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1 Introduction

In a very interesting paper, Censor et al. [8] introduced the following split variational
inequality problem (SVIP):

{
Find x∗ ∈ C such that 〈F(x∗), y − x∗〉 ≥ 0, ∀y ∈ C

and u∗ = Ax∗ ∈ Q solves 〈G(u∗), v − u∗〉 ≥ 0, ∀v ∈ Q,

where C and Q are nonempty, closed and convex subsets in real Hilbert spaces H1
and H2, respectively, A : H1 → H2 is a bounded linear operator, F : H1 → H1,
G : H2 → H2 are given operators. It was pointed out in [8] that many important
problems arising from real-world problems can be formulated as (SVIP) such that:
split minimization problem (SMP), split zeroes problem (SZP), and the split feasi-
bility problem (SFP) which had been used for studying signal processing, medical
image reconstruction, intensity-modulated radiation therapy, sensor networks, and
data compression, see [3, 5, 6, 10, 12, 13, 15] and references quoted therein.

To find a solution of SVIP, Censor et al. [8] proposed to use two methods, the first
one is to reformulate SVIP as a constrained variational inequality problem (CVIP) in
a product space and solve CVIP when mappings F and G are monotone and Lips-
chitz continuous. The second one is to solve SVIP without using product space when
F and G are inverse strongly monotone mappings and satisfying certain additional
conditions.

Moudafi [29] (see also He [21]) introduced an extension of SVIP to split
equilibrium problem (SEP) which can be stated as follow:

{
Find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C

and u∗ = Ax∗ ∈ Q solves g(u∗, v) ≥ 0, ∀v ∈ Q,

where f : H1 ×H1 → R, and g : H2 ×H2 → R are bifunctions such that f (x, x) =
g(u, u) = 0, ∀x ∈ C, and ∀u ∈ Q, respectively.

For obtaining a solution of SEP without using product space, He [21] suggested
to use the proximal method (see [31, 37]) and introduced an iterative method, which
generated a sequence {xk} by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x0 ∈ C; {ρk} ⊂ (0, +∞);μ > 0,

f (yk, y) + 1

ρk

〈y − yk, yk − xk〉 ≥ 0, ∀y ∈ C,

g(uk, v) + 1

ρk

〈v − uk, uk − Ayk〉 ≥ 0, ∀v ∈ Q,

xk+1 = PC(yk + μA∗(uk − Ayk)), ∀k ≥ 0,

where A∗ is the adjoint operator of A.
Under suitable conditions on parameters, the author showed that {xk}, {yk} con-

verge weakly to a solution of SEP provided that f, g are monotone bifunctions on C

and Q respectively. Since then, many solution methods for SEP and related problems
when f is monotone or pseudo-monotone and g is monotone have been proposed,
see, for example [16, 17, 19, 25–27, 34, 38].
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Another extension of SVIP is multiple set split variational inequality problem
(MSSVIP), which is formulated as follows (see [8, Section 6.1]):⎧⎪⎪⎨
⎪⎪⎩

Find x∗ ∈ C := ∩N
i=1Ci such that 〈Fi(x

∗), y − x∗〉 ≥ 0, for all ∈ Ci

and for all i = 1, 2, ..., N, and such that
the point u∗ = Ax∗ ∈ Q :=∩M

j=1Qj solves 〈Gj(u
∗), v−u∗〉≥0, for all v ∈ Qj

and for all j = 1, 2, ...,M,

where, as before A : H1 → H2 is a bounded linear operator, Fi : H1 → H1,
i = 1, 2, ..., N , and Gj : H2 → H2, j = 1, 2, ...,M , are mappings and Ci ⊂ H1,
for all i = 1, 2, ..., N ; Qj ⊂ H2, for all j = 1, 2, ...,M are nonempty, closed, and
convex subsets, respectively.

To solve MSSVIP, Censor et al. [8, Section 6.1] proposed to reformulate MSSVIP
as a SVIP via certain product space and applying their first method to solve SVIP.
The iteration sequence generated by their method was proved to converge weakly to
a solution of MSSVIP when Fi , i = 1, 2, ..., N and Gj , j = 1, 2, ...,M , are inverse
strongly monotone mappings and satisfying some additional conditions.

In this paper, motivated by the results mentioned above, we introduce an extension
of MSSVIP to multiple set split equilibrium problem (MSSEP) and propose two par-
allel extragradient methods for MSSEP. We make use of the extragradient algorithm
for solving equilibrium problems in the corresponding spaces to design the weak
convergence algorithm, we then combine this algorithm with the hybrid cutting tech-
nique (see [9, 41]) to get the strong convergence algorithm for MSSEP. By using the
extragradient methods, we not only deal with the case MSSEP is pseudo-monotone
but also solve MSSEP directly without using any product space.

The rest of paper is organized as follows. The next section presents some
preliminary results. Section 3 is devoted to introduce MSSEP and parallel extra-
gradient algorithms for solving it. The last section presents a numerical example to
demonstrate the proposed algorithms.

2 Preliminaries

We assume that H1 and H2 are real Hilbert spaces with an inner product and the
associated norm denoted by 〈·, ·〉 and ‖ · ‖ respectively, whereas H refers to any of
these spaces. We denote the strong convergence by ‘→’ and the weak convergence
by ‘⇀’ in H. Let C be a nonempty, closed and convex subset of H. By PC , we denote
the metric projection operator onto C, that is

PC(x) ∈ C : ‖x − PC(x)‖ ≤ ‖x − y‖, ∀y ∈ C.

The following well known results will be used in the sequel.

Lemma 2.1 Suppose that C is a nonempty, closed and convex subset in H. Then PC

has following properties:

(a) PC(x) is singleton and well defined for every x;
(b) z = PC(x) if and only if 〈x − z, y − z〉 ≤ 0, ∀y ∈ C;
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(c) ‖y − PC(x)‖2 ≤ ‖x − y‖2 − ‖x − PC(x)‖2, ∀y ∈ C;
(d) ‖PC(x) − PC(y)‖2 ≤ 〈PC(x) − PC(y), x − y〉, ∀x, y ∈ H;
(e) ‖PC(x) − PC(y)‖2 ≤ ‖x − y‖2 − ‖x − PC(x) − y + PC(y)‖2, ∀x, y ∈ H.

Definition 2.1 [4, 28, 32] Let ϕ : H×H → R be a bifunction, and C be a nonempty,
closed and convex subset of H, ∅ �= S ⊂ C. Bifunction ϕ is said to be:

(a) monotone on C if

ϕ(x, y) + ϕ(y, x) ≤ 0, ∀x, y ∈ C;
(b) pseudo-monotone on C if

∀x, y ∈ C, ϕ(x, y) ≥ 0 =⇒ ϕ(y, x) ≤ 0;
(c) pseudo-monotone on C with respect to S if

∀x∗ ∈ S, ∀y ∈ C, ϕ(x∗, y) ≥ 0 =⇒ ϕ(y, x∗) ≤ 0;
(d) Lipschitz-type continuous on C if there exist positive constants L1 and L2 such

that

ϕ(x, y) + ϕ(y, z) ≥ ϕ(x, z) − L1‖x − y‖2 − L2‖y − z‖2, ∀x, y, z ∈ C.

From Definition 2.1, we have the followings

Remark 2.1 (i) it is clear that (a) =⇒ (b) =⇒ (c),∀S ⊂ C.

(ii) If ϕ(x, y) = 〈�(x), y − x〉, for a mapping � : H → H. Then the notions
of monotonicity of bifunction ϕ collapse to the notions of monotonicity of
mapping �, respectively. In addition, if mapping � is L-Lipschitz on C, i.e.,
‖�(x) − �(y)‖ ≤ L‖x − y‖, ∀x, y ∈ C. Then, ϕ is also Lipschitz-type
continuous on C (see [28, 42]), for example, with constants L1 = L

2ε
, L2 =

Lε
2 , for any ε > 0.

(iii) If ϕ1 and ϕ2 are Lipschitz-type continuous on C with constants L1
1, L

1
2, and

L2
1, L

2
2, respectively. Then ϕ1 and ϕ2 are also Lipschitz-type continuous on C

with the same constants L1, L2, for instance, take L1 = max{L1
1, L

1
2}, L2 =

max{L2
1, L

2
2}.

Lemma 2.2 (Opial’s condition) [33] For any sequence {xk} ⊂ H with xk ⇀ x, the
inequality

lim inf
k−→+∞ ‖xk − x‖ < lim inf

k−→+∞ ‖xk − y‖
holds for each y ∈ H with y �= x.

3 Main results

Now, given a bounded linear operator A : H1 → H2, nonempty, closed, and convex
subsets Ci ⊂ H1, Qj ⊂ H2, for all i = 1, 2, ..., N , j = 1, 2, ...,M , and bifunctions
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fi : H1 × H1 → R, and gj : H2 × H2 → R such that fi(x, x) = gj (u, u) = 0, for
every x ∈ Ci , u ∈ Qj , and for every i = 1, 2, ..., N , j = 1, 2, ...,M , respectively,
the multiple set split equilibrium problem (MSSEP) is stated as follows:

⎧⎪⎪⎨
⎪⎪⎩

Find x∗ ∈ C := ∩N
i=1Ci such that fi(x

∗, y) ≥ 0, for all y ∈ Ci

and for all i = 1, 2, ..., N, and such that
the point u∗ = Ax∗ ∈ Q := ∩M

j=1Qj solves gj (u
∗, v) ≥ 0, for all v ∈ Qj

and for all j = 1, 2, ...,M.

Since variational inequality problem could be consider as a special case of equi-
librium problem [4, 32], MSSVIP is a particular case of MSSEP, for instance,
take fi(x, y) = 〈Fi(x), y − x〉, i = 1, 2, ..., N , gj (u, v) = 〈Gj(u), v − u〉,
j = 1, 2, ...,M . Similarly, the split common fixed point problem [11, 23, 30] and
the split common null point problem [7, 40] can be formulated as MSSEP. Further
more, if Qj = H2 and gj (u, v) = 0, ∀u, v ∈ H2, and for all j = 1, 2, ...,M .
Then MSSEP becomes the problem of finding a common element of the set of
solutions of equilibrium problems, see, for example [35, 39] and references quoted
therein.

By Sol(Ci, fi), we denote the solution set of the equilibrium problem EP(Ci, fi),
i.e.,

Sol(Ci, fi) = {x̄ ∈ Ci such that fi(x̄, y) ≥ 0, ∀y ∈ Ci},

for all i = 1, 2, ..., N , and Sol(Qj , gj ) stands for the solution set of the equilibrium
problem EP(Qj , gj ), for all j = 1, ...,M .

Now, let K be a nonempty, closed and convex subset of H and ϕ : H×H → R be
a bifunction such that ϕ(x, x) = 0, ∀x ∈ K. In order to find a solution of MSSEP,
we make use of the following blanket assumptions:
Assumptions A
(A1) ϕ is pseudo monotone on K with respect to Sol(K, ϕ);
(A2) ϕ(x, ·) is convex, subdifferentiable on K, for all x ∈ K;
(A3) ϕ is weakly continuous on K×K in the sense that if x, y ∈ K and {xk}, {yk} ⊂

K converge weakly to x and y, respectively, then ϕ(xk, yk) → ϕ(x, y) as
k → +∞;

(A4) ϕ is Lipschitz-type continuous on K with constants L1 > 0 and L2 > 0.

The extragradient algorithm was first proposed by Korpelevich [24] (see also
[20]) for finding saddle points and other problems; recently, many authors have
succeeded in applying this algorithm for solving equilibrium problems and other
related problems [18, 42]. One advantage of the extragradient algorithm for solv-
ing equilibrium problems is that it can be apply not only for the pseudo-monotone
equilibrium problem cases but also at each iteration, we only have to solve two
strongly convex programs. We now present a parallel extragradient algorithm
for MSSEP.
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Algorithm 1 (Parallel extragradient algorithm for MSSEP)

Initialization. Pick x0 ∈ C = ∩N
i=1Ci , choose constants 0 < ρ ≤ ρ̄ <

min{ 1
2L1

, 1
2L2

}, 0 < α ≤ ᾱ ≤ 1; for each i = 1, 2, ..., N , j = 1, 2, ...,M , choose

parameters {ρi
k}, {rj

k } ⊂ [ρ, ρ̄]; {αi
k}, {βj

k } ⊂ [α, ᾱ], ∑N
i=1 αi

k = ∑M
j=1 β

j
k = 1;

μ ∈ (0, 1
‖A‖ ).

Iteration k (k = 0, 1, 2, ...). Having xk do the following steps:

Step 1. Solve N strongly convex programs in parallel⎧⎨
⎩

yk
i = arg min{fi(x

k, y) + 1
2ρi

k

‖y − xk‖2 : y ∈ Ci}
zk
i = arg min{fi(y

k
i , y) + 1

2ρi
k

‖y − xk‖2 : y ∈ Ci}, i = 1, 2, ..., N.

Step 2. Set z̄k = ∑N
i=1 αi

kz
k
i , and compute v̂k = Az̄k .

Step 3. Solve M the following strongly convex programs in parallel⎧⎨
⎩

vk
j = arg min{gj (v̂

k, v) + 1
2r

j
k

‖v − v̂k‖2 : v ∈ Qj }
uk

j = arg min{gj (v
k
j , v) + 1

2r
j
k

‖v − v̂k‖2 : v ∈ Qj }, j = 1, 2, ...,M.

Step 4. Compute ūk = ∑M
j=1 β

j
k uk

j .

Step 5. Take xk+1 = PC(z̄k + μA∗(ūk − v̂k)), and go to Iteration k

with k is replaced by k + 1.

Remark 3.1 (i) At iteration k, if yk
i = xk , then xk is a solution of EP(Ci, fi).

Similarly, if vk
j = v̂k , then v̂k is a solution of EP(Qj, gj ).

(ii) At each iteration k, parameters {αi
k} can be chosen basing on the relative posi-

tion of zk
i and xk , i = 1, ..., N . Similarly, parameters {βj

k }, can be chosen by
using the distance between uk

j and v̂k , j = 1, 2, ...,M (see [1, 22]).
(iii) We may assume without loss of generality that bifunctions fi , i = 1, 2, ..., N

and gj , j = 1, 2, ...,M , satisfying assumptions (A4) with the same Lipschitz-
type constants L1 and L2.

Before going to prove the convergence of Algorithm 1, let us recall the following
result which was in [2, 42]

Lemma 3.1 ([2, 42]) Suppose that fi, i = 1, 2, ..., N , satisfy assumptions (A1),
(A2), (A4) such that ∩N

i=1Sol(Ci, fi) is nonempty. Then, for each i = 1, 2, ..., N , we
have:

(i) ρi
k[fi(x

k, y) − fi(x
k, yk

i )] ≥ 〈yk
i − xk, yk

i − y〉, ∀y ∈ Ci.

(ii) ‖zk
i − x∗‖2 ≤ ‖xk − x∗‖2 − (1 − 2ρi

kL1)‖xk − yk
i ‖2 − (1 − 2ρi

kL2)‖yk
i −

zk
i ‖2, ∀x∗ ∈ ∩N

i=1Sol(Ci, fi), ∀k.

We are now in a position to prove the convergence of Algorithm 1.

Theorem 3.1 Let bifunctions fi , gj satisfy assumptions A, on Ci and Qj , respec-
tively, for all i = 1, 2, ..., N , j = 1, 2, ...,M . Let A : H1 → H2 be a bounded
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linear operator with its adjoint A∗. If 	 = {x∗ ∈ ⋂N
i=1 Sol(Ci, fi) : Ax∗ ∈⋂M

j=1 Sol(Qj , gj )} �= ∅, then the sequences {xk}, {yk
i }, {zk

i }, i = 1, 2, ..., N converge

weakly to an element x∗ ∈ 	 and {vk
j }, {uk

j }, j = 1, 2, ...,M converge weakly to

Ap ∈ ⋂M
j=1 Sol(Qj , gj ).

Proof Let p ∈ 	, so p ∈ ⋂N
i=1 Sol(Ci, fi) and Ap ∈ ⋂M

j=1 Sol(Qj , gj ). For each
i = 1, 2, ..., N by Lemma 3.1, we have

‖zk
i − p‖2 ≤ ‖xk − p‖2 − (1 − 2ρi

kL1)‖xk − yk
i ‖2 − (1 − 2ρi

kL2)‖yk
i − zk

i ‖2

Combining with step 2, one has

‖z̄k − p‖2 = ‖
N∑

i=1

αi
kz

k
i − p‖2 = ‖

N∑
i=1

αi
k(z

k
i − p)‖2

=
N∑

i=1

αi
k‖zk

i − p‖2 − 1

2

N∑
i=1

N∑
j=1

αi
kα

j
k ‖zk

i − zk
j‖2

≤ ‖xk − p‖2 −
n∑

i=1

αi
k(1 − 2ρi

kL1)‖xk − yk
i ‖2

−
n∑

i=1

αi
k(1 − 2ρi

kL2)‖yk
i − zk

i ‖2. (3.1)

Similarly, assertion (ii) in Lemma 3.1 implies that

‖uk
j−Ap‖2 ≤ ‖Az̄k−Ap‖2−(1−2r

j
k L1)‖Az̄k−vk

j ‖2−(1−2r
j
k L2)‖vk

j −uk
j‖2, ∀j = 1, 2, ..., M.

Thus,

‖ūk − Ap‖2 = ‖
M∑

j=1

β
j
k (uk

j − Ap)‖2

=
M∑

j=1

β
j
k ‖uk

j − Ap‖2 − 1

2

M∑
i=1

M∑
j=1

βi
kβ

j
k ‖uk

i − uk
j‖2

≤ ‖Az̄k − Ap‖2 −
M∑

j=1

β
j
k (1 − 2r

j
k L1)‖Az̄k − vk

j‖2

−
M∑

j=1

β
j
k (1 − 2r

j
k L2)‖vk

j − uk
j‖2. (3.2)

We have

2〈A(z̄k − p), ūk − Az̄k〉 = 2〈A(z̄k − p) + ūk − Az̄k − (ūk − Az̄k), ūk − Az̄k〉
= 2〈ūk − Ap, ūk − Az̄k〉 − 2‖ūk − Az̄k‖2

= ‖ūk − Ap‖2 + ‖ūk − Az̄k‖2 − ‖Az̄k − Ap‖2

−2‖ūk − Az̄k‖2

= ‖ūk − Ap‖2 − ‖ūk − Az̄k‖2 − ‖Az̄k − Ap‖2. (3.3)
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By definition of xk+1, we have

‖xk+1 − p‖2 = ‖PC(z̄k + μA∗(ūk − Az̄k)) − PC(p)‖2

≤ ‖(z̄k − p) + μA∗(ūk − Az̄k)‖2

= ‖z̄k − p‖2 + ‖μA∗(ūk − Az̄k)‖2 + 2μ〈z̄k − p,A∗(ūk − Az̄k)〉
≤ ‖z̄k − p‖2 + μ2‖A∗‖2‖ūk − Az̄k‖2 + 2μ〈z̄k − p,A∗(ūk − Az̄k)〉
= ‖z̄k − p‖2 + μ2‖A‖2‖ūk − Az̄k‖2 + 2μ〈A(z̄k − p), (ūk − Az̄k)〉.

Using (3.3), we get

‖xk+1 − p‖2 ≤ ‖z̄k − p‖2 + μ2‖A‖2‖ūk − Az̄k‖2

+μ
[‖ūk − Ap‖2 − ‖ūk − Az̄k‖2 − ‖Az̄k − Ap‖2]

= ‖z̄k − p‖2 − μ(1 − μ‖A‖2)‖ūk − Az̄k‖2

+μ
[‖ūk − Ap‖2 − ‖Az̄k − Ap‖2]. (3.4)

In combination with (3.1) and (3.2), (3.4) becomes

‖xk+1−p‖2 ≤‖xk−p‖2−
N∑

i=1

αi
k

[
(1−2ρi

kL1)‖xk−yk
i ‖2−(1−2ρi

kL2)‖yk
i −zk

i ‖2]

−μ(1 − μ‖A‖2)‖ūk − Az̄k‖2

−μ

M∑
j=1

[
β

j
k (1−2r

j
k L1)‖Az̄k−vk

j‖2−(1−2r
j
k L2)‖vk

j −uk
j‖2]. (3.5)

Since 0 < μ <
1

‖A‖2
, {ρi

k}, {rj
k } ⊂ [ρ, ρ̄] ⊂ (0, min{ 1

2L1
, 1

2L1
}), {αi

k}, {βj
k } ⊂

[α, ᾱ] ⊂ (0, 1]. Equation (3.5) implies that {‖xk − p‖2} is a nonincreasingly
sequence.

So
lim

k→∞ ‖xk − p‖2 = a(p). (3.6)

From (3.5) and (3.6), we get

lim
k→+∞ ‖xk − yk

i ‖ = lim
k→+∞ ‖yk

i − zk
i ‖ = 0, ∀i = 1, 2, ..., N. (3.7)

lim
k→+∞ ‖Az̄k − vk

j ‖ = lim
k→+∞ ‖vk

j − uk
j‖ = 0, ∀j = 1, 2, ...,M. (3.8)

Because lim
k→+∞ ‖xk − p‖ = a(p), {xk} is bounded, there exists a subsequence {xkm}

of {xk} such that xkm converges weakly to some x∗ as m → +∞. Remember that
xk ∈ C = ∩N

i=1Ci, ∀k and Ci are closed and convex sets for all i = 1, 2, ..., N .
We have that C is also closed and convex, so C is weakly closed and therefore x∗ ∈
C, i.e., x∗ ∈ Ci for all i = 1, 2, ..., N . From (3.7), we also get that {ykm

i }, {zkm

i }
converge weakly to x∗, for all i = 1, 2, ..., N . Hence, {z̄km} converges weakly to x∗,
consequently {Az̄km} converges weakly to Ax∗. Together with (3.8), we obtain that
{vkm

j }, {ukm

j } converge weakly to Ax∗ for all j = 1, 2, ...,M as m → +∞. Since

{vk
j } ⊂ Qj , Qj is closed and convex, so Ax∗ ∈ Qj, ∀j.
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For each i = 1, 2, ..., N and j = 1, 2, ...,M , assertion (i) in Lemma 3.1 implies
that

ρi
km

[fi(x
km, y) − fi(x

km, y
km

i )] ≥ 〈ykm

i − xkm, y
km

i − y〉, ∀y ∈ Ci, and

r
j
km

[gj (Az̄km, v) − gj (Az̄km, v
km

j )] ≥ 〈vkm

j − Az̄km, v
km

j − v〉, ∀v ∈ Qj .

Since

〈ykm

i − xkm, y
km

i − y〉 ≥ −‖ykm

i − xkm‖‖ykm

i − y‖ and

〈vkm

j − Az̄km, v
km

j − v〉 ≥ −‖vkm

j − Az̄km‖‖vkm

j − v‖,
it follows from the last inequalities that

ρi
km

[
fi(x

km, y) − fi(x
km, y

km

i )
] ≥ −‖ykm

i − xkm‖‖ykm

i − y‖, and

r
j
km

[
gj (Az̄km, v) − gj (Az̄km, v

km

j )
] ≥ −‖vkm

j − Az̄km‖‖vkm

j − v‖.
Hence,

fi(x
km, y) − fi(x

km, y
km

i ) + 1

ρi
km

‖ykm

i − xkm‖‖ykm

i − y‖ ≥ 0, and

gj (Az̄km, v) − gj (Az̄km, v
km

j ) + 1

r
j
km

‖vkm

j − Az̄km‖‖vkm

j − v‖ ≥ 0.

Letting m → +∞, in combination with (3.7), (3.8) and the continuity of fi , gj , yield

fi(x
∗, y) − fi(x

∗, x∗) ≥ 0, ∀y ∈ Ci, ∀i = 1, 2, ..., N, and

gj (Ax∗, v) − gj (Ax∗, Ax∗) ≥ 0, ∀v ∈ Qj, ∀j = 1, 2, ...,M,

which means that x∗ ∈ Sol(Ci, fi) for all i = 1, 2, ..., N and Ax∗ ∈ Sol(Qj , gj ) for
all j = 1, 2, ...,M , or x∗ ∈ 	.

Finally, we prove {xk} converges weakly to x∗. Indeed, if there exists a subse-
quence {xkn} of {xk} such that xkn ⇀ x̃ with x̃ �= x∗, then we have x̃ ∈ 	. By
Opial’s condition, yields

lim inf
m→+∞ ‖xkm − x∗‖ < lim inf

m→+∞ ‖xkm − x̃‖
= lim inf

n→+∞ ‖xkn − x̃‖
< lim inf

n→+∞ ‖xkn − x∗‖
= lim inf

m→+∞ ‖xkm − x∗‖.

This is a contradiction. Hence, {xk} converges weakly to x∗.
Together with (3.7), we also get yk

i ⇀ x∗ and zk
i ⇀ x∗, for all i = 1, 2, ..., N .

Therefore, z̄k ⇀ x∗, and Az̄k ⇀ Ax∗. Combining with (3.8), it is immediate that
{vk

j }, {uk
j } converge weakly to Ax∗ for all j = 1, 2, ...,M .

When N = M = 1, then C1 = C and Q1 = Q, we get the following corollary.
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Corollary 3.1 Suppose that f , g are bifunctions satisfying assumptionsA on C and
Q respectively, suppose further that A : H1 → H2 is a bounded linear operator
with its adjoint A∗. Take x0 ∈ C; {ρk}, {rk} ⊂ [ρ, ρ̄], for some ρ, ρ̄ such that

0 < ρ ≤ ρ̄ < min{ 1
2L1

, 1
2L2

}; 0 < μ <
1

‖A‖2
, and consider the sequences {xk},

{yk}, {zk}, and {vk}, {uk} defined by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = arg min
{
ρkf (xk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
,

zk = arg min
{
ρkf (yk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
,

vk = arg min
{
rkg(Azk, v) + 1

2
‖v − Azk‖2 : v ∈ Q

}
,

uk = arg min
{
rkg(Avk, y) + 1

2
‖v − Azk‖2 : v ∈ Q

}
,

xk+1 = PC(zk + μA∗(uk − Azk)).

If 	 = {x∗ ∈ Sol(C, f ) : Ax∗ ∈ Sol(Q, g)} �= ∅, then the sequences {xk}, {yk}
and {zk} converge weakly to an element x∗ ∈ 	, and {vk}, {uk} converge weakly to
Ax∗ ∈ Sol(Q, g).

An important case of MSSEP is multiple set split variational inequality problem
MSSVIP. In this case, we have the following corollary which not only solves
MSSVIP without using any product space but also deals with the pseudo-monotone
cases.

Corollary 3.2 Suppose that Fi , Gj are mappings satisfying assumptions A on Ci

and Qj , respectively, for all i = 1, 2, ..., N , j = 1, 2, ...,M , and A : H1 → H2 be a

bounded linear operator with its adjoint A∗. Take x0 ∈ C = ∩N
i=1Ci; {ρi

k}, {rj
k } ⊂

[ρ, ρ̄], for some ρ, ρ̄ such that 0 < ρ ≤ ρ̄ < min{ 1
2L1

, 1
2L2

}; {αi
k}, {βj

k } ⊂ [α, ᾱ] ⊂
(0, 1], for all i = 1, 2, ..., N , j = 1, 2, ...,M , and

∑N
i=1 αi

k = ∑M
j=1 β

j
k = 1;

0 < μ <
1

‖A‖2
. Consider the sequences {xk}, {yk

i }, {zk
i }, i = 1, 2, ..., N and {vk

j },
{uk

j }, j = 1, 2, ...,M defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
yk
i = PCi

(xk − ρi
kFi(x

k))

zk
i = PCi

(xk − ρi
kFi(y

k
i )),

i = 1, 2, ..., N.

z̄k = ∑N
i=1 αi

kz
k
i ,

v̂k = Az̄k,{
vk
j = PQj

(v̂k − r
j
k Gj (v̂

k))

uk
j = PQj

(v̂k − r
j
k Gj (v

k
j )),

j = 1, 2, ...,M.

ūk = ∑M
j=1 β

j
k uk

j ,

xk+1 = PC(z̄k + μA∗(ūk − v̂k)).
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If 	 = {x∗ ∈ ⋂N
i=1 Sol(Ci, Fi) : Ax∗ ∈ ⋂M

j=1 Sol(Qj , Gj )} �= ∅, then the

sequences {xk}, {yk
i }, {zk

i }, i = 1, 2, ..., N converge weakly to an element x∗ ∈ 	,
and {vk

j }, {uk
j }, j = 1, 2, ...,M converge weakly to Ax∗ ∈ ∩M

j=1Sol(Qj , Gj ).

In some cases, we wish to get the strong convergence algorithms to solve our
problems. To do so, we combine Algorithm 1 with hybrid method [9, 41] to propose
the following parallel hybrid extragradient algorithm for MSSEP.

Algorithm 2 (Parallel Hybrid Extragradient Algorithm for MSSEP)

Initialization. Pick x0 = xg ∈ C = ∩N
i=1Ci , choose constants

0 < ρ ≤ ρ̄ < min{ 1
2L1

, 1
2L2

}, 0 < α ≤ ᾱ ≤ 1; for each i = 1, 2, ..., N ,

j = 1, 2, ...,M , choose parameters {ρi
k}, {rj

k } ⊂ [ρ, ρ̄];
{αi

k}, {βj
k } ⊂ [α, ᾱ], ∑N

i=1 αi
k = ∑M

j=1 β
j
k = 1; μ ∈ (0, 1

‖A‖ ); B0 = C.

Iteration k (k = 0, 1, 2, ...). Having xk do the following steps:

Step 1. Solve N strongly convex programs in parallel⎧⎨
⎩

yk
i = arg min{fi(x

k, y) + 1
2ρi

k

‖y − xk‖2 : y ∈ Ci}
zk
i = arg min{fi(y

k
i , y) + 1

2ρi
k

‖y − xk‖2 : y ∈ Ci}, i = 1, 2, ..., N.

Step 2. Set z̄k = ∑N
i=1 αi

kz
k
i , and compute v̂k = Az̄k .

Step 3. Solve M the following strongly convex programs in parallel⎧⎨
⎩

vk
j = arg min{gj (v̂

k, v) + 1
2r

j
k

‖v − v̂k‖2 : v ∈ Qj }
uk

j = arg min{gj (v
k
j , v) + 1

2r
j
k

‖v − v̂k‖2 : v ∈ Qj }, j = 1, 2, ...,M.

Step 4. Compute ūk = ∑M
j=1 β

j
k uk

j .

Step 5. Take tk = PC(z̄k + μA∗(ūk − v̂k)).
Step 6. Define Bk+1 = {x ∈ Bk : ‖x − tk‖ ≤ ‖x − z̄k‖ ≤ ‖x − xk‖},
compute xk+1 = PBk+1(x

g), and go to Iteration k with k is replaced by
k + 1.

Remark 3.2 By setting H 1
k = {x ∈ H1 : ‖x − tk‖ ≤ ‖x − z̄k‖}, we have

H 1
k = {x ∈ H1 : 〈z̄k − tk, x〉 ≤ 1

2
(‖z̄k‖2 − ‖tk‖2)},

hence H 1
k is a halfspace. Similarly,

H 2
k = {x ∈ H1 : ‖x − z̄k‖ ≤ ‖x − xk‖}

= {x ∈ H1 : 〈xk − z̄k, x〉 ≤ 1

2
(‖xk‖2 − ‖zk‖2)},

is also a halfspace. Since Bk+1 = Bk ∩ H 1
k ∩ H 2

k , if H1 is the Euclidean space R
n

and B0 is a polyhedron, then by induction we get that Bk are polyhedra for all k.
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Therefore, the computation of xk+1 in Algorithm 2 is equivalent to find the projec-
tion of xg onto the polyhedron Bk+1 which can be computed efficiently using, for
example, strongly convex quadratic programming methods.

The following theorem give us the strong convergence of Algorithm 2.

Theorem 3.2 Let bifunctions fi , gj satisfy assumptions A on Ci and Qj , respec-
tively, for all i = 1, 2, ..., N , j = 1, 2, ...,M . Let A : H1 → H2 be a bounded
linear operator with its adjoint A∗. If 	 = {x∗ ∈ ⋂N

i=1 Sol(Ci, fi) : Ax∗ ∈⋂M
j=1 Sol(Qj , gj )} �= ∅, then the sequences {xk}, {yk

i }, {zk
i }, i = 1, 2, ..., N con-

verge strongly to an element x∗ ∈ 	 and {vk
j }, {uk

j }, j = 1, 2, ...,M converge

strongly to Ax∗ ∈ ⋂M
j=1 Sol(Qj , gj ).

Proof Firstly, we observe that Bk is a nonempty closed convex set for all k ∈ N
∗. In

fact, let p ∈ 	, it follows from (3.4), (3.2), (3.1) that

‖tk−p‖2 ≤‖z̄k−p‖2−μ(1−μ‖A‖2)‖ūk−Az̄k‖2+μ
[‖ūk−Ap‖2−‖Az̄k−Ap‖2]

≤ ‖z̄k−p‖2−μ(1−μ‖A‖2)‖ūk−Az̄k‖2

−μ
[ M∑

j=1

β
j
k (1−2r

j
k L1)‖Az̄k−vk

j‖2+
M∑

j=1

β
j
k (1−2r

j
k L2)‖vk

j −uk
j‖2]

≤‖xk − p‖2 − μ(1 − μ‖A‖2)‖ūk − Az̄k‖2

−
N∑

i=1

αi
k(1 − 2ρi

kL1)‖xk − yk
i ‖2 − (1 − 2ρi

kL2)‖yk
i − zk

i ‖2]

− μ

M∑
j=1

[
β

j
k (1 − 2r

j
k L1)‖Az̄k − vk

j‖2 − (1 − 2r
j
k L2)‖vk

j − uk
j‖2].

(3.9)
By the algorithm {ρi

k}, {rj
k } ⊂ [ρ, ρ̄] ⊂ (0, min{ 1

2L1
, 1

2L1
}), {αi

k}, {βj
k } ⊂ [α, ᾱ] ⊂

(0, 1], 0 < μ <
1

‖A‖2
, and (3.9), we have

‖tk − p‖ ≤ ‖z̄k − p‖ ≤ ‖xk − p‖, ∀k. (3.10)

Because p ∈ B0 and (3.10), we get by induction that p ∈ Bk for all k ∈ N, i.e.,
	 ⊂ Bk , so Bk �= ∅ for all k.

For each k ∈ N, define

Dk = {x ∈ H1 : ‖x − tk‖ ≤ ‖x − z̄k‖ ≤ ‖x − xk‖} = H 1
k ∩ H 2

k ,

then Bk+1 = Bk ∩ Dk . Since B0 and Dk are closed and convex for all k, Bk is closed
for all k.

By Step 6 xk+1 ∈ Bk+1 ⊂ Bk and xk = PBk
(xg), so

‖xk − xg‖ ≤ ‖xk+1 − xg‖, for all k.
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In addition, xk+1 = PBk+1(x
g) and p ∈ Bk+1, it implies that

‖xk+1 − xg‖ ≤ ‖p − xg‖.
Thus,

‖xk − xg‖ ≤ ‖xk+1 − xg‖ ≤ ‖p − xg‖, ∀k.

Therefore, lim
k→+∞ ‖xk − xg‖ exists, consequently {xk} is bounded.

Hence, {tk} and {z̄k} are also bounded.
For all k > n, we have that xk ∈ Bk ⊂ Bn, xn = PBn(x

g). Combining this fact
with Lemma 2.1, we get

‖xk − xn‖2 ≤ ‖xk − xg‖2 − ‖xn − xg‖2. (3.11)

Since lim
k→+∞ ‖xk − xg‖2 exists, (3.11) implies that

lim
k,n→∞ ‖xk − xn‖ = 0.

So {xk} is a Cauchy sequence, i.e.,

lim
k→∞ xk = x∗. (3.12)

We need showing that x∗ ∈ 	. From the definitions of Bk+1 and xk+1, we have

‖xk+1 − tk‖ ≤ ‖xk+1 − z̄k‖ ≤ ‖xk+1 − xk‖.
Thus,

‖tk − xk‖ ≤ ‖tk − xk+1‖ + ‖xk+1 − xk‖
≤ ‖xk − xk+1‖ + ‖xk − xk+1‖
= 2‖xk − xk+1‖,

Combining with (3.12), we get

lim
k→∞ ‖tk − xk‖ = 0. (3.13)

From (3.9), one has

N∑
i=1

αi
k

[
(1−2ρi

kL1)‖xk−yk
i ‖2−(1−2ρi

kL2)‖yk
i −zk

i ‖2]

+μ

M∑
j=1

[
β

j
k (1−2r

j
k L1)‖Az̄k−vk

j ‖2−(1−2r
j
k L2)‖vk

j −uk
j‖2]≤‖xk−p‖2−‖tk−p‖2

≤‖tk−xk‖(‖xk−p‖+‖tk−p‖).
(3.14)

Because {ρi
k}, {rj

k } ⊂ [ρ, ρ̄] ⊂ (0, min{ 1
2L1

, 1
2L2

}); {αi
k}, {βj

k } ⊂ [α, ᾱ] ⊂ (0, 1],
μ ∈ (0, 1

‖A‖ ); (3.12), and (3.13) we deduce from (3.14) that

lim
k→+∞ ‖xk − yk

i ‖ = ‖yk
i − zk

i ‖ = 0, for all i = 1, 2, ..., N, (3.15)
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and

lim
k→+∞ ‖Az̄k − vk

j ‖ = ‖vk
j − uk

j‖ = 0, for all j = 1, 2, ...,M. (3.16)

From (3.15), (3.16) and lim
k→+∞ xk = x∗, we have

lim
k→+∞ yk

i = x∗, lim
k→+∞ zk

i = x∗, lim
k→+∞ z̄k = x∗, ∀i = 1, 2, ..., N (3.17)

and

lim
k→+∞ Az̄k = Ax∗, lim

k→+∞ vk
j = Ax∗, lim

k→+∞ uk
j = Ax∗, ∀j = 1, 2, ...,M.

(3.18)
Beside that, for each i = 1, 2, ..., N and j = 1, 2, ...,M , Lemma 3.1 implies that

ρi
k[fi(x

k, y) − fi(x
k, yk

i )] ≥ 〈yk
i − xk, yk

i − y〉, ∀y ∈ Ci, and

r
j
k [gj (Az̄k, v) − gj (Az̄k, vk

j )] ≥ 〈vk
j − Az̄k, vk

j − v〉, ∀v ∈ Qj .

We have

〈yk
i − xk, yk

i − y〉 ≥ −‖yk
i − xk‖‖yk

i − y‖ and

〈vk
j − Az̄k, vk

j − v〉 ≥ −‖vk
j − Az̄k‖‖vk

j − v‖,
therefore we get from the last inequalities that

fi(x
k, y) − fi(x

k, yk
i ) + 1

ρi
k

‖yk
i − xk‖‖yk

i − y‖ ≥ 0, and

gj (Az̄k, v) − gj (Az̄k, vk
j ) + 1

r
j
k

‖vk
j − Az̄k‖‖vk

j − v‖ ≥ 0.

Letting k → +∞, in combination with (3.17), (3.18) and the continuity of fi , gj ,
yield

fi(x
∗, y) − fi(x

∗, x∗) ≥ 0, ∀y ∈ Ci, ∀i = 1, 2, ..., N, and

gj (Ax∗, v) − gj (Ax∗, Ax∗) ≥ 0, ∀v ∈ Qj, ∀j = 1, 2, ...,M,

which means that x∗ ∈ ∩N
i=1Sol(Ci, fi), and Ax∗ ∈ ∩M

j=1Sol(Qj , gj ), or x∗ ∈ 	.

The proof is completed.

The following corollary is immediate from Algorithm 2 and Theorem 3.2 when
N = M = 1.

Corollary 3.3 Let f , g be bifunctions satisfying assumptionsA on C and Q, respec-
tively. Let A : H1 → H2 be a bounded linear operator with its adjoint A∗.
Choose x0 = xg ∈ C, B0 = C; {ρk}, {rk} ⊂ [ρ, ρ̄], for some ρ, ρ̄ such that
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0 < ρ ≤ ρ̄ < min{ 1
2L1

, 1
2L2

}; 0 < μ <
1

‖A‖2
. Consider the sequences {xk}, {yk},

{zk}, and {vk}, {uk} defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk = arg min
{
ρkf (xk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
,

zk = arg min
{
ρkf (yk, y) + 1

2
‖y − xk‖2 : y ∈ C

}
,

vk = arg min
{
rkg(Azk, v) + 1

2
‖v − Azk‖2 : v ∈ Q

}
,

uk = arg min
{
rkg(vk, y) + 1

2
‖v − Azk‖2 : v ∈ Q

}
,

tk = PC(zk + μA∗(uk − Azk))

Bk+1 = {x ∈ Bk : ‖x − tk‖ ≤ ‖x − zk‖ ≤ ‖x − xk‖},
xk+1 = PBk+1(x

g).

Suppose that 	 = {x∗ ∈ Sol(C, f ) : Ax∗ ∈ Sol(Q, g)} �= ∅, then the sequences
{xk}, {yk} and {zk} converge strongly to an element x∗ ∈ 	 and {vk}, {uk} converge
strongly to Ax∗ ∈ Sol(Q, g).

Applying Algorithm 2 and Theorem 2 to MSSVIP, we get the following strong
convergence algorithm for solving multiple set split pseudo-monotone variational
inequality problems without using any product space.

Corollary 3.4 Suppose that Fi , Gj are mappings satisfying assumptions A and
A : H1 → H2 be a bounded linear operator with its adjointA∗. Take x0 = xg ∈ C =
∩N

i=1Ci; {ρi
k}, {rj

k } ⊂ [ρ, ρ̄], for some ρ, ρ̄ such that 0 < ρ ≤ ρ̄ < min{ 1
2L1

, 1
2L2

};
{αi

k}, {βj
k } ⊂ [α, ᾱ] ⊂ (0, 1], for all i = 1, 2, ..., N , j = 1, 2, ...,M , and∑N

i=1 αi
k = ∑M

j=1 β
j
k = 1; 0 < μ <

1

‖A‖2
; B0 = C. Consider the sequences {xk},

{yk
i }, {zk

i }, i = 1, 2, ..., N and {vk
j }, {uk

j }, j = 1, 2, ...,M defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
yk
i = PCi

(xk − ρi
kFi(x

k))

zk
i = PCi

(xk − ρi
kFi(y

k
i )),

i = 1, 2, ..., N.

z̄k = ∑N
i=1 αi

kz
k
i ,

v̂k = Az̄k,{
vk
j = PQj

(v̂k − r
j
k Gj (v̂

k))

uk
j = PQj

(v̂k − r
j
k Gj (v

k
j )),

j = 1, 2, ..., M.

ūk = ∑M
j=1 β

j
k uk

j

tk = PC(z̄k + μA∗(ūk − v̂k))

xk+1 = PBk+1(x
g), where Bk+1 = {x ∈ Bk : ‖x − tk‖ ≤ ‖x − z̄k‖ ≤ ‖x − xk‖}

If 	 = {x∗ ∈ ⋂N
i=1 Sol(Ci, Fi) : Ax∗ ∈ ⋂M

j=1 Sol(Qj , Gj )} �= ∅, then the

sequences {xk}, {yk
i }, {zk

i }, i = 1, 2, ..., N converge strongly to an element x∗ ∈ 	,

and {vk
j }, {uk

j }, j = 1, 2, ...,M converge strongly to Ax∗ ∈ ⋂M
j=1 Sol(Qj , Gj ).
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4 A numerical example

In this section, we consider the (MSSEP) when H1 = R
n, and H2 = R

m, the linear
operator A : R

n → R
m is given by m × n matrix A = (als)m×n ∈ R

m×n. The
bifunctions fi , i = 1, 2, ..., N , gj , j = 1, 2, ...,M , are given as follows

fi(x, y) = (P ix + Qiy + bi)T (y − x), ∀x, y ∈ R
n, i = 1, 2, ..., N,

gj (u, v) = (Uju + V jv + wj)T (u − v), ∀u, v ∈ R
m, j = 1, 2, ...,M,

where P i = (pi
ls)n×n, Qi = (qi

ls)n×n, and Uj = (u
j
ls)m×m, V j = (v

j
ls)m×m

are symmetric positive semidefinite matrices such that P i − Qi and Uj − V j are
also positive semidefinite matrices, bi ∈ R

n, wj ∈ R
m, for all i = 1, 2, ..., N ,

and j = 1, 2, ...,M. The bifunctions fi and gj have the form of the one arising
from a Nash-Cournot oligopolistic electricity market equilibrium model [14, 36].
In this case, these fi are convex in the second variable, Lipschitz-type continu-
ous with constants L1

i = L2
i = 1

2‖P i − Qi‖, and the positive semidefinition of
P i − Qi implies that f i are monotone, for all i = 1, 2, ..., N (see, [42]). Simi-
larly, we have that gj are convex in the second variable, Lipschitz-type continuous
with constants L̄1

j = L̄2
j = 1

2‖Uj − V j‖, and those gj are monotone, for all

j = 1, 2, ...,M . By choosing L1 = max{L1
i , L̄

1
j : i = 1, 2, ..., N, j = 1, 2, ...,M}

and L2 = max{L2
i , L̄

2
j : i = 1, 2, ..., N, j = 1, 2, ...,M}, the bifunctions fi and

gj are Lipschitz-type continuous with constants L1 and L2, for all i = 1, 2, ..., N ,
j = 1, 2, ...,M (see, Remark 2.1).

In order to ensure that the intersection of the solution set 	 of (MSSEP) is
nonempty, we further assume that bi = 0, wj = 0 and the constraint sets Ci of
EP(Ci, fi) and the constraint sets Qj of EP(Qj, gj ) contain the original of Rn and
R

m, respectively, for all i = 1, 2, ..., N , j = 1, 2, ...,M .
We tested the proposed algorithms for this example in which Ci = C,∀i =

1, ..., N , C is the box C = ∏n
i=1[−5, 5], with n = 5, 10, 20, 50; N =

10, 20, 50, 100, and Qj = Q,∀j = 1, ...,M , Q is the box Q = ∏m
j=1[−20, 20],

with m = 5, 10, 20; M = 5, 20, 40. The matrix A = (als)m×n is randomly generated
in the interval [−2, 2]. Similarly, P i , and P i−Qi are matrices of the form DT D with
D = (dls)n×n being randomly generated in the interval [−5, 5]; Uj , and Uj − V j

are matrices of the form WT W with W = (wls)m×m being randomly generated in the
interval [−5, 5]. Starting point is chosen as a guess solution xg = (1, 1, ..., 1)T ∈ R

n

and the parameters: μ = 1
2‖A‖2 ; ρi

k = r
j
k = ρ = 1

4L
, with L = max{L1, L2},

αi
k = 1

N
, β

j
k = 1

M
, ∀k, ∀i = 1, 2, ..., N , and ∀j = 1, 2, ...,M .

At Iteration k, in Step 1 of Algorithms 1 and 2, to get yk
i we need to solve the

following optimization programs

arg min{fi(x
k, y) + 1

2ρ
‖y − xk‖2 : y ∈ C}

or the following convex quadratic problems

arg min{1

2
yT P̄ iy + p̄iy : y ∈ C}, (4.19)
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where P̄ i = 2Qi + 1
ρ
In and p̄i = P ixk − Qixk − 1

ρ
xk .

Problem (4.19) can be solved effectively, for instance, by using the Matlab
Optimization Toolbox.

Similarly, zk
i solves the following quadratic program

arg min{1

2
yT Q̄iy + q̄iy : y ∈ C},

where Q̄i = P̄ i and q̄i = P iyk
i − Qiyk

i − 1
ρ
xk .

By the same way, vk
j , uk

j in Step 3 of Algorithms 1 and 2 can be computed by
using the Matlab Optimization Toolbox.

It has been showed that Algorithm 2 is strongly convergent. Theoretically, it is use-
ful in infinite dimensional Hilbert spaces, although it is not easy to construct the sets
Bk in general. However, in this example, we can compute those sets Bk as follows.

Let In be the unit matrix of order n and A0 =
(

In

−In

)
be the 2n × n matrix;

b0 = (5, 5, ..., 5)T ∈ R
2n. Then, it is clear that

B0 = C =
n∏

i=1

[−5, 5] = {x ∈ R
n : A0x ≤ b0}.

Now, having B0, we describe how to construct the set B1 in the Iteration 0. Indeed,
set

H 1
0 = {x ∈ R

n : ‖x − t0‖ ≤ ‖x − z̄0‖}
= {x ∈ R

n : 〈z̄0 − t0, x〉 ≤ 1

2

(‖z̄0‖2 − ‖t0‖2)},
H 2

0 = {x ∈ R
n : ‖x − z̄0‖ ≤ ‖x − x0‖}

= {x ∈ R
n : 〈x0 − z̄0, x〉 ≤ 1

2

(‖x0‖2 − ‖z̄0‖2)}.
Let B̄0 be the matrix of the size 2 × n and b̄0 be the vector defined as

B̄0 =
(

(z̄0 − t0)T

(x0 − z̄0)T

)
, b̄0 =

( 1
2

(‖z̄0‖ − ‖t0‖2
)

1
2

(‖x0‖2 − ‖z̄0‖2
)
)

.

Then, we have H 1
0 ∩ H 2

0 = {x ∈ R
n : B̄0x ≤ b̄0}. By setting

A1 =
(

A0

B̄0

)
, b1 =

(
b0

b̄0

)
.

By definition of B1, we have

B1 = B0 ∩ H 1
0 ∩ H 2

0 = {x ∈ R
n : A1x ≤ b1}.

Similarly, at Iteration k, we have already had the set

Bk = {x ∈ R
n : Akx ≤ bk},

we can compute Bk+1 as follows:
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Since Bk+1 = Bk ∩ H 1
k ∩ H 2

k , where

H 1
k = {x ∈ R

n : ‖x − tk‖ ≤ ‖x − z̄k‖}
= {x ∈ R

n : 〈z̄k − tk, x〉 ≤ 1

2

(‖z̄k‖2 − ‖tk‖2)},
H 2

k = {x ∈ R
n : ‖x − z̄k‖ ≤ ‖x − xk‖}

= {x ∈ R
n : 〈xk − z̄k, x〉 ≤ 1

2

(‖xk‖2 − ‖z̄k‖2)}.
Let B̄k be the matrix of the size 2 × n and b̄k be the vector such that

B̄k =
(

(z̄k − tk)T

(xk − z̄k)T

)
, b̄k =

( 1
2

(‖z̄k‖ − ‖tk‖2
)

1
2

(‖xk‖2 − ‖z̄k‖2
)
)

.

Then, we have H 1
k ∩ H 2

k = {x ∈ R
n : B̄kx ≤ b̄k}.

By setting

Ak+1 =
(

Ak

B̄k

)
, bk+1 =

(
bk

b̄k

)
.

Thus,
Bk+1 = Bk ∩ H 1

k ∩ H 2
k = {x ∈ R

n : Ak+1x ≤ bk+1}.
Therefore, at Iteration k, to compute xk+1, we need to find projection of xg on to

Bk+1, i.e., we have to solve the following quadratic optimization problem:

arg min{1

2
yT y − xgT

y : y ∈ Bk+1}. (4.20)

Problem (4.20) can be solved effectively by using the Matlab Optimization Toolbox.
We implement Algorithm 1 and Algorithm 2 for this problem in Matlab R2013

running on a Desktop with Intel(R) Core(TM) 2Duo CPU E8400 3 GHz, and 3 GB
Ram. To terminate the Algorithms, we use the stopping criteria which is defined
as follows: or the number of iteration is greater than 1000: IT ER > 1000, or the

Table 1 Results computed with Algorithm 1

N.P S(n/N; m/M) TOL. CPU(s) ITER. S(n/N; m/M) CPU(s) ITER.

5 (5/10; 5/5) 10−3 4.3406 16 (5/10; 10/20) 5.6500 13

10−5 6.5219 27 10.9469 29

5 (5/10; 20/40) 10−3 9.2875 13 (10/20; 5/5) 6.3031 18

10−5 14.9688 23 9.0719 30

5 (10/20; 10/20) 10−3 9.5844 16 (10/20; 20/40) 13.9313 17

10−5 13.3312 27 21.6313 27

5 (20/50; 5/5) 10−3 13.6594 20 (20/50; 10/20) 18.0656 19

10−5 18.7906 32 21.3750 31

5 (20/50; 20/40) 10−3 24.6625 17 (50/100; 5/5) 103.3469 21

10−5 29.8688 29 132.3188 32

5 (50/100; 10/20) 10−3 111.5719 20 (50/100; 20/40) 116.7188 20

10−5 145.9375 32 167.9781 32
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Table 2 Results computed with Algorithm 2

N.P S(n/N; m/M) TOL. CPU(s) ITER. S(n/N; m/M) CPU(s) ITER.

5 (5/10; 5/5) 10−3 11.9063 78 (5/10; 10/20) 27.3469 95

10−5 17.9188 120 53.4688 173

5 (5/10; 20/40) 10−3 51.7719 106 (10/20; 5/5) 69.6688 272

10−5 84.4469 182 141.8500 523

5 (10/20; 10/20) 10−3 84.9250 208 (10/20; 20/40) 137.3719 242

10−5 160.8844 417 266.0250 460

2 (20/50; 5/5) 10−3 497.2433 1000 (20/50; 10/20) 602.8650 1000

10−5 502.4063 1000 626.7500 1000

1 (20/50; 20/40) 10−3 790.3064 1000 (50/100; 5/5) 2487.4930 1000

10−5 810.1094 1000 2583.6 1000

1 (50/100; 10/20) 10−3 3598.4 1000 (50/100; 20/40) 4011.2 1000

10−5 3668.2 1000 4270.5 1000

tolerance: T OL = ‖xk+1 − xk‖ < ε with a tolerance ε = 10−3 and ε = 10−5. The
computation results on Algorithm 1 and Algorithm 2 are reported in Tables 1 and 2
respectively, where

N.P: the number of the tested problems;
S(n/N; m/M): the size of the tested problems;
CPU(s): the average CPU-computation times (in second);
ITER: the average number of iterations.

From the computed results reported in Tables 1 and 2, we can see that the compu-
tational time and the number of iterations computed by Algorithm 1 is less than those
by Algorithm 2, especially when the size of the tested problem is large.

5 Conclusions

We have introduced a multiple set split equilibrium problem (MSSEP) in real Hilbert
spaces and proposed two new parallel extragradient algorithms for solving it without
using any product space. The weak and strong convergence of iteration sequences
generated by the algorithms to a solution of MSSEP are obtained under main assump-
tion that the bifunctions are Lipschitz-type continuous and pseudo-monotone with
respect to their solution sets. A numerical example in which the equilibrium bifunc-
tions have a form of the one arising from Nash Cournot equilibrium model is also
provided to illustrate the convergence of proposed algorithms.
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