible to study in

detail the structure of the open-pore space and the one of fluid
flow passing through it. Figure 8(b) shows that the fraction
of open windows within the open pore space, x ′

ow, is larger
than the global value xow. This additional amount of open
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FIG. 7. Pore-network simulations: (a) dimensionless permeabil-
ity K(xow)/K(1) as a function of open window fraction xow for various
neighbor pores number Nv (arrows point to the abscissa xow = x�

ow =
2/Nv); (b) same data with another abscissa (xow − x�

ow)/(1 − x�
ow).

windows within the open pore space can explain the behavior
of permeability close to the percolation threshold. Indeed,
by plotting the reduced fraction of open windows within the
open pore space, (x ′

ow − x�
ow)/(1 − x�

ow), as a function of the
open window fraction xow [Fig. 9(a)], we find curves which
are very similar to the ones obtained for permeability as a
function of xow. Moreover, from pore-network simulations, we
can calculate the fraction of pores in which fluid flow occurs,
Rop,flow (= number of pores in which flow occurs/total number
of pores). It appears that fluid flows occur only in a part of the
open pore space; the other part of the open pore space is made
of dead ends where no fluid flow occurs [Fig. 9(b)].

From a practical point of view, accurate formulas allowing
us to estimate the fraction of open porosity Rop, the open
window fraction within the open pore space x ′

ow, and the
percolation threshold xp by measuring the open window
fraction and the average number of neighbor pores could be
useful. First, the threshold percolation xp can be estimated by
a formula given in Ref. [27]. Then, by considering the structure
of closed pore clusters, it seems possible to calculate the
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FIG. 8. Fraction of closed porosity, 1 − Rop (a) and excess
fraction of open windows within the open pore space (b) as a
function of the reduced fraction of open windows for various neighbor
numbers Nv and large samples (Np ∼ 106). Dashed lines correspond
to theoretical curves calculated by considering the first simplest closed
clusters [Eqs. (5a) and (5b)]. Full lines correspond to curves calculated
by using approximate formulas [Eqs. (6a) and (6b)].

fraction of open porosity and the open window fraction within
the open pore space. To begin, we calculate the fraction of pores
Pk being within the first simplest closed clusters (Table I). For
values of xow close to 1, those simplest closed clusters represent
the main part of the closed pore space (i.e., pore space located
outside open pore space). Then the fraction of open porosity

Rop = N ′
p

Np
and the ratio x ′

ow/xow = ( N ′
ow

N ′
p

)/( Now
Np

) are given by

Rop ≈ 1 −
3∑

k=0

Pk, (5a)

x ′
ow

xow
≈ 1

1 − ∑3
k=0 Pk

(
1 − 2

xowNv

3∑
k=1

k

k + 1
Pk

)
. (5b)

Figure 8 shows that these approximated formulas are able
to predict the fraction of open porosity and the ratio x ′

ow/xow

except for open window fractions close to the percolation
threshold where the complexity of the closed clusters structures
increases drastically. To bridge the remaining gaps between
theoretical calculations and numerical simulations, x ′

ow and
Rop can be approximated by the following equations, for
xow > xp:
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FIG. 9. Pore-network simulations: (a) (x ′
ow − x�

ow)/(1 − x�
ow) as

a function of open window fraction xow for various neighbor pores
number Nv , (b) Open porosity fraction (dashed line) and open porosity
fraction without dead ends (full line) as a function of the open window
fraction xow for Nv = 6 (black) and Nv = 14 (green).

Rop ≈ 1 −
3∑

k=0

Pk − exp
[−(3Nv + 12)

(
xow − 1.88N−1.2

v

)]
,

(6a)

x ′
ow

xow
≈ 1

1 − ∑3
k=0 Pk

(
1 − 2

xowNv

3∑
k=1

k

k + 1
Pk

)

+ exp
[−(2.9Nv + 8.2)

(
xow − 1.69N−1.35

v

)]
, (6b)

with xp = 0.7541[ 2
3 (Nv − 1)]

−0.9346
(from Ref. [27]).

Figures 6 and 8 show that these approximated formulas
accurately predict x ′

ow and Rop in the full range of xow: [xp,1].

C. Effective medium model for permeability

In this section, we present an effective medium model for
permeability of pore-network built from the same theoretical
framework as that of pore-network simulations. This model is
based on a self-consistent calculation of the mean local per-
meability and a calculation of the macroscopic permeability.
Details leading to Eqs. (7) and (8) are given in the Appendix.
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TABLE I. Structures of simplest closed clusters having k open windows and k + 1 pores, and fraction of pores Pk contained within such
cluster (= total number of pores being in a closed cluster having k open windows and k + 1 pores/total number of pores, Np). In the “Closed
cluster” drawing, open windows have a probability xow, and closed windows (thin gray lines) have a probability (1 − xow).

k Closed cluster Pk

0 (1 − xow)Nv

1 Nvxow(1 − xow)2Nv−2

2 3
2 Nv(Nv − 1)x2

ow(1 − xow)3Nv−4

3 1
6 Nv(Nv − 1)(13Nv − 17)x3

ow(1 − xow)4Nv−6

The mean local permeability k̄ is calculated iteratively from
[8,14]

1

k + nk
=

∑
i

xi

ki + nk
(7)

with xi the fraction of local permeability ki and n = Nv

2 − 1.
The macroscopic effective permeability is then deduced

from the mean local permeability k̄,

K = σwk̄, (8)

where the coefficient σw depends on the structure of the porous
medium (Table II).

In a few simple cases, Eqs. (7) and (8) possess analytical
solutions. This is the case for fully open-cell foam (xow = 1)
described by a binary mixture of local permeabilities (see
the Appendix). EM model is known to accurately predict the
permeability of such a binary mixture of local permeabilities,
but also to fail in its prediction for porous media having an
open window fraction close to the percolation threshold [8,14].
To illustrate this point, consider the case of a porous medium
having a mixture of closed windows and open windows charac-
terized by an unique aperture parameter. The local permeability
associated to the closed windows is equal to zero, and Eqs. (7)
and (8) have an analytical solution:

K

K1
= x1 − x�

ow

1 − x�
ow

(9)

with K1 = σwk1.
As shown in Fig. 10, this solution “EM0” reproduces

correctly the linear relationship between the permeability
and the parameter (xow − x�

ow)/(1 − x�
ow) except for an open

window fraction close to the percolation threshold. In the

TABLE II. Coefficientsσw for used lattices and weakly disordered
foam. Note that for SC, BCC, or Kelvin lattices, σw is isotropic.

Structure SC BCC Kelvin Nv = 20 Random foam

Nv 6 8 14 20 2(n + 1)
σw 1 2 4 14√

3
≈ n

2

case of foamy material where the number of neighbor pores
is usually close to 14 (except for low porosity φ ≈ 0.6),
the previous equation gives a very good approximation on a
large range of open window fraction (i.e., for xow > 3/Nv ≈
0.2). However, EM predictions can be improved if the open
pore-space structure is explicitly considered. Indeed, since
in the framework of the effective medium model, the mean
local permeability is calculated by considering that the mean
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FIG. 10. Comparison between EM model and network simula-
tions (black diamond) for various neighbor pore numbers. “EM0”
(dashed blue line) is based on the global open window fraction
[Eq. (9)], and “EM1” (red line) is based on the open window fraction
within the open pore space [Eq. (10)].
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fluid flow passes through the mean pore, the calculation of
permeability should be performed on a half pore contained
within the open pore space. Therefore, as shown in Fig. 10,
by considering the structure of the open pore space in the
calculation of permeability, via the percolating fraction of
porosity Rop and the fraction of open windows within the open
pore space x ′

ow instead of the global open window fraction,
the EM model predictions are significantly improved for open
window fraction close to the percolation threshold. In this
modified EM model “EM1,” permeability is given by

K

K1
= x ′

1 − x�
ow

1 − x�
ow

Rop. (10)

The fraction of open porosity Rop and the fraction of open
windows within the open pore space can be estimated from the
global open window fraction by using Eqs. (6a) and (6b).

For generalization purposes, one can write

1

k′ + nk′ =
∑

i

x ′
i

ki + nk′ , (11a)

K = Ropσwk′, (11b)

where x ′
i is the fraction of windows within the open pore space

having a local permeability equal to ki . Note that the fraction
of closed windows (for which k0 = 0) within the open pore
space, x ′

0, is equal to 1 − ∑
i 
=0 x ′

i .
After Eq. (10), the physical meaning of the critical con-

centration x�
ow = 2/Nv is now more explicit: at least two open

windows per pore located in the open pore space are required
to start a sufficient interconnection of pores.

Other improvements of effective medium approximations
based on real-space renormalization were proposed in the
literature [8,28]. However, as the renormalization scheme
depends on the lattice structure, a specific study for each lattice
should be done.

IV. CONCLUSION

In order to study the effects of both the fraction of open
windows and their aperture sizes on solid foam permeability,
we performed different numerical simulations at different
scales: FEM simulations computing the Stokes problem both
at the pore scale and at the macroscale, and pore-network
simulations of simplified flow performed on large lattices
of interconnected pores. The FEM simulations at pore scale
were useful to identify the pressure drop mechanism for fluid
flow through solid foam and to define the local permeability
associated with it. Thus, we show that the pressure drop inside
fully open-cell foam can be explained by a mechanism acting
at the scale of the membrane aperture and well described by
Sampson’s law [Eq. (4)]. The FEM simulations at macroscale
with various fractions of open windows showed the ability
of pore-network simulations to predict the permeability of
percolating foamy medium. By using large samples, pore-
network simulations results exhibit that percolation occurs
when the fraction of open windows is close to xp = 1.5/Nv

(≈0.11 for foam having Nv = 14), and reveal that the fraction
of open windows within the open pore space is a key parameter
to interpret the particular behavior of permeability for fraction
of open windows close to the percolation threshold xp.

Finally, we developed a model of effective foam perme-
ability allowing for foam permeability to be estimated by an
analytical calculation [Eqs. (4), (6), and (11)]. In an alternative
way to Sahimi et al. [28], the proposed approach modifies
Kirkpatrick’s model by introducing two parameters depending
on the structure of the open pore space: the fraction of open
porosity Rop and the fraction of open windows within the
open pore space (x ′

ow). However, Kirkpatrick’s model with
local permeabilities derived from the Sampson equation [i.e.,
Eqs. (4) and (9)] provides an excellent approximation for
estimating permeability of foamy material having an open
window fraction greater than 0.2.

By using an appropriate local permeability estimate, our
approach to derive the effective permeability of porous mate-
rials could be extended to more complicated microstructures
such as topologically disordered foams or materials exhibiting
a hierarchical porosity.
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APPENDIX: EFFECTIVE MEDIUM THEORY

Here we detail the calculation of the mean local perme-
ability. We consider a cross section of foam [Fig. 11(a)] and
calculate the mean local permeability k̄ of a foam containing
different local permeabilities {ki}. To represent a pore inside
the cross section, we consider a half pore connected to Nv/2
effective pores such as n = Nv

2 − 1 windows have a local
permeability equal to the mean local permeability k̄, and the
last one located at the pth position has a local permeability
equal to ki [Fig. 11(b)]. Due to the heterogeneity induced by
the local permeability ki , the pressure inside the central pore
Pi,p is different from the mean pressure P̄ . Pressures inside

FIG. 11. (a) Cross section of foam; (b) geometry of a half pore
representative of pores contained inside the foam cross section. Note
that we have to consider n + 1 configurations for the position p of
the window associated with the local permeability ki . Figure depicts
the case p = 2.
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neighbor effective pores are supposed equal to the effective
pressure expected for each peculiar position of the neighbor
pore: P̄ + αr�P̄ with αr = zr/Db. The total flow rate passing
through the central half pore is equal to qi,p = Db

μ

∑n+1
r=1 qr =

Db

μ

∑n+1
r=1 kr (P̄ + αr�P̄ − Pi,p), where kr = k̄ for r 
= p, and

ki for r = p.
The total flow rate can be written in a more useful way as

qi,p = Db

μ

[
n+1∑
r=1

k̄(P̄ − Pi,p + αr�P̄ )

+ (ki − k̄)(P̄ − Pi,p + αp�P̄ )

]
.

The effective flow rate q̄ passing through the effective pore
is obtained by considering ki = k̄ and Pi,p = P̄ in the previous
equation: q̄ = Db

μ

∑n+1
r=1 k̄αr�P̄ .

Therefore, the flow rate qi,p can be expressed in function
of q̄:

qi,p = q̄ + Db

μ
[(n + 1)k̄(P̄ − Pi,p)

+ (ki − k̄)(P̄ − Pi,p + αp�P̄ )].

Thereafter, we suppose that the total flow rate pass-
ing through the central half pore qi,p is equal to the ef-
fective flow rate q̄ leading to 0 = (n + 1)k̄(P̄ − Pi,p) +
(ki − k̄)(P̄ − Pi,p + αp�P̄ ).

This hypothesis leads to the pressure inside the central pore:

Pi,p = P̄ + (ki − k̄)

nk̄ + ki

αp�P̄ .

Now, we may impose the self-consistency condition, re-
quiring that the average 〈Pi,p〉

p,i
= 〈〈Pi,p〉

p
〉
i

is equal to the

effective pressure P̄ leading to〈
ki − k̄

nk̄ + ki

〉
i

〈αp〉p�P̄ = 0.

The previous equation can be rewritten in an alternative
form: 〈

1

nk̄ + ki

〉
i

= 1

(n + 1)k̄
.

To determine the macroscopic effective permeability, we
have to calculate the macroscopic flow rate Q passing through
the whole cross section A containing Nw windows having a
local permeability equal to k̄. Thus, assuming the effective
gradient of pressure around the cross section �P̄

Db
is equal to

the mean pressure gradient �Psp

H
, the macroscopic flow rate is

given by

Q = Db

μ

⎡
⎣ Nw∑

p=1

αp

⎤
⎦k̄

�Psp

H
Db,

leading to the macroscopic effective permeability:

K = σwk̄,

where σw = [
∑Nw

p=1 αp]D2
b

A

FIG. 12. For each lattice, bonds per unit cross section (gray area)
considered for the calculation of σw . A couple (αp , fraction of bonds
pb included within unit cross section) are associated to each bond. σw

is calculated by
∑

αppbD
2
b/area.

For each lattice, the calculation of σw is straightforward if
we use the inclination of the cross section shown in Fig. 12.
However, for SC, BCC, or Kelvin lattices, numerical calcu-
lations performed with various inclinations show that σw is
isotropic. In the case of a weakly disordered foam (i.e., lowly

polydisperse foam), we can use σw = Nw〈α〉p D2
b

A
and consider

the continuous limit for the calculation of 〈α〉p leading to

〈α〉p = 1
2π

∫ 2π

0

∫ π/2
0 sin(θ ) cos(θ ) dθ dϕ = 1

2 . By considering
the surface window density Nw/A of a Kelvin structure which
is approximately equal to n/D2

b , we find σw ≈ n
2 .

In the case of a binary mixture of local permeabilities (e.g.,
fully open foam), the mean local permeability k̄ is given by
k̄

k∞
= 1

2 {α + [α2 + 4(1 − α) k0
k∞

]
0.5}, with

α = 1 − k1k2
nk0k∞

k∞ = kV oigt = x1k1 + x2k2

k0 = kReuss = ( x1
k1

+ x2
k2

)−1.
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FIG. 13. Comparison of EM model predictions (full line) to
network simulations (cross) with Nv = 14.
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k∞ and k0 correspond respectively to the permeability of an
infinitely interconnected network (Nv → ∞) and the one of a
poorly interconnected network (Nv = 2).

In such simple porous media, EM model accurately pre-
dicts the permeability calculated by pore-network simulations
(Fig. 13).
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