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A B S T R A C T

Analyzing source code to solve software engineering problems such as fault prediction, cost, and
effort estimation always receives attention of researchers as well as companies. The traditional
approaches are based on machine learning, and software metrics obtained by computing
standard measures of software projects. However, these methods have faced many challenges
due to limitations of using software metrics which were not enough to capture the complexity of
programs.

To overcome the limitations, this paper aims to solve software engineering problems by
exploring information of programs' abstract syntax trees (ASTs) instead of software metrics. We
propose two combination models between a tree-based convolutional neural network (TBCNN)
and k-Nearest Neighbors (kNN), support vector machines (SVMs) to exploit both structural and
semantic ASTs' information. In addition, to deal with high-dimensional data of ASTs, we present
several pruning tree techniques which not only reduce the complexity of data but also enhance
the performance of classifiers in terms of computational time and accuracy.

We survey many machine learning algorithms on different types of program representations
including software metrics, sequences, and tree structures. The approaches are evaluated based
on classifying 52000 programs written in C language into 104 target labels. The experiments
show that the tree-based classifiers dramatically achieve high performance in comparison with
those of metrics-based or sequences-based; and two proposed models TBCNN + SVM and
TBCNN + kNN rank as the top and the second classifiers. Pruning redundant AST branches leads
to not only a substantial reduction in execution time but also an increase in accuracy.

1. Introduction

Program classification as well as other software engineering problems are hot research topics, receiving the attention of
researchers and companies due to a wide range of applications. In practice, software components in a project are usually categorized
into repositories according to several particular criteria. Properly organizing software repositories is beneficial to programmer
cooperation, maintenance and reuse of software. These are important factors which enhance software quality, reduce development
time and efforts. However, manually assigning a software component into the repository compatible with the criteria is impractical
because sizes of projects are very large and increase rapidly [1]. Thus, in the software industry, building a tool to automatically
categorize source code repositories is an urgent requirement to manage big projects. Increasingly more researchers are showing
interest in applying machine learning techniques to tackle this problem. However, how to extract suitable features from programs in
order to improve the learning performance has been a challenging question.

Most studies have focused on using software metrics to build classifiers [1–3]. The metrics-based approaches are also widely
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applied to solve various software engineering problems such as fault prediction, cost, and effort estimation [4–7]. However, the
meaning of software metric values have been widely debated for two major reasons: they have not shown good ability to capture the
underlying meaning of programs [8]; and most of the currently used metrics have multiple definitions and ambiguous counting rules
[9]. Akiyama et al. [10] predicted defects from lines of code (LOC) by Eq. (1).

of defects LOC# = 4.86 + 0.018* (1)

Halstead et al. [11] proposed several complexity metrics and used these as predictors of program defects. The most notable predictor
asserted by the author is computed based on number of unique operators and unique operands as follows.

of defects volume# = /3000 (2)

where volume N log n= * 2 , n is the number of operators and operands in the program.
In fact, the defect rates are relevant to programmers' skills, the complexity of projects and other factors rather than the LOC,

number of operands or operators. Hence although various robust machine learning algorithms have been applied, the predictors
have not achieved so high performance. According to recent studies, the mean probability of detection (PD) on NASA MDP datasets
[12] is around 71% [8,13].

Recently, several researchers proposed applying language processing approaches to address software engineering problems [14–
17]. These new methods have shown high effectiveness in different tasks such as software fault prediction, program classification and
summarization of source code. Binkley et al. studied the Information Retrieval (IR) based method for predicting faults in modules
[17]. Huo et al. employed a convolutional neural network (CNN), which can capture the semantics of the program from both lexical
and program structures for automatically locating the potential buggy source code [15]. Mou et al. proposed a novel TBCNN, which
uses subtree detectors to extract structural information of tree structures. His model was successfully in processing ASTs of
programs to deal with two program analysis tasks: classifying programs by functionalities, and detecting source code snippets of
specific patterns [16].

In this paper, due to containing full and extra information of programs, ASTs are selected as the input data for machine learning
techniques instead of using software metrics. The advantages of the use of ASTs are detailed in Section 3.2. We address the program
classification problem by employing various techniques to explore information of programs' ASTs such as tree-based convolution
kernels, tree edit distance, tree kernels, and Levenshtein distance. Machine learning techniques then are applied to build classifiers
based on the extracted information. Furthermore, we propose two combination models including TBCNN + kNN-TED and TBCNN +
SVM to extract both structural and underlying information of ASTs to enhance the accuracy of classifiers. In the TBCNN + kNN-TED
model, the label of an unseen instance is decided based on both the output probabilities of TBCNN and the normalized distances to
its neighbors. Unlikely, in the TBCNN + SVM model, TBCNN is used to automatically generate features from source code and then
these features are classified by SVM classifiers. The performance of this approach was validated by classifying programs according to
functionalities. Similarly, these methods can also be applied to other software engineering problems if the input data is in the same
format (source code of programming languages with grammars).

When processing ASTs structures, we usually face a problem of high-dimensional data. The size of an AST increases more than
linearly when the program size is larger. In the experimental dataset, the largest AST contains 7027 nodes, while the program has
only 343 lines of code including comments and blank lines. High-dimensional data not only lead to waste of time and memory but
also affect the performance of algorithms. Thus, dimension reduction is an essential task for the AST-based approach. For this
reason, we propose heuristic techniques to prune redundant branches and reconstruct sub-trees of ASTs. The experiments show that
such technique results in a decrease of execution time and an increase in classification accuracy as well. It is interesting that, due to
the refinement of the input data, we can detect 356 source code clones by using tree edit distance (TED) to measure the similarity
between ASTs. It means that many programs were completely copied or copied with tiny modifications from the others. We are going
to describe more details about this finding in Section 6.

The main contribution of this paper can be summarized as follows:

1. Surveying and comparing many machines algorithms which work on various types of input data such as software metrics,
sequences, and tree structures to a software engineering problem.

2. Proposing several techniques to refine input data by pruning redundant branches and reconstructing sub-trees of ASTs;
3. Proposing two combination models of TBCNN and kNN, SVM to enhance classification accuracy.

The remainder of the paper is organized as follows: Section 2 presents some relevant studies on source code classification in
specifically and software engineering problems in generally. Section 3 briefly introduces the definition of abstract syntax trees (ASTs)
and several machine learning algorithms for classifying source code. Section 4 describes two proposed models to enhance
classification accuracy. The data, data preprocessing techniques and the experimental setup of case studies are described in Section
5. Section 7 analyzes some examples of source code which motivate us to apply pruning and reconstructing ASTs. We evaluate the
results of the methods in Section 6 and conclude in Section 8.

2. Related work

Source code analysis has been widely applied to a variety of software engineering tasks such as clone detection [18,19], fault
location [20,21], quality assessment [22,23], and so on. The advantages of these approaches are providing much predicted
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information about new products based on other applications. Such information is very helpful for enhancing software quality by
avoiding the defects and reusing the resources of previous projects. Due to great benefits that solving software engineering problems
brings to the software industry, numerous algorithms and techniques have been proposed and improved to make the predicting
systems applicable in practice.

Ugurel et al. [1] applied machine learning approaches to automatically classify open source code into eleven application topics
and ten programming languages. Firstly, feature extractors are utilized to generate the vector representation for each program/
source code file. Then the SVM classifiers are trained on such feature vectors. Similarly, Alvares et al. [24] built source code
classifiers by using lexical analysis, scoring strategies and an evolutionary algorithm. The task of the evolution algorithm is to filter
the set of keywords for each programming language to strengthen the lexical-based classification analysis. The experiments on the
real-world source code of more than 200 different open source projects show that the proposed approach can create high-
performance source code classifiers. In order to improve source code quality, Lerthathairat et al. [25] proposed an approach that
classifies source code with software metrics and fuzzy logic and then improves bad smell, ambiguous code. Chandra et al. [26]
developed a tool based on CK metrics to predict the decomposition point of the class.

Despite the effectiveness of software metrics on specific problems, it is labor intensive and unable to extract patterns from raw
data [27]. Therefore, many studies have aimed to automatically learn data features from graph or tree representations of source code
by leveraging deep neural networks. For graph-based approaches, Binkley et al. [28] presented a collection of techniques which
employ graphs as internal representations to improve source code analysis tools. Komondoor et al. [29] designed a tool that analyzes
program dependence graphs (PDGs) and program slicing to find duplicated code and displays them to programmers. The tool is
useful for refining source code to make it more well-organized by detecting and replacing all the clones by calls to the new
procedures. Liu et al. [30] conducted experiments on mining PDGs to prove the efficiency and the effectiveness of graph-based
approaches to plagiarism detection in programs having thousands of lines of code.

Recently, due to containing rich information about programs, the tree-based approaches have shown a notable success in dealing
with obstacles of software engineering area. Wang et al. [31] applied a deep belief network (DBN) to automatically learn semantic
features of programs for defect prediction. The experiments were conducted on various Java open source projects obtained from
PROMISE repository1. The results indicate that the tree-based approaches significantly outperform metrics-based approaches in
terms of precision, recall, and f-measure. Mou et al. [16] proposed a tree-based convolutional neural network (TBCNN) which work
on tree structures with varying shapes and sizes. The model achieves very high performance for two software engineering tasks:
classifying programs by functionalities and detecting bubble sort.

In this paper, we would like to apply the TBCNN model for software engineering problems. We propose some data refining
techniques and two combination models to enhance the accuracy of classifiers. Our methods firstly are verified on the same problems
and dataset of Mou's work. In ongoing work, we adapt these approaches to the software defect prediction problem. For predicting
bugs, errors, or faults in a source code, the smaller size of the source code, the more valuable the predictor is, because locating and
fixing bugs are easier. Thus, the sizes of ASTs are not huge; and the model is completely applicable.

3. Preliminaries

This section introduces a problem of classifying programs by functionalities and several approaches for solving this problem.

3.1. Program classification

Program classification is grouping programs according to specific criteria. Developing tools for these problems has many
important applications in the field of software engineering. For example, program classification by functionalities is beneficial to
managing big projects because new components are automatically tagged into the suitable repository. Similarly, categorizing a large
amount of open source code on web, e.g. GitHub (https://github.com/), by application topics and programming languages is
beneficial to software reuse.

In this work, we apply some approaches for classifying source code written in C++ language, in which programs with the same
label perform the similar tasks.

3.2. Abstract syntax tree

In computer science, an abstract syntax tree (AST) is a tree representation of the abstract syntactic structure of source code
written in a programming language. Fig. 1 illustrates the AST of the C statement “printf(“The sum of x + y =% d”, x + y);”.

Each node of the tree represents an abstract component occurring in the source code. An AST is a product of the syntax analysis
phase of a compiler. It serves as an intermediate representation before generating code for the program. AST structures are widely
used in compilers as well as programming language processing due to following advantages.

• Unlike source code, ASTs do not contain inessential elements such as braces, semicolons, parentheses, and comments.

• The AST can be modified to optimize the program so that it executes more rapidly, or uses less memory storage or other resources.

1 http://openscience.us/repo/defect/
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Some optimization techniques include replacing an expression with shorter/faster expressions, reordering of arithmetic
operations or branches, and extracting common subexpressions (CSE). Meanwhile, such editing is impossible with the source
code of a program.

• An AST contains extra information about the program. An example is the position of an element in the source code that may be
used to notify the user of the location of an error in the source code.

3.3. Tree edit distance

The tree edit distance (TED) of two trees is defined as the minimum cost sequence of node edit operations that transform one tree
into another [32]. A rooted tree T is called as a labeled tree if each node is assigned a symbol from a fixed finite alphabet Σ; T is called
an ordered tree if a left-to-right order among siblings in T is specified. Given an ordered labeled tree T, there are three basic tree edit
operations as follows.

• Rename: Change the label of a node v in T.

• Delete: Remove a non-root node v in T with the parent v′, in which case the children of v are promoted to be children of v′. The
children are inserted in the place of v so that their relative order is retained.

• Insert: a node v is inserted as a child of v′ in T. When inserting v, it becomes the parent of a consecutive sequence of the children
of v′.

Fig. 2 illustrates the basic edit operations for an ordered tree. Given trees T1 and T2, there exists many different sequences that
transform from T1 into T2. Assume that we define a cost function on each edit operation. The cost of each sequence is the sum of the
costs of its operations. Then, the tree edit distance (TED) between T1 and T2 is determined as the sequence with the minimal cost.

To calculate TED, various algorithms have been proposed and improved efficiency in terms of computational time and memory
requirements [33–35]. In this paper, we apply a robust and memory-efficient algorithm for the tree edit distance namely AP-TED
(All Path Tree Edit Distance) [35] to compute the distance between AST trees.

3.4. Tree-based convolutional neural network

Tree-based convolutional neural network (TBCNN) is a novel model proposed by Mou [16], which showed a notable performance
on program classification problem. Fig. 3 illustrates the architecture of the TBCNN. Firstly, each AST node is represented as a vector
by using a coding layer. The task of this layer is to embed AST symbols in a continuous vector space where semantically similar
symbols are mapped to nearby points. For examples, the symbols While and For are similar because they are loop statements. But
they are different from ID which may present some data.

After coding, each node in ASTs is represented as a real-value vector x ∈ NfR . Then the author designed a set of fixed-depth
subtree detectors sliding over entire AST to extract structural information of the program. The output of the feature detectors is
computed by the following equation.

∑y W x b= tanh · +
i

n

conv i i conv
=1

,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

(3)

Fig. 1. The AST of the statement “printf(“The sum of x + y =% d”, x + y);”.

Fig. 2. Basic tree edit operations. (2a) Deleting the node labeled l2. (2b) Inserting a node labeled l2 as the child of the node labeled l1. (2c) A relabeling of the node
label l1 to l2.

A.V. Phan et al. Data & Knowledge Engineering xxx (xxxx) xxx–xxx

4



where, x x, ‥, n1 are vector representations of nodes inside the sliding window, y b W, ∈ , ∈conv
N

conv i
N N

,
×c c fR R . (Nc is the number of

feature detectors.).
One problem is that determining the number of weight matrices in Eq. (3) is impossible because AST nodes have various

numbers of children. To solve the problem, the authors proposed the notation of “continuous binary trees” whereby the
convolutional layer only uses three weight matrices as parameters including W W,conv

t
conv
l , and Wconv

r (superscripts t r l, , refer to
“top”, “left”, “right”); the weight matrix for any node xi is a linear combination of W W,conv

t
conv
l , and Wconv

r , with coefficients η η,i
t

i
l, and

ηi
r , respectively. The coefficients are computed based on the relative position of xi in the sliding window as following equations:

• η =i
t d

d
− 1
− 1

i (di: the depth of the node i in the sliding window; d: the depth of the window.)

• η η= (1 − )i
r

i
t p

n
− 1
− 1

i (pi: the position of the node; n: the total number of p's siblings.)

• η η η= (1 − )(1 − )i
l

i
t

i
r

.
The pooling layer thereafter is stacked to gather the extracted features over parts of the tree. To produce a fixed-sized output from

variable-sized ASTs, the authors apply two ways of dynamic pooling called one-way pooling and three-way pooling [36]. According to
the experimental results, the performance of the two pooling methods is similar. Finally, a fully connected layer and an output layer
are added for supervised classification.

3.5. Software metrics-based approaches

Solving software engineering problems brings many benefits to companies and users. For example, estimating software efforts
helps managers determine the feasibility of software projects and prepare an appropriate schedule of using resources and budget.
Predicting and fixing defects before delivering to customers enhance the reliability and quality of software products. In practice,
software defects such as errors, bugs, or failures have led to extremely serious consequences regarding time, finance, and a threat to
human well-being. Despite great efforts to improve software quality, the existence of defects in software components is unavoidable.
These issues motivate researchers as well as practitioners to develop useful tools to control software projects. The popular
approaches are building predictive models from learning software projects’ properties called software metrics.

In the software engineering area, software metrics are widely applied to supply engineering and management information and to
improve processes, products, and services. Software metrics can be classified into three categories: product metrics, process metrics,
and project metrics. Product metrics describe the characteristics of the product such as size, complexity, design features,
performance, and quality level. Process metrics are a collection of software-related activities including the effectiveness of defect
removal during development, the pattern of testing defect arrival, and the response time of the fixing process. Project metrics
describe the project characteristics and execution, for instance, the number of software developers, the staffing pattern over the life
cycle of the software, cost, schedule, and productivity. Some metrics belong to multiple categories. For example, the in-process
quality metrics of a project are both process metrics and project metrics [22]

To calculate software metrics, we apply a source code metrics and quality analysis tool, namely RSM2. Table 1 shows a brief
description of 17 file metrics of programs extracted from the RSM tool. Only file metrics are selected because, in the experimental
dataset, each program is contained in one file. Then we try various machine learning algorithms to build the predictive models and
classify the metrics data using Weka3's implementation.

4. The proposed approaches

In this section, we present our proposed approaches for solving program classification. Firstly, we introduce two pruning

Fig. 3. The architecture of the tree-based convolutional neural network (TBCNN).

2 http://msquaredtechnologies.com/m2rsm/
3 http://www.cs.waikato.ac.nz/ml/weka/

A.V. Phan et al. Data & Knowledge Engineering xxx (xxxx) xxx–xxx

5



techniques for reducing the complexity of ASTs. Next, we describe two combination models of TBCNN and kNN, SVM to boost the
performance of TBCNN4. Our expansion models, AST datasets, and the output data are also publicly5.

4.1. Data preprocessing

4.1.1. Pruning redundant branches and reconstructing AST
As mentioned above, the AST data is high-dimensional and need to be refined. Thus, we present a heuristic technique to prune

redundant branches and reconstruct sub-tree structures based on observations on source code. The details of this technique are
described as follows:

1. Eliminate structures of variables, constants, procedures, enumerations declaration and type definitions. In a programming
language, the declaration statements are used to specify the data type (for variables and constants), or the type signature (for
procedures). However, these properties of an identifier will be revealed in next statements, which manipulate such identifier. In
other words, pruning the branches for these statements does not lead to a decrease in an amount of information on ASTs; and it
removes unused identifiers. To illustrate, we analyze two below programs in files 46.txt and 84.txt in group 86.

Table 1
List of software metrics of source code files.

No. Metrics Meaning

1 File Function Count Number of functions
2 Total Function LOC Lines of Code
3 Total Function Pts LOC Function Points Derived from LOC metrics
4 Total Function eLOC Effective LOC
5 Total Function Pts eLOC Function Points Derived from lLOC metrics
6 Total Function lLOC Logical Statements LOC
7 Total Function Pts lLOC Function Points Derived from lLOC metrics
8 Total Function Params Number of Input Parameters
9 Total Function Return Number of Return Points
10 Total Cyclo Complexity Cyclomatic Complexity Logical Branching
11 Total Function Complex Functional Complexity (Interface + Cyclomatic)
12 Max Function LOC Max LOC of functions
13 Average Function LOC Average LOC of functions
14 Max Function eLOC Max eLOC of functions
15 Average Function eLOC Average eLOC of functions
16 Max Function lLOC Max lLOC of functions
17 Average Function lLOC Average lLOC of functions

4 https://sites.google.com/site/treebasedcnn/
5 https://github.com/nguyenlab/TBCNN_kNN_SVM.git
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The differences between two programs are the declaration locations and data types of variable a. The function of variable a in
both programs is to represent a set of values. In program 1, a is an array; In program 2, a is a pointer. In terms of function, two
programs are similar and they always produce the same output with the same input data. However, the parse trees of the
programs are different. If we eliminate the variable declaration branches, the parse trees of two program are the same. The other
notice is that the roles of variables can be revealed via operators since they are manipulated. For example, a is known as a set of
values due to the use of operator []; l is known as a number when it is assigned to 0.

2. Cut down two branches of trees of For statements. The ASTs for For statements have four children representing different parts
inside them (Fig. 4a) including Init (initialization), Condition (termination expression), Next (increment expression),
Statement (body). When designing a For statement, programmers usually put the main works into the body section. The
termination expression is responsible for controlling For loops. Whereas Init and Next sections contain little information about
the tasks of For statements.

Indeed, after observing programs in the dataset, we found many For statements are written in the simple form. The following

snippet code is an example.

For above reasons, we remove two uninformative children of ASTs of For statements including Init and Next (Fig. 4a).
3. Cut down the declaration branch of trees of procedure definition statements. The ASTs of procedure definitions have two main

branches including Decl (Declaration) and Body, where the Decl contains return type, procedure name, and parameter list
sections. The parameter list section defines the temporary variables used in the procedure. When the procedure is invoked, the
actual parameters are passed. It means that there exists duplicate information in the program because the information of
temporary and actual parameters is similar. Therefore, we eliminate Decl branches of procedure definition ASTs (Fig. 4b).

4. Rename the root nodes of trees of For, While, and Do-While statements. After cutting down redundant branches, the ASTs of
For, While, and Do-While statements have the same structure, which involves two children namely Condition and
Statement. To reduce the symbols of AST nodes, we change the AST node names from For, While, and Do-While into Loop.
Using fewer symbols is beneficial because it reduces the complexity of the dataset.

4.1.2. Pruning minor procedure sub-trees
In software engineering, a well-organized program is usually divided into smaller procedures, where each of them performs a

specific task; and, the main procedure invokes the other ones during the flow of execution for the program. Inspired by the idea that
the function of a program may be shown in the major procedure, which has the biggest number lines of code in the program, we cut
down all AST's branches of the other procedures. The following program is an example.

Fig. 4. The operations of pruning redundant branches of For and ProcDef (Procedure Definition) sub-trees.
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We can see that the purpose of given program is implied in procedure “acSearch”, while the procedure “main” only contains data
input and procedure invoke statements.

4.2. The combination model of kNN-TED and TBCNN

The tree-based convolution kernels explore the information contained inside the AST nodes regardless of shapes and sizes of the
trees, while TED measures the similarity between tree structures. In other words, these methods extract two types of information of
ASTs. Thus, the cooperation between them provides stronger proof for the classifier to determine the label of an unknown instance.

For above reasons, we design a combination model of kNN-TED and TBCNN, in which the decision values for each unseen
instance is estimated by Eq. (4) as follows:

DecVal t Prob t MF nnDist= (1 − )* + * ( )j
i

j
i

j
i

(4)

where DecValj
i is the decision value of instance i belonging to class j; Probj

i is the prediction probability (produced by TBCNN) for
class j of instance i; nnDistj

i is the sum of normalized distances between instance i with instances of class j in the set of k neighbors of

i; MF is the mapping function, which transforms the value of nnDistj
i to [0,1]; t is the combination factor in the range of [0,1].

After that, the label of the instance is determined by Eq. (5):

L
L L L L
l DecVal max DecVal

=
if = = .. =
if = { }

i n n n n

l
i

j
i

k1 1 2⎪

⎪

⎧
⎨
⎩ (5)

where Li is the predicted label of instance i; L L L, , ‥,n n nk1 2 are the labels of k neighbors of instance i.
To ensure the balanced contributions of kNN-TED and TBCNN to the combination model, the value of nnDistj

i is mapped from
the range [0,MaxDist] to [0, 1] by the functionMF. In our implementation, we use the training set and the validation set to build the
best classification model; and, the test set is used to verify the performance of the model. To build the combination model, we have to
find its parameters including the factor t and MaxDist. Firstly, TED is applied to compute all values nnDistj

i in the validation set.
Next, the maximum of such values is assigned to theMaxDist. We train the TBCNN through 60 rounds and select the classifier which
obtains the highest accuracy on the validation set. The parameter t is selected by tuning its values from 0 to 1 by step 0.02 such that
the combination model estimated according to Eq. (4) and (5) achieves the best performance on the validation test. After acquiring
the parameters t and MaxDist, the decision values for each unseen sample are easily computed based on Eq. (4); and the predicted
label is determined according to Eq. (5).

4.3. The integration model of TBCNN and SVM

To make an accurate prediction model, we integrate TBCNN and an SVM classifier. In the model, TBCNN is able to capture
underlying meaning inside tree nodes; the SVM classifier is a powerful classifier, which showed state-of-the-art performance in a
wide range of applications such as text categorization, hand-written character recognition, image classification, biosequences
analysis and so on [37–39].

Fig. 5 illustrates the architecture of the integration model. It consists of two components: 1) TBCNN extracts semantic features of
programs, 2) SVM is adopted to build the classifiers based on extracted features. Specially, TBCNN serves as a supervised approach
to learn program vector representations from source code. We keep the training procedure of the network. The best network model
obtained from training process is applied to generate vector representations for all programs by getting the output signals of the final
hidden layer (Fig. 3). After that, an SVM classifier is built based on the vector representations of training instances. The process of
predicting the class label of a program contains following steps:

• Parsing the source code into an abstract syntax tree.

• Feeding the TBCNN model with the tree to generate the vector representation.

• Using the SVM classifier to predict the class label of the vector.

Fig. 5. The integration model of TBCNN and SVM for program classification.
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5. Experimental setup

5.1. The dataset

In this paper, we verify the proposed approaches by solving program classification problem in which programs performing the
similar tasks are assigned to the same group. The dataset is obtained from a pedagogical programming open judge (OJ) system
shared by Mou [16]. It contains programs for 104 programming problems (considered as target labels) in which each of them
includes 500 programs. Programs with the same target label have the same functionality. The dataset was split by 3:1:1 for training,
validation, and testing.

Table 2 shows statistics on the AST datasets. The statistical figures indicate the challenges of working with AST data due to their
shapes and sizes are very large and different. For the original ASTs, the numbers of tree nodes are varying from 29 to 7027; the
average number of nodes is 189.6; the standard deviation is 106. Thus, preprocessing ASTs to reduce its complexity and noisy data
as well is essential. It is noted that depending on each specific problem, we must select appropriate refining methods to avoid losing
so much meaningful information. For example, regarding classifying programs by functionalities, considering the similar roles of
For, While, and DoWhile statements is compatible with this problem. From Table 2, applying the heuristic pruning method
reduces the AST nodes notably while the AST nodes decrease slightly in case of pruning minor procedures' branches. The reason for
the slight decrease is that many programs contain only one procedure (the main procedure). In addition, the average leaf nodes'
depth in an AST increases after performing heuristic pruning. This means most of the redundant branches are shorter than the
meaningful branches.

5.2. Experimental setup

To address the program classification problem, we converted programs into ASTs and then surveyed various algorithms, which
treat the ASTs as the input data. The details and settings of these algorithms are described as follows.

TBCNN. Initial learning rate is 0.3; vector dimension is 30; convolution layers' dimension and penultimate layers’ dimension are
the same value 600; the loop iteration is 60; the activation function of the output layer is softmax.

The k-Nearest Neighbor (kNN) + TED, Levenshtein distance(LD). To employ the kNN algorithm, the distance between
programs is estimated based on their ASTs. We used two methods to compute the distance including TED [35], and Levenshtein
distance [40]. The Levenshtein distance (LD) is a measure of similarity between two sequences. The ASTs are traversed to generate
sequence representations for programs. The number of nearest neighbors is set to 3.

TBCNN + kNN-TED. The settings of TBCNN is kept. The number of nearest neighbors is expanded to 10 with the aim of
providing the combination model with more proof to make the final decision on instance labels. The mapping function is applied in
the same manner for both validation and test sets.

TBCNN + SVM. The settings and the training procedure of TBCNN are kept. The dimension of output vectors is 600. The
hyper-parameter C of SVM classifiers is chosen from {1, 2, 3}. We build the classifiers with different kernels including linear,
polynomial, radial basis function (RBF), and sigmoid.

Tree kernel SVM. We used SVM-light [41] and combined both tree kernels and feature vectors of BOT. SVM-light is designed
for binary classification problems. To adapt for multiclass classification problems, we used one-vs.-all strategy, whereby a single
classifier is trained for each class, with the samples of that class as positives and all another samples as negatives. In other words, for
K-label problems, we must train K classifiers and use all of them for making a decision about the label of each sample. In the
prediction stage, the label of an unseen instance corresponds to the classifier which produces the highest confidence score. The
setting for the SVM-light includes: the kernel is the combination of forest and vector set; kernel to be used with vectors is chosen
from linear, polynomial, radial basis function (RBF), and sigmoid tanh; decay factor in tree kernels is 0.4; The normalization is
applied to each individual tree and vector. The dataset contains 104 target labels and the instances of each class are 500. To avoid
facing with imbalanced data when training classifiers using one-vs.all method, we used the sub-sampling technique to reduce the
negative instances so that the proportion of positives to negatives is 1:20.

Gated Recurrent Neural Network (GRNN). The GRNN is successful in classifying documents [42]. To adapt this model for
program classification, each program is considered as a document, whereby each statement is equivalent to a sentence. The

Table 2
Statistics of the dataset (ASTsOR are the original ASTs, ASTsMP are the ASTs after pruning minor procedure branches, ASTsHP are the ASTs after applying heuristic
pruning).

Statistics ASTsOR ASTsHP ASTsMP

Mean Std. Mean Std. Mean Std.

# of AST nodes 189.6 106.0 134.0 92.1 172.0 102.6
# of AST leaves 90.5 53.8 66.5 47.7 83.4 52.8
Avg. leaf nodes' depth in an AST 7.6 1.7 8.3 1.9 6.7 1.7
# nodes of the smallest AST 29 – 7 – 22 –

# nodes of the largest AST 7,027 – 6,999 – 7,026 –
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documents are generated by traversing all subtrees of statements in the ASTs using depth-first search algorithm. In the experiments,
the vector representation for AST symbols is learned by using a word2vec model. The vector size is set to 30.

6. Results and discussion

Table 3 shows the classification accuracy on the test set using different approaches. As can be seen, most of the approaches
achieve high performance on the experimental dataset. The TBCNN of Mou yields a remarkable accuracy of 92.63% due to subtree
feature detectors which have good ability to capture structural information of ASTs. For the kNN algorithm, the accuracies reach
85.84% with TED and 83.08% with LD. Besides, GRNN obtains the accuracy of 80.61% depending on the size of vectors.

It is worth noticing that, the tree-based algorithms outperform the sequence-based algorithms. Although kNN is one of the
simplest machine learning algorithms, it yields higher accuracy than that of GRNN - a deep neural network which works with
sequences. The main reason is that ASTs contain rich and explicit information about programs. Meanwhile, the position information
will be lost when converting ASTs into sequences by traversing. The loss of information leads to a decrease in the strength of
classifiers. Additionally, we extracted 17 file metrics from programs and used Weka's implementation of different algorithms
including support vector machines (SVMs), naive Bayes, and kNN to classify the metrics data. However, the accuracies of these
classifiers are very low, around 22%.

We tried tree kernels on AST structures and achieved the worst accuracy in comparison with the other methods. We observed
that the tree kernels could not analyze deeply the semantic meanings of ASTs. They only captured the popular subtrees, which occur
in almost ASTs and may not be relevant to the main function of programs. An example of a structure extracted by tree kernels is
“Decl(TypeDecl(IdentifierType int)”. This structure is the AST of a declaration statement of a variable of type integer such as
“int a;”. In programming languages, to determine the function of a program, we must consider more complex structures inside it.
For instance, AST structures of For, While statements should be similar since they are related to control flow; and, they are
different from Constant because a Constant represents an unmodified value.

For AST data structures, dimension reduction is an essential task due to large shapes and sizes of the trees. To reduce the
complexity of the data and maintain the semantic meaning of ASTs, we propose several pruning tree techniques and reconstructing
sub-trees (Section 4.1.1, 4.1.2). Table 4 compares the performance of classifiers in terms of accuracy and computational time in cases
of before and after pruning trees. Where the average computational time of the algorithms is estimated as follows: TBCNN and
LSTM + GRNN are the running time each of loop iteration; the others are the time to predict an instance.

The results in Table 4 show high efficiency of the pre-processing data techniques. For the heuristic pruning, it not only enhances
the accuracies of all classifiers but also reduces the execution time notably. The execution time of kNN-TED and kNN-LD decreases
more than two times; the execution time of TBCNN and GRNN decreases nearly 1.5 times; the execution time of SVM-Tree kernel
decreases slightly. These prove that pruning redundant branches can efficiently eliminate noisy information without loss of useful
information. Unlikely, pruning minor procedures results in cutting down meaningful information. In this case, although the running
time is shortened, the accuracies of the most classifiers are lower than the case of the original dataset (Table 4). The meaningful
branches are lost when applying minor procedure pruning because of two reasons: the size is not a good measure to estimate the
importance of a procedure, and the function of a program may imply in several its procedures. This also leads to some decrease in
strength of classifiers when combining both techniques.

Table 3
The performance of classifiers on the 104-label program dataset.

Method Test accuracy (%)

Tree kernel SVM 58.39
GRNN+LSTM 80.61
kNN + TED 85.84
kNN + LD 83.08
TBCNN 92.63

Table 4
Performance comparison of the pruning approaches in terms of accuracy and execution time (ASTsOR are the original ASTs; ASTMP, and ASTsHP are the ASTs after
pruning by minor procedure, heuristic techniques, respectively; and ASTsHP_MP are the ASTs after using both pruning techniques.).

ASTsOR ASTsMP ASTsHP ASTsHP_MP

Method Acc. Avg. Acc. Avg. Acc. Avg. Acc. Avg.
(%) time(s) (%) time(s) (%) time(s) (%) time(s)

kNN + TED 85.84 259.59 84.44 174.03 86.35 108.8 84.65 102.9
kNN + LD 83.08 4.78 81.77 4.47 85.56 2.39 84.54 2.32
Tree kernel SVM 58.39 0.26 59.57 0.219 62.65 0.249 62.45 0.208
GRNN+LSTM 80.61 454.37 80.76 363.48 83.31 338.2 80.14 303.18
TBCNN 92.63 1194 91.57 648 92.88 810 90.82 439
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It is interesting that due to the application of the heuristic pruning techniques we detected 356 duplicate instances, which may
not be found when using the original trees. In other words, many students copied completely or copied with tiny modifications the
solutions from the others and used such solutions to submit to the OJ system. For example, the contents of file 2557.txt in group 62
and file 892.txt in group 26 completely overlap; the programs in files 46.txt and 84.txt in group 86 are similar. The differences
between them only include the position of variable declaration statements and the use of a pointer instead of an array to represent a
set of numbers. These prove that pruning and reconstructing tree approaches extract main contents which show the major tasks of
the programs; and these approaches provide a feasible solution to solve source code clone detection problem in the area of software
engineering.

To take advantage of different types of ASTs' information, we proposed the hybrid model of TBCNN and kNN, where the task of
TBCNN is extracting the underlying meanings inside tree nodes and kNN measures the differences between tree structures. In our
implementation, we find the best parameters for the combination model by using training and development sets. Fig. 6 illustrates the
process of tuning the combination factor t in cases of before and after pruning trees. As can be seen, the two lines representing the
change of accuracies on the validation set and the test set according to t have the same trend. The accuracies increase when t is
adjusted from 0 to around 0.9; after peaking the top at t around 0.9, the accuracies begin to drop down to the kNN classifier
accuracies. From Eq. (4), t is the trade-off parameter between TBCNN and kNN of contribution to the model. The down arcs are
caused by the bigger contribution of kNN when t increases. Especially, all sub-figures in Fig. 6 show that at t = 0, the accuracies of
the hybrid model are higher than those of TBCNN (Table 4). According to the Eq. (5), the label of an unseen instance is predicted
based on kNN if ten neighbors are in the same group, otherwise, the label is the output of TBCNN. These mean that although many
structures are similar, TBCNN could not detect them. Thus, using extra structural information of ASTs is helpful in making the final
decision on class labels of instances. In Fig. 6a and Fig. 6b, the accuracies on the validation sets and the test sets reach maxima at the
same values of t. However, in Fig. 6c and Fig. 6d, the accuracies on the validation sets and the test sets reach maxima at different
values of t. The inconsistency may be caused by loss of meaningful branches when applying the minor procedure pruning.

The SVM classifier is known as a powerful classifier, which has high accuracy and ability to deal with high-dimensional data.
TBCNN is able to capture underlying meaning inside tree nodes. For this reason, we generated the integration model of two such

Fig. 6. Tuning the factor t for the combination model of TBCNN and kNN-TED. (6a) before pruning trees, (6b) pruning trees by heuristics, (6c) pruning minor
procedures of trees, and (6c) combining two pruning techniques.
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components. Table 5 compares our proposed model with TBCNN. Generally, the proposed model improves the accuracy of TBCNN
remarkably. The TBCNN + SVM-RBF model outperforms others on all experimental datasets.

For machine learning approaches, the data dimensions are subject to the performance of algorithms regarding computer
memory, computational time and the accuracy. Specifically, high-dimensional data lead to a waste of computer memory and
computational time, while too few attributes may weaken algorithmic efficiency because the information about instances is not
provided sufficiently. To verify the effect of attribute quantity to classifiers, we ran the TBCNN and TBCNN-SVM models with
varying numbers of hidden nodes. Fig. 7 shows that the computational time of the SVM increases rapidly with the number of the
hidden nodes. Besides, the accuracies of both models on validation and test sets are high and stable when the hidden nodes are
greater than 100. All accuracy curves fall down sharply when the hidden nodes turn from 100 to 25. These proofs enable us to
conclude that choosing a proper number of hidden nodes or the number of features is vital for neural networks and SVMs. In the
experimental dataset, if the accuracy is more interesting, the number of hidden nodes should be 200; this number is 100 in case we
concern both about the accuracy and the running time.

7. Data analysis

In this section, we present some observations on the experimental dataset and the output of the classifiers as well. For the
TBCNN model, the feature detectors ignore the shape and size of an AST when collecting information of the tree. The extracted
vector of each node is computed from its descendant vectors inside the window of the feature detector. Thus, given an AST, if we
move a branch of a node to be a child of other node, the extracted information of these nodes may be changed. In programming
language C/C++, we can change the location of a statement without effects on the program execution. For example, a variable
declaration statement can be placed in any position above the location where the variable is used. Moreover, to implement a task, we
can select different statements such as print or cout for output stream; for, while, or do…while for iterative control flow. Due
to the flexible design of programs, although their ASTs have different appearance, they may perform the same task. When observing
the output of TBCNN and kNN, we saw that kNN classifier was able to provide many similar structures for predicted instances, while
TBCNN failed to capture information of these instances due to above changes. Therefore, to create a more powerful predictor, the
output of kNN is used to assist the TBCNN in making final decisions.

When working with AST data, many redundant information needs to be eliminated. However, we must find a suitable method

Table 5
Accuracy of the proposed models in comparison with TBCNN.

Method ASTsOR ASTsMP ASTsHP ASTsHP_MP

TBCNN 92.63 91.57 92.88 90.82
TBCNN+kNN-TED 93.48 92.27 93.69 91.46

Kernel
Linear 93.42 92.14 93.43 91.40

TBCNN+SVM Polynomial 91.69 89.83 91.58 88.21
RBF 93.74 92.53 93.89 91.81
Sigmoid 93.63 92.37 93.60 91.36

Fig. 7. The accuracies on validation and test sets in the case of heuristic pruning (HP), and the time for predicting an instance of classifiers with different numbers of
hidden nodes. TBCNN_CV, TBCNN_Test, SVM_CV and SVM_test show the accuracies of TBCNN and TBCNN-SVM classifiers on validation and test sets,
respectively. TimeTBCNN and timeSVM represent the time for predicting an instance using TBCNN and SVM.
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such that it avoid loss of meaningful nodes. We also present this problem in Section 4.1.1 and 4.1.2. After pruning redundant
branches, we saw that all algorithms work more accurately due to avoidance of ambiguity in various cases such as using a pointer or
an array to represent a set of values; changing the locations of variable, procedure declarations; the use of for, while and do…
while to control a flow.

8. Conclusion

In this paper, we present two combination models of TBCNN and kNN-TED, SVM to solve program classification, in which tree
structures serve as the input data. In addition, we proposed the pruning tree techniques to refine the data of ASTs. The experimental
results show a significant improvement of classifier performance in terms of accuracy as well as execution time.

These models are applicable to other problems in the field of software engineering such as software defect prediction, and clone
detection. The tree-based approaches may provide promising results because of following reasons:

• We can obtain ASTs from source code of programming languages with grammars by using a corresponding parser.

• For two above problems, we should process a part of programs because the smaller code snippet we predict the issues, the easier
we locate and fix them. Therefore, the AST sizes are not too large.

• Software metrics are usually applied for big projects, and they are failed to capture the meaning of small source code (Section 6).
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