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Abstract—Ground-Air coordination is a very complex environ-
ment for a machine learning algorithm. We focus on the case
where an Unmanned Aerial Vehicle (UAV) needs to support
a group of Unmanned Ground Vehicles (UGVs). The UAV is
required to broadcast an image that contains all UGVs, thus,
offering a bird-eye-view on the group as a whole. The source
of complexity in this task is twofold. First, coordination needs
to occur without communication between the UAV and UGVs.
Second, the ability of the UAV to sense the UGVs is coupled with
the ability of the UAV to learn how to track laterally the UGVs
and adapt its vertical position so that the images of the UGVs
are appropriately spaced within the camera field of view.
In this paper, we propose using the Deep Actor Network
component of an Actor-Critic Deep Reinforcement Learning
architecture as a supervised learner. The advantage of this
approach is that it offers a step towards autonomous learning
whereby the full Actor-Critic model can be utilized in the future.
Human demonstrations are collected for the deep Actor network
to learn from. The system is built using the Gazebo Simulator,
Robot Operating System, and the OpenAI Gym. We show that
the proposed setup is able to train the UAV to follow the UGVs
while maintaining all UGVs within camera range in situations
where UGVs are performing complex maneuvers.
Index Terms—Deep neural network, Gazebo, Ground-Air In-
teraction, OpenAI Gym, Human Demonstrations, Learning by
Imitation, ROS, UAV, UGV.

I. LITERATURE REVIEW

The problem of coordinating Unmanned Aerial Vehicles

(UAVs) and Unmanned Ground Vehicles (UGVs) is an active

area of research [1]. The UAV is assumed to have a large field

of view (FoV) [2] that enables it to support ground UGVs with

a continuous feed of real-time situation awareness pictures

(RT-SAP). This support enables UGVs to better plan and

navigate in the environment and coordinate activities among

themselves. The utility of this RT-SAP depends on the FoV

of the UAV’s camera. For example, a mission objective can

be to support the UGV in forward planning; thus, the UAV

needs to bring an area that is an order of magnitude (or even

more) larger than the area occupied by the UGVs within its

FoV. This can be useful in crowd control activities [3], rescue

missions in disasters [4], or in surveillance, reconnaissance,

and intelligence (SRI) missions in the military [5].

The challenges in the coordination problem between air-

borne and groundborne vehicles are multifaceted. One aspect

of the problem lies in the impact of communication-borne

latency on the ability of the vehicles to coordinate actions.

The work of Khaleghi et.al. [6] compare different UAV-UGV

coordination control systems. Howitt and Richards [7] cover

the workload challenges of humans during interaction with

the UAV command and control system. These challenges are

mainly focusing on teleoperations, while autonomous UAV-

UGV systems [8], [9] attempt to focus more on the problem

as a distributed artificial intelligence (DAI) and/or multi-agent

systems (MASs). Semi-autonomous operations in contested

environments have also gained its share in the literature

through work of Trentini and Beckman [10].

In this paper, we aim to design an autonomous controller

for the UAV to track the UGVs while maintaining all UGVs

within the FoV. The task is to ensure that the FoV is neither

too small that it excludes some UGVs nor larger than the

minimum needed to cover the smallest manifold containing

all UGVs. This form of precision coverage is essential in

situations where the UAV needs to maintain some form of

line-of-sight FoV of the UGVs. While in some situations

humans can teleoperate the UAV, human imprecision, latency

in communication during teleoperations and even risks of

communication-loss in teleoperations urge for designing fully

autonomous controllers.

Autonomous controllers come in many types. In this paper,

we assume that the controller will merely offer guidance while

the low-level controller (control) is handled through the UAV

control board. This is not a limitation but a practical way

to implement neural-based controllers to maintain low level

stability of the platform. Hence, when we refer to autonomous

controllers in this paper, we mean in classic control sense

autonomous guidance.

The challenge of this problem from machine learning per-

spective is to design ground-truth that a supervised learner can

use to automatically guide the design of the controller. This

challenge is even more complex in novel situations that have

not been seen before. We address this challenge in two stages.
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The first stage is the aim of this paper, where we use human

demonstrations data as ground truth for a supervised learner.

The second stage is the aim of our future research, where we

hope to be able to bootstrap, from human data in simple tasks,

autonomous controllers in more complex tasks.

The state space in this problem is uncertain, continuous

and very large. Recently, deep learning methods excelled in

similar applications related to intelligent mobile systems and

to design control policies for robots [11], [12]. Ross et.al. [13]

attempted to design autonomous reactive controllers for UAVs

in cluttered environments. Their objective was to design a

controller to fly while avoiding static objects such as trees in a

forest. Other recent attempts looked at Deep Neural Networks

(DNN) to design control policies for UAV [14]. The task in this

paper is far more complex as the behavior of the UAV is tightly

dependent on the behavior of moving targets on the ground

that the UAV needs to adapt its behavior to this uncertain

and unpredictable behavior. Moreover, the ground UGVs act

independently and as a group; which increases the space of

uncertainty in this problem space.

In the remainder of this paper, we will first explain the

methodology in Section II followed by task and the environ-

ment in Section III. The experiments are then presented in

Section IV, followed by results in Section V. Conclusions are

then drawn in Section VI.

II. THE METHODOLOGY

Reinforcement learning (RL) has shown a significant suc-

cess in high-dimensional problems with continuous data [15].

RL agents learn by interacting with the environment. This

leads to two challenges. First, they may need to spend a

significant amount of time to map the problem state-space.

Second, in some problems, this interaction may be costly or

unsafe. Third, designing an appropriate reward functions to

guide the agent is a non-trivial task.

Supervised learning (SL) learns quickly with many suc-

cessful stories today on the use of Deep Neural Networks in

SL tasks. However, SL agents normally require a significant

amount of labelled data for training.

We propose a two stage methodology, whereby an SL agent

is used on a reasonable sample of data collected from Humans

to seed a model. In the second stage, the model is used to seed

an RL agent; so that the agent does not start from scratch. This

requires a framework that enables this transfer to happen.

In this paper, we use the Actor-Critic model for the purpose

stated above. The Actor can be used as a supervised learner

in the first stage. In the second stage, the full framework is

adopted as a RL agent. The remainder of this paper focuses

on the first stage to design human-competitive models.

The Deep Deterministic Policy Gradients (DDPG) [16]

algorithm is designed to solve continuous control problems.

In the DDPG architecture, there are two networks: an actor

and a critic network. The actor network outputs continuous

control policies, and the critic network steers the actor towards

improving its control policy.

The Actor Network, a Deep Neural Network in the DDPG

actor-critic architecture, is adopted alone as a SL agent.

Human demonstrations are collected, where the states of the

system are used as inputs to the Actor Network and the human

actions are used as the targets. In the next section, this process

is explained in details.

III. ENVIRONMENT AND TASK DESCRIPTION

There are three UGVs: UGV1, UGV2, and UGV3, and a

UAV in this UAV-UGVs environment. The aim is for the UAV

to maintain all UGVs within FoV without losing any UGV

from the FoV or creating a FoV that is much larger than

what is needed to accommodate the manifold created by the

UGVs. To collect human demonstrations, the system allows

a human to teleoperate the UAV from a distance. A pictorial

representation of the system is shown in Figure 1.

In all scenarios, UGVs start from their base, where we

always assume that the initial location of the UAV is at the

center of the UGVs’ base. A number of manoeuvre profiles are

designed for UGVs. The task for the UAV is decomposed into

two objective. In the first objective, the UAV needs to minimize

the distance between its own center of mass and the center of

mass of the UGVs within its FoV. The second objective is

to minimize the difference between the radius of the UAV’s

camera FoV and the ideal radius needed. We define the ideal

radius as the radius of the smallest circle to encapsulate the

manifold formed by UGVs’ formation. While the UAV has

two cameras: a forward-looking camera and a top-down view

camera, we only refer to the latter in this paper and don’t use

the former.

The above environment is built using Gazebo simulator [17],

ROS framework [18] and OpenAI Gym [19]. A schematic

diagram of the architecture to integrate the three systems

together is presented in Figure 2.

Gazebo simulator [17] was used to design the task scenario.

The drone simulator package in the simulation was Tum-

Simulator [20]. In the paper, this package was simulated for the

Parrot AR. Drone 2. The unmanned ground vehicles’ simulator

package was the Husky simulator [21]. The Husky package

simulates a Husky medium size robot mounted with Microsoft

Kinect and laser rangefinder sensors.

The control interface agent was programmed in Python to be

compatible with OpenAI Gym [19]. When collecting human

demonstrations, the control interface agent receives a real

video stream from the UAV bottom camera, and simultane-

ously communicates the human’s actions back to Gazebo. The

human controls the drone using a Joystick. The human gets to

see the image from the UAV top-down camera alone to have

a fair setup comparable to the DNN Controller.

The Robot Operating System (ROS) [18] framework was

used as an interface between the control interface agent and

the Gazebo simulator environment. The actions and states were

sent and received through ROS messages. We used ROS Indigo

installed on Ubuntu 14.04.

The collected human demonstrations are then used by the

DNN training algorithm in a supervised learning mode. Once



Fig. 1: The model of the UAV and UGVs Coordination Task

Fig. 2: The simulation environment protocol

training is complete, the same control interface agent is used,

but this time with the human being replaced with the trained

DNN for testing.

The UGVs’ action space consists of 2 continuous real-

valued actions representing the linear velocity, V , and the

angular velocity (yaw rate), ω. The manoeuvre profile for the

UGVs is prescripted according to the scenario being tested.

The UAV actions space consists of 4 continuous real values

representing pitch and roll attitude, altitude, and yaw, and

are denoted as (p, r, a, y), respectively. The state vector of

the environment is a 17-D tuple of the continuous variables

presented in Table I.

Meanwhile, (cx, cy) are received from the UAV bot-

tom camera configuration, and UAV z, (p, r, a, y), (V 1, ω1),
(V 2, ω2), (V 3, ω3) are subscribed from the Gazebo en-

vironment. (UGV x,UGV y) and (rai, raa) are calculated

based on pinhole camera model. raa is the distance from

(UGV x,UGV y) to the furthest UGV position within the

bottom image.

The first objective is given in Equation 1, where ||.|| denotes

the second norm. The second objective is given in Equation 2.

Both objectives are to be minimized as indicated by the down-

facing arrow.

TABLE I: The State Space

State ID State Name State Description

1-2 (cx, cy)
Centre of the UAV from bottom
camera

3-4 (UGV x,UGV y)
UGV Centre of Mass within the
UAV image

5 UAV z UAV altitude in Gazebo model
6 rai Ideal UGV radius within image
7 raa Actual UGV radius within image

8-11 (p, r, a, y) UAV velocity vector

12-17
(V 1, ω1), (V 2, ω2),
(V 3, ω3)

UGV1, UGV2, and UGV3 velocity
vector

↓ distance error =

∫
t

||(cx, cy)− (UGV x,UGV y)|| (1)

↓ radius error =

∫
t

(rai − raa)
2 (2)

The DNN architecture used in this paper is given in Figure 3.

The network consists of an input layer, two fully-connected

hidden layers, and a fully-connected output layer. The states

defined in Table I are used as inputs, while the outputs,

as discussed above, are p, r, a, y. We use 300 Relu units,

tanh for the output layer, the Adam method for optimization,

and the Mean Squared Error (MSE) for the loss function.

Tensorflow and Keras libaries [22] were used to design the

deep neural network. The deep network was trained on an

NVIDIA GeForce GTX 1080 GPU.

A. Human Demonstrations Scenarios

We use four maneuvers in this paper: Lateral-Movements-

Fixed-Altitude maneuver, Climb-Only maneuver, Descend-

Only maneuver, and Lateral-Movements-With-Climb-Descend



Fig. 3: The Deep neural network structure.

maneuver. The first three maneuvers give us a baseline for

simpler manoeuvre, while the fourth maneuver is a more

complex manoeuvre. There are 6 basic actions to control the

UAV: Move Forward, Move Backward, Turn Left, Turn Right,

Climb, and Descend.

In the Lateral-Movements-Fixed-Altitude maneuver, UGVs

are allowed to move forward, turn left, and turn right.

However, they need to move as a group with synchronized

homogeneous action set to maintain their formation intact.

This fixes the manifold of the UGV formation over the

course of the scenario. In this scenario, the human needs to

focus on four basic actions of turning right/left and moving

forward/backward.

In the Climb-Only maneuver, three distinct phases are

followed. In the first and third phase, UGVs move forward

with fixed formation and the same linear velocity. In the

second phase, UGV2 and UGV3 separate from UGV1. They

separate in opposite directions, which cause the radius required

to bring them back to the UAV camera FoV to increase. This

necessitates a “climb” action of the UAV. We label the behavior

of the UGVs “separation,” as the UGVs get spread away from

each other similar to the separation/repulsion force in a swarm

Boid model.

The Descend-Only maneuver is identical to the Climb-

Only maneuver except for the second phase, where UGV2

and UGV3 converge on the position of UGV1, reducing the

radius required to bring them back to the UAV camera FoV to

increase. This necessitates a “descend” action of the UAV. We

label the behavior of the UGVs “cohesion,” as the UGVs get

attracted to each other similar to the cohesion/attraction force

in a swarm Boid model.

In both Climb-Only and Descend-Only maneuvers, the

forward movement of the UGVs would mean that the human

needs to only control the height of the UAV; increasing it in

the first maneuver and descending it in the second.

The last maneuver, Lateral-Movements-With-Climb-

Descend, is a combination of the above three. A scenario

consists of 4 periods. Four movement patterns of the UGVs

are labelled 1 to 4, representing Separation-Left, Cohesion-

Right, Separation-Right, and Cohesion-Left manoeuvres,

respectively.

Each scenario consists of four periods, where UGVs move

according to a manoeuvre drawn randomly from the above

four basic manoeuvres. For example, a scenario that follows

1234 will start by by having the UGVs separate while turning

left, then when this manoeuvre gets completed, UGVs start

converging on each other while turning right, followed by

turning right again while separating, and lastly turning left

while converging on each other.

In this setup, the human needs to combine actions by

moving the UAV in appropriate directions and climbing and/or

descending it as necessary to achieve the mission objective

In the rest of the paper, we will use the following short

naming style to indicate the four maneuvers: Fixed-Altitude,

Climb, Descend, and Combined, respectively.

IV. EXPERIMENTS

In this section, we aim to evaluate performance between

the human subject and our trained DNN in all four maneuvers

described above. Furthermore, for each of the four maneuvers,

we also investigate two scenarios. In the first scenario, the state

space includes ground truth information about the locations

of the UGVs for situations where UGVs are allowed to

communicate their position to the UAV. In the second scenario,

this state information is not available to the UAV; thus only

information available on-board of the UAV is used. When

assessing these two scenarios, our target is to know whether

the extra information obtained from the UGVs offers benefits

for training the DNN. Therefore, we have a total of 8 setups

as described in Table II.

TABLE II: The Setups in the paper

ID Name Meaning

1 S1-Fix-Altitude
Using UAV/UGVs States Space for the Fixed-
Altitude maneuver

2 S1-Climb
Using UAV/UGVs States Space for the Climb
maneuver

3 S1-Descend
Using UAV/UGVs States Space for the De-
scend maneuver

4 S1-Combined
Using UAV/UGVs States Space for the Com-
bined maneuver

5 S2-Fix-Altitude
Using UAV States Space for the Fixed-Altitude
maneuver

6 S2-Climb
Using UAV States Space for the Climb maneu-
ver

7 S2-Descend
Using UAV States Space for the Descend ma-
neuver

8 S2-Combined
Using UAV States Space for the Combined
maneuver

Demonstrations from the human subject were collected for

10 episodes in each maneuver, except for the Fixed-Altitude

maneuver in which 5 episodes were performed because the

operating path of the UGVs was significantly longer and to

balance the labels of the data needed for training DNN. In

total, the four data sets had 5296, 4691, 4904, and 5464

instances for the Fixed-Altitude maneuver, Climb maneuver,

Descend maneuver, and Combined maneuver, respectively.

The DNN is trained for 10,000 epochs with a batch size equal

to the number of data instances in each setup.



After training, the deep neural network for each experiment

is tested. The testing paths are used, and in each experiment,

the agent is tested ten times on randomly generated cases. For

the Fixed-Altitude maneuver, Climb maneuver and Descend

maneuver, the UGVs movement testing paths are nearly fixed

in every episode; however, variations among the maneuvers

are caused by uncertainties in the behavioral envelope of the

UAV’s dynamics.

V. RESULTS AND EVALUATION

Fig. 4: The Measure of Mean Squared Error over Epochs in

S1.

Fig. 5: The Measure of Mean Squared Error over Epochs in

S2.

Figures 4 and 5 show the value of Mean Squared Error

(MSE) in each of the two scenarios for each maneuver. In both

scenarios, the training is very fast (about 40 minutes in real

time), the error stopped declining and became stable around

2000 epochs.
To evaluate performance, we calculate the distance between

the UAV’s Center (cx, cy) and the center of UGVs’ mass

(UGV x,UGV y), and the difference between the actual radius

rai and ideal radius raa. In Table III, we present the average

and standard deviation of these two metrics for each scenario.
The results in Table III are interesting. Our trained DNN in

Scenario 2 managed to align the UAV with the UGVs’ center

of mass with performance equivalent to the human subject

in the first three maneuvers, and better in the case of the

Combined maneuver although the difference is not statistically

significant. The same cannot be said with regard to the radius.

In the Climb and Combined maneuvers, regarding to the radius

error, the DNN seems to overshot the height of the UAV,

pushing it to a higher altitude than needed.

Scenario 1 had inferior performance than Scenario 2 in terms

of adjusting its altitude. This is surprising because in Scenario

1, the state space includes exact information on the velocity

of the individual UGVs and the ideal radius. The DNN caused

the UAV to overshot in its altitude in all maneuvers requiring

altitude adjustments, while in the first maneuver, the DNN

figured out the easy solution of not adjusting the UAV height.

The DNN in this scenario was worse than Scenario 2 in terms

of alignment with UGVs’ center of mass in all maneuvers

except the Climb maneuver.

It is worth mentioning that despite the variations discussed

above, in both Scenario, the DNN always maintained the

UGVs within the range of the camera in all maneuvers and

all test cases. To better understand the phenotypic differences

between the human performance and DNN, we visualize

the behaviour of the UAV when it is under human control

and compare it with the behaviour when it is under DNN

control in each scenario. For space limitations, we restrict the

visualization to those presented in Figures 6 to 13.

Some general observations can be made on the figures. First,

Figure 6 shows a smoother track by the DNN when UGVs

make sharp turns when compared to the human. When tracking

UGVs laterally (Figure 9), once more DNN seems to track in

a smoother manner, while the human seems to be attempting

to track optimal on the cost of generating consistent steering

of the vehicle. Such a behavior consumes more energy.

VI. CONCLUSION AND FUTURE WORK

In the paper, we used the Deep Actor Network as a

supervised learner in a ground-air interaction context. An

unmanned aerial vehicle (UAV) attempts to maintain a mobile

group of unmanned ground vehicles (UGVs) within its camera

range. We used a human to generate the training set and

tested two scenarios. In the first scenario, the state space for

the Deep Neural Network (DNN) included information on

UGVs and the ideal target radius that needs to covered, as

well as information from the UAV’s camera. In the second

scenario, the state for DNN excluded UGV information and

only included information drawn from the UAV’s Camera.

In each scenario, we tested four maneuvers: three simple

ones where the UAV needs to either track UGVs by moving

forward, climbing and descending. In the fourth maneuver,

the UGVs move in more complex maneuvers where all three

forms of behaviour (lateral tracking, climbing and descending)

are used.

It was interesting to see that the DNN trained very fast,

with only 2000 epochs, it reached its maximum performance.

The extra information obtained from the UGVs did not offer

advantages for DNN. In fact, DNN was able to learn better



TABLE III: Average and Standard Deviations of Errors in All Testing Experiments

Experiment ID
Human Scenario 1 Scenario 2

Distance Errors Radius Errors Distance Errors Radius Errors Distance Errors Radius Errors
MSE μ± σ MSE μ± σ MSE μ± σ MSE μ± σ MSE μ± σ MSE μ± σ

Fix-Altitude 15.6 ± 9.1 3.4 ± 3.3 16.7 ± 0.7 1 ± 0 15.6 ± 6.7 2.6 ± 1.6
Climb 14.6 ± 9.5 1.8 ± 1.3 14.9 ± 8.9 19.6 ± 8.7 17.7 ± 8.2 19.1 ± 8.2
Descend 15.9 ± 8.1 4.8 ± 4.6 24.4 ± 33.6 27.7 ± 19.7 16.7 ± 9.2 8.7 ± 6.8
Combined 14.2 ± 9 12.9 ± 21.9 15.7 ± 9.8 23.4 ± 12.9 12.6 ± 8.1 26.2 ± 19.1

(a) Human Control (b) S1-Fix-Altitude (c) S2-Fix-Altitude

Fig. 6: The UGVs’ Center and UAV Trajectories on Gazebo Model in Lateral-Movements-Fixed-Altitude maneuver

(a) Human Control (b) S1-Fix-Altitude (c) S2-Fix-Altitude

Fig. 7: The UGVx Trajectories in Lateral-Movements-Fixed-Altitude maneuver

(a) Human Control (b) S1-Climb (c) S2-Climb

Fig. 8: The Ideal and Actual UGVs Circle Trajectories on Horizontical Image in Climb-Only maneuver



(a) Human Control (b) S1-Climb (c) S2-Climb

Fig. 9: The Ideal and Actual UGVs Circle Trajectories on Vertical Image in Climb-Only maneuver

(a) Human Control (b) S1-Descend (c) S2-Descend

Fig. 10: The Ideal and Actual UGVs Circle Trajectories on Horizontical Image in Descend-Only maneuver

(a) Human Control (b) S1-Descend (c) S2-Descend

Fig. 11: The Ideal and Actual UGVs Circle Trajectories on Vertical Image in Descend-Only maneuver

(a) Human Control (b) S1-Combined (c) S2-Combined

Fig. 12: The Ideal and Actual UGVs Circle Trajectories on Horizontical Image in Lateral-Movements-With-Climb-Descend

maneuver



(a) Human Control (b) S1-Combined (c) S2-Combined

Fig. 13: The Ideal and Actual UGVs Circle Trajectories on Vertical Image in Lateral-Movements-With-Climb-Descend maneuver

in the second scenario where only local information from

the UAV’s camera were used. Moreover, Our trained DNN

produced behaviors generalizing performance equivalent to the

human on other similar scenarios that were not seen during

the training phase.

In our future work, we will use the trained neural network

to seed the deep deterministic policy gradients algorithm [16]

which uses an Actor-Critic deep reinforcement learning.
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